首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This short communication presents the assessment of seismic inelastic and elastic displacement demands computed from earthquake ground motions (EQGMs) recorded in Mexico City during the intermediate‐depth intraslab Puebla‐Morelos earthquake on 19 September 2017 (Mw = 7.1). Evaluation is conducted by means of peak elastic and inelastic displacement demand spectra, inelastic displacement ratio, CR, spectra, and generalized interstory drift spectra computed for selected recording stations located in different soil sites of Mexico City, including those located in areas of reported collapsed buildings. Results of this study confirm previous observations made from interplate (subduction) EQGMs that peak inelastic displacement demands are greater than corresponding elastic counterparts for short‐to‐medium period structures, while the opposite is true for medium‐to‐long period structures. Possible basin site effects were identified from generalized interstory drift spectra. It is also shown that an equation introduced in the literature to obtain estimates of CR developed from interplate EQGMs provides also a good estimate for mean CR computed from the intermediate‐depth intraslab EQGMs.  相似文献   

2