首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the last main phase of glaciation (26–13 ka) an ice‐cap developed in southwest Ireland and ice, from a dispersal centre in the vicinity of Kenmare, flowed north through the Gap of Dunloe in the Macgillycuddy's Reeks. On surrounding hillsides a weathering limit separates ice‐moulded bedrock, on low ground, from frost‐weathered terrain above. Assessment of bedrock dilation joint characteristics, Schmidt hammer R‐value data and clay‐sized mineral contents of basal soil samples, demonstrate significant contrasts in the degree of weathering above and below this limit. The weathering limit declines in altitude along former ice flow‐lines and is confluent with morainic deposits on the eastern side of the Gap. This supports the assertion that the high‐level weathering limit is a periglacial trimline that marks the former maximum upper limit of the body of ice which occupied the Gap of Dunloe during the Last Glacial Maximum (LGM). Reconstruction of the former ice‐surface profile from periglacial trimline limits on the eastern side of the Gap yields a mean estimate for basal shear stress of 106.5 kPa. This value suggests that the ice mass which occupied the Gap of Dunloe at the LGM was warm based and flowed on a bedrock substrate. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
Recent models of the last Scottish ice sheet suggest that nunataks remained above the ice surface in areas peripheral to the main centres of accumulation. This proposition has been investigated on 140 mountains over an area of 10,000 km2 in NW Scotland. Outside the limits of the later Loch Lomond Readvance in this area there is evidence for a single high-level weathering limit that separates glacially eroded terrain from higher areas of in situ frost debris. This limit occurs at altitudes ranging from 425 to 450 m in the Outer Hebrides to >950 m on the mainland, and is best developed on lithologies that resisted breakdown after ice-sheet downwastage. Interpretation of this weathering limit as a periglacial trimline cut by the last ice sheet at its maximum thickness is supported by: (1) joint-depth and Schmidt hammer measurements that indicate significantly more advanced rock breakdown above the weathering limit; (2) a much greater representation of gibbsite (a pre-Late Devensian weathering product) in the clay fraction of soils above the limit; (3) cosmogenic isotope dating of the exposure ages of rock outcrops above and below the limit; (4) the sharpness of the limit at some sites and its regular decline along former ice flowlines; and (5) shear stress calculations based on the inferred altitude and gradient of the former ice surface. Reconstruction of the ice surface based on trimline evidence indicates that the mainland ice shed lay near or slightly east of the present watershed and descended northwards from >900 m to ca. 550 m at the north coast. Independent dispersion centres fed broad ice streams that occupied major troughs. On Skye an ice dome >800 m deflected the northwestwards movement of mainland ice, but the mountains of Rum were over-ridden by mainland ice up to an altitude of ca. 700 m. The Outer Hebrides supported an independent ice cap that was confluent with mainland ice in the Minches. Extrapolation of the trimline evidence indicates that most reconstructions of ice extent are too conservative, and suggests that low-gradient ice streams extended across the Hebridean Shelf offshore. Wider implications of this research are: (1) that blockfields and other periglacial weathering covers are not all of the same age or significance, depending on the resistance of different lithologies to frost weathering; (2) that the contrasting degree of glacial modification in the Western and Eastern Highlands of Scotland may reflect a former cover of predominantly warm-based ice in the former and predominantly cold-based ice in the latter; and (3) that the approach and techniques developed in this study have potential application for constraining ice-sheet models, not only in areas peripheral to the main centres of ice accumulation in Britain and Ireland, but also in other mountain areas where nunataks protruded through warm-based Late Pleistocene ice masses.  相似文献   

3.
High-level weathering limits separating ice-scoured topography from frost-weathered detritus were identified on 28 mountains in Wester Ross at altitudes of 700–960 m, and a further 22 peaks support evidence of ice scouring to summit level. Weathering limits are defined most clearly on sandstone and gneiss, which have resisted frost shattering during the Late Devensian Lateglacial, but can also be distinguished on schists and quartzite. Schmidt hammer measurements and analyses of clay mineral assemblages indicate significantly more advanced rock and soil weathering above the weathering limits. The persistence of gibbsite above weathering limits indicates that they represent the upper limit of Late Devensian glacial erosion. The regular decline of weathering-limit altitudes along former flowlines eliminates the possibility that the weathering limits represent former thermal boundaries between protective cold-based and erosive warm-based ice. The weathering limits are therefore interpreted as periglacial trimlines that define the maximum surface altitude of the last ice sheet. Calculated basal shear stresses of 50–95 kPa are consistent with this interpretation. Reconstruction of ice-sheet configuration indicates that the former ice-shed lay above 900 m along the present watershed, and that the ice surface descended northwestwards, with broad depressions along major troughs and localised domes around independent centres of ice dispersal. Extrapolation of the ice surface gradient and altitude suggests that the ice sheet did not overrun the Outer Hebrides, but was confluent with the independent Outer Hebrides ice-cap in the North Minch basin. Erratics located up to 140 m above the reconstructed ice surface are inferred to have been emplaced by a pre-Late Devensian ice sheet (or ice sheets) of unknown age. © 1997 John Wiley & Sons, Ltd.  相似文献   

4.
Nunataks of the last ice sheet in northwest Scotland   总被引:1,自引:0,他引:1  
High-level weathering limits separating ice-scoured topography from an upper zone of frost-weathered detritus were identified on 17 mountains in NW Scotland at altitudes of <600 m to< 900 m, and a further 6 peaks were found to support evidence of ice scouring to summit level. Weathering limits are most clearly defined on Torridon Sandstone, which is resistant to frost shattering, but can also be mapped on Cambrian Quartzite, Lewisian Gneiss and Moine Schist. Contrasts in degree of rock surface weathering above and below the weathering limits were evaluated using measurements of joint depth and rock surface hardness, and through X-ray diffraction analyses of clay mineral assemblages. The results indicate significantly more advanced rock and soil weathering above the weathering limits. Widespread persistence of gibbsite above the weathering limits suggests that they represent the upper limit of Late Devensian glacial erosion, and the regularity of the decline in weathering limit altitude along former flowlines eliminates the possibility that it represents a former thermal boundary between protective cold-based and erosive warm-based ice. The weathering limits are therefore interpreted as periglacial trimlines defining the maximum surface altitude of the last ice sheet around former nunataks. Calculated basal shear stresses of 50–78 kPa are consistent with this interpretation. The altitude of the trimlines implies that the former ice shed lay at 900–930 m in the Fannich Mountains and descended gently northwards, and that the ice surface descended NW from the ice shed to >500 m over the extreme NW tip of Scotland and to 700–730 m at the head of Little Loch Broom.  相似文献   

5.
Degree of rock surface weathering was measured on sites in Oldedalen and Brigsdalen, where dates of deglaciation have been estimated. and on an altitudinal transect on the slopes of Skåla. representing one of the highest supra-marine reliefs in western Norway. The Schmidt hammer is useful only for distinguishing sites deglaciated during the Little Ice Age from those deglaciated during the Lateglacial and early Holocene. Degree of roughness of granitic augen gneiss bedrock surfaces was quantified from profiles measured in situ using a micro-roughness-meter and profile gauge. There is a significant increase in surface roughness above a clear trimline at c. 1350 m a.s.I. but no significant increase above a higher trimline previously proposed as the vertical limit of the last ice sheet in this area (c. 1560 m a.s.I.). The roughness of boulder surfaces on the summit blockfield does not direr significantly from the roughness of bedrock surfaces downslope as far as the lower trimline. These unexpected results suggest that bedrock surfaces between the two trimlines were not glacially abraded during the Late Weichselian, so that the upper trimline is unlikely to represent the vertical limit of ice during either the Late Weichselian or a subsequent readvance. Preliminary results of 10Be dating of surface quartz samples from above the lower trimline support the proposal that the site was not abraded during the last glaciation. The results can be interpreted in two ways: (1) The upper trimline represents the vertical limit of a pre-Late Weichselian advance. During the Late Weichselian the mountains were completely covered but surfaces down to the lower trimline were protected by cold-based ice. (2) The lower trimline marks the vertical limit of the Late Weichselian ice and the upper limit an older and more extensive glaciation.  相似文献   

6.
X-ray diffraction analyses of soils above and below a periglacial trimline developed across the basalts of the Trotternish Escarpment (Isle of Skye, Scotland) demonstrate that gibbsite is restricted to soils above the trimline. This suggests that the gibbsite is a relict of pre-Late Devensian weathering, and that the trimline did not develop after the last ice sheet achieved its maximum thickness. The sharpness of the boundary between frost-weathered regolith and gibbsitic soils upslope and ice-scoured bedrock associated with gibbsite-free soils downslope suggests that the trimline represents the altitude of the last ice sheet at its maximum thickness rather than a former boundary between passive cold-based ice and erosive warm-based ice. These findings illustrate how identification of high-level periglacial trimlines and associated contrasts in clay mineralogy provide a means for constraining reconstructions of the form of the last ice sheets.  相似文献   

7.
Geomorphological evidence indicates that Donegal was formerly occupied by an ice dome that extended offshore to the west, northwest and north and was confluent with adjacent ice masses to the east and south. Erosive warm‐based ice over‐rode almost all the highest mountains, implying an ice‐divide altitude greater than 700 m. Only six peripheral summits escaped glacial modification, implying either that they remained above the ice surface as nunataks or supported a thin cover of protective cold‐based ice. Gibbsite, a pre‐last glacial weathering product, is preferentially represented on summits that escaped glacial modification. Cosmogenic 10Be exposure ages of 18.6 ± 1.4 to 15.9 ± 1.0 k yr for coastal sites confirm that Donegal ice extended offshore at the last glacial maximum. Reconstruction of the form of the Donegal ice dome suggests a former minimum ice thickness of ~500 m close to the present coastline in the west and northwest, and ~400 m near the coast of the Inishowen Peninsula in the north, with the ice extending at least 20 km across the adjacent shelf to the west and northwest. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
In Snowdonia there is a marked contrast between weathered summits, often with well‐developed blockfields or tors, and lower ice‐moulded terrain. The boundary is interpreted as a trimline marking the upper surface of the last ice sheet. This interpretation is supported by the presence of gibbsite, an end‐product of prolonged weathering, at the base of soils above but not below the trimline. The reconstructed ice surface reaches about 850 m above present sea‐level along an ice divide running NE–SW through the massif. There is no evidence to support the popular view that ice centred further south extended over Snowdonia, and breaching to form the major glacial troughs can be explained by the action of local ice. The field evidence presented here demonstrates that most models of the southern British and Irish Sea ice sheets are significantly flawed, the earliest being far too thick and the most recent far too thin. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
Blockfields, weathering boundaries and marginal moraines have been mapped along a longitudinal transect from northern Andøya to Skånland in northern Norway. The degree of rock-surface weathering above and below glacial trimlines, clay-mineral assemblages and surface exposure dating based on in situ cosmogenic 10Be have been used to reconstruct the vertical dimensions and timing of the Last Glacial Maximum (LGM) of the Scandinavian Ice Sheet in this region. The cosmogenic exposure dates suggest that the lower blockfield boundary/trimline along the Andøya-Skånland transect represents the upper limit of the Late Weichselian ice sheet, with an average surface gradient of c . 9.5 m/km. The surface exposure dates from Andøya pre-date the LGM, suggesting that the LGM ice sheet did not reach mountain plateaux at northwest Andøya. The results thus support evidence from lake sediment records that the northern tip of Andøya was not covered by the Scandinavian Ice Sheet during the LGM.  相似文献   

10.
Along a 70 km section of western Kennedy Channel three prominent weathering zones are identified and serve to differentiate major events in the Quaternary landscape. The oldest zone (Zone 111b) is characterized by a deeply weathered, erratic-free terrain which extends from the mountain summits down to ca. 470 m above sea level. This zone shows no evidence of former glacierization. Zone 111a extends from ca. 470 to 370m above sea level and is characterized by sparse granite, gneiss and quartzite erratics amongst weathered bedrock and extensive, oxidized colluvium. The Precambrian provenance and uppermost profile of these erratics reflect the maximum advance of the northwest Greenland Ice Sheet onto northeastern Ellesmere Island. These uppermost erratics along western Kennedy Channel decrease in elevation southward and suggest that the former Greenland ice was thickest in the direction of the major outlet of Petermann Fiord. No evidence of a former ice ridge in Nares Strait was observed. Zone II is marked by the moraines of the outermost Ellesmere Island ice advance which form a prominent morpho-stratigraphic boundary where they cross-cut the zone of Greenland erratics at ca. 250–350 m above sea level. These moraines show advanced surface weathering and ice recession from them is associated with a pre-Holocene shoreline at 162 m above sea level. Late Wisconsin/Würm glacial deposits, equivalent to Zone I, were not observed in the lower valleys bordering Kennedy Channel. The outermost Ellesmere Island ice advance (Zone II) is radiometrically bracketed by 14C dates on in situ shells from subtill and supratill marine units which are 40,350±750 and>39,000 B.P., respectively. Amino acid age estimates on the same shell samples and others from similar stratigraphic positions all suggest ages of >35,000 B.P. Stratigraphically and chronologically this ice advance is correlated with the outermost Ellesmere Island ice advance 20–40 km to the north which formed small ice shelves when the relative sea level was ca. 175 m above sea level. The Holocene marine transgression along western Kennedy Channel occurred in an ice-free corridor maintained between the separated margins of the northwest Greenland and northeast Ellesmere Island ice sheets during the last glaciation. Initial emergence may have begun ca. 12,300 B.P., however, sea level had dropped only 15 m by ca. 8000 B.P. after which glacio-isostatic unloading of the corridor was rapid. The implications of these data are discussed in the context of existing models on high latitude glaciation and paleoclimatic change  相似文献   

11.
Reconstructions of the last (late Devensian) British ice sheet have hitherto been based on assumptions regarding its extent and form. Here we employ observational evidence for the maximum altitude of glacial erosion (trimlines) on mountains that protruded through the ice (palaeonunataks) to reconstruct the form of the ice sheet over ≈ 10 000 km2 of NW Scotland. Contrasts in the clay mineralogy of soils and exposure ages of rock surfaces above and below these trimlines confirm that they represent the upper limit of late Devensian glacial erosion. The reconstruction yields realistic values of basal shear stress and is consistent with independent evidence of ice movement directions. The ice sheet reached ≈ 950 m altitude over the present N–S watershed, descended northwards and north-westwards, was deflected around an ice dome on Skye and an independent Outer Hebrides ice cap, and probably extended across the adjacent shelf on a bed of deforming sediments.  相似文献   

12.
Glaciations of the West Coast Range,Tasmania   总被引:1,自引:0,他引:1  
Geomorphic, stratigraphic, palynologic and 14C evidence indicates that the West Coast Range, Tasmania, was glaciated at least three times during the late Cenozoic. The last or Margaret Glaciation commenced after 30,000 yr B.P., culminated about 19,000 yr B.P., and ended by 10,000 yr B.P. During this period a small ice cap, ca. 250 m thick, and cirque and valley glaciers covered 108 km2. The glacial deposits show little chemical weathering or erosional dissection. The snow line ranged from 690 to 1000 m with an average of 830 m for the ice cap. Mean temperature was 6.5°C below the present temperature. During the preceding Henty Glaciation a 300- to 400-m-thick ice cap and outlet glaciers exceeded 1000 km2. The glacial deposits are beyond 14C assay. They are more weathered chemically and more dissected than Margaret age deposits, and the degree suggests a pre-last interglaciation age (> 130,000 yr B.P.). The snow line of the ice cap lay at 740 m, and annual temperature was reduced by 7°C. Ice of the earliest Linda Glaciation slightly exceeded that of the Henty Glaciation but had a similar distribution. The glacial deposits are intensely weathered, have reversed magnetization, and overlie a paleosol containing pollen of Tertiary type. An early Pleistocene or Tertiary age is indicated.  相似文献   

13.
Isla de los Estados is a mountainous island southeast of Tierra del Fuego, in southernmost South America. Its central and eastern parts have an alpine topography, transected by U-shaped valleys, small, partly over-deepened fjords, and a multitude of abandoned cirques, all associated with extensive former local glaciations. Traces of glacial erosion generally reach 400–450 m a.s.l., and above that trimline a distinct sharp-edged nunatak derived landscape is present. The westernmost part of the island has a lower, more subdued topography, reflecting its “softer” geology but possibly also over-running and erosion by mainland-derived ice streams. The present study concentrated on glacigenic sediment sequences exposed along coastal erosional cliffs. A combination of OSL and 14C datings show that these sediments mostly date from the latest (Wisconsinan/Weichselian) glacial cycle, i.e. from the last ca. 100 ka with the oldest (glaciolacustrine) deposits possibly as old as 90–80 ka. The upper parts of overlying tills, with associated lateral and terminal moraines from glaciers that expanded onto an eustatically exposed dry shelf north of the island, date from the last global glacial maximum (LGM). Radiocarbon ages of peat and lake sediments indicate that deglaciation began 17–16 cal ka BP.  相似文献   

14.
Analysis of soil samples from above and below trimlines representing the upper limit of glacial erosion at the Last Glacial Maximum demonstrates that soils with prolonged weathering histories above such trimlines yield significantly different mineral magnetic signatures from soils below trimlines. The nature of the contrast is conditioned by lithology. Basalt soils above the trimline yield significantly higher values of concentration‐dependent magnetic parameters (χ, χarm, IRM3T, soft IRM and hard IRM) than those below the trimline, due probably to transformation of non‐magnetic iron‐bearing minerals into magnetic forms. Conversely, for sandstone soils most magnetic parameters yield significantly lower values for above‐trimline samples, probably reflecting loss of ferrimagnetic minerals by dissolution and oxidation to aniferrimagnetic forms. These significant contrasts represent a new approach to validating high‐level weathering limits as periglacial trimlines cut at the Last Glacial Maximum. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
The Sierra los Cuchumatanes (3837 m), Guatemala, supported a plateau ice cap and valley glaciers around Montaña San Juan (3784 m) that totaled ∼ 43 km2 in area during the last local glacial maximum. Former ice limits are defined by sharp-crested lateral and terminal moraines that extend to elevations of ∼ 3450 m along the ice cap margin, and to ca. 3000-3300 m for the valley glaciers. Equilibrium-line altitudes (ELAs) estimated using the area-altitude balance ratio method for the maximum late Quaternary glaciation reached as low as 3470 m for the valley glaciers and 3670 m for the Mayan Ice Cap. Relative to the modern altitude of the 0°C isotherm of ∼ 4840 m, we determined ELA depressions of 1110-1436 m. If interpreted in terms of a depression of the freezing level during maximal glaciation along the modern lapse rate of − 5.3°C km− 1, this ΔELA indicates tropical highland cooling of ∼ 5.9 to 7.6 ± 1.2°C. Our data support greater glacial highland cooling than at sea level, implying a high tropical sensitivity to global climate changes. The large magnitude of ELA depression in Guatemala may have been partially forced by enhanced wetness associated with southward excursions of the boreal winter polar air mass.  相似文献   

16.
A 10.5 m core from Changeable Lake in the Severnaya Zemlya Archipelago just north of the Taymyr Peninsula intersects ca. 30 cm of diamicton at its base, interpreted as a basal till. Because the upper 10.13 m of this core consists of non‐glacial sediments, a maximum numeric age for these non‐glacial sediments would provide a clear lower limit to the timing of the last glaciation in the area of Changeable Lake. Radiocarbon (14C) dating of several materials from this core yielded widely scattered results. Consequently we applied photonic dating to sediments above the diamicton. The experimental single‐aliquot‐regenerative (SAR) dose fine‐grain method was applied to two samples, using the ‘double SAR’ approach. With one exception, these fine‐grain SAR results and the results of application of the SAR method to sand‐sized quartz grains from two samples, at ca. 9.95 m and ca. 10.05 m depth, are discrepant with age estimates from the multi‐aliquot infrared‐photon‐stimulated luminescence (IR‐PSL) method applied to fine grains. Multi‐aliquot IR‐PSL dating of 10 samples produces ages increasing monotonically from ca. 4 ka at 2 m to 53 ± 4 ka at 9.97 m. These self‐consistent multi‐aliquot IR‐PSL ages, along with limiting 14C ages of >47 ka at ca. 10 m, provide direct evidence that glacial ice did not advance over this lake basin during the Last Glacial Maximum, and thus delimit the northeastern margin of the Barents–Kara Sea ice‐sheet to somewhere west of this archipelago. The last regional glaciation probably occurred during marine isotope stage (MIS) 4 or earlier. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
The mineralogy and isotopic compositions of subglacially precipitated carbonate crusts (SPCCs) provide information on conditions and processes beneath former glaciers and ice sheets. Here we describe SPCCs formed on gneissic bedrock at the bed of the Laurentide Ice Sheet (LIS) during the last glacial maximum on central Baffin Island. Geochemical data indicate that the Ca in the crusts was likely derived from the subglacial chemical weathering Ca-bearing minerals in the local bedrock. C and Sr isotopic analyses reveal that the C in the calcite was derived predominantly from older plant debris. The δ18O values of the SPCCs suggest that these crusts formed in isotopic equilibrium with basal ice LIS preserved in the Barnes Ice Cap (BIC). Columnar crystal fabric and the predominance of sparite over micrite in the SPCCs are indicative of carbonate precipitation under open-system conditions. However, the mean δ18O value of the calcite crusts is ~ 10‰ higher than those of primary LIS ice preserved in the BIC, demonstrating that SPCCs record the isotopic composition of only basal ice. Palynomorph assemblages preserved within the calcite and basal BIC ice include species last endemic to the Arctic in the early Tertiary. The source of these palynomorphs remains enigmatic.  相似文献   

18.
Radiocarbon dates on molluses in marine facies associated with glacial deposits in northern Cumberland Peninsula indicate both main fiord (Laurentide) ice and local glaciers remained at their late Wisconsin maxima until ca. 8000 BP. Essentially continuous deglaciation followed; local corrie glaciers melted out by 7100 BP and by 5500 BP fiord glaciers had receded behind the present margin of the Penny Ice Cap. The Hypsithermal warm interval probably lasted from ca. 8000 to 5000 BP. Lichenometry and radiocarbon dates on peat and buried organic horizons delimit a detailed Neoglacial chronology. Of 46 outlet and corrie glaciers investigated, the oldest Neoglacial moraines are dated lichenometrically at 3200 ± 600 BP. Subsequent advances terminated immediately prior to ca. 1650, 780, 350, and 65 yr BP, the most recent of which marked the most extensive ice coverage during the Neoglacial. The highest occurrence of lateral moraines from late Wisconsin advances of local and Laurentide ice suggest that at the late Wisconsin glacial maximum, depression of snowline varied from 450 m below present at the coast to 350 m below present level in the vicinity of the Penny Ice Cap. Moraines, surrounded by glacial ice and lying above the present steady-state ELA, suggest that during the Hypsithermal snowline was up to ca. 200 m above its present elevation. A radiometrically controlled reconstruction of relative summer paleotemperatures for the postglacial derived independently of lichenometry agrees well with the lichenometric age dating of moraines. The data suggest that between ca. 1650 and 900 BP climatic conditions were unfavorable for glacier growth, whereas the period ca. 800-65 yr BP was one of general glacial activity. During the last decade permanent snow cover has been increasing in the area. Previously reported data on climatic trends in the Canadian Arctic based on palynological analyses are similar to the chronology reported here.  相似文献   

19.
Bottomsets from glaciomarine deltas situated stratigraphically below and above the Weichselian maximum glaciation till at Skorgenes, western Norway, were tested for consolidation in an attempt to quantify the ice thickness at the time of deposition of the till. The value of the preconsolidation pressure in the lower unit (15 ± 1 MPa), indicates an ice thickness over the site of some 1350 ± 90 m. This is, however, only considered a minimum because values of preconsolidation pressures normally are lower than actual ice thickness would suggest due to incomplete drainage of the bed during consolidation. The estimated ice thickness indicates an ice surface some 400 m above the lower limit of the block field in the area, suggesting that this limit can not be used as a criterion for reconstructing the upper glacier surface for the Weichselian maximum glaciation in western Norway. Also, the nearest mountain peaks seemingly were completely ice covered, suggesting that no nunataks were present in that area.  相似文献   

20.
The presence of glacial sediments across the Rauer Group indicates that the East Antarctic ice sheet formerly covered the entire archipelago and has since retreated at least 15 km from its maximum extent. The degree of weathering of these glacial sediments suggests that ice retreat from this maximum position occurred sometime during the latter half of the last glacial cycle. Following this phase of retreat, the ice sheet margin has not expanded more than ∼ 1 km seaward of its present position. This pattern of ice sheet change matches that recorded in Vestfold Hills, providing further evidence that the diminutive Marine Isotope Stage 2 ice sheet advance in the nearby Larsemann Hills may have been influenced by local factors rather than a regional ice-sheet response to climate and sea-level change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号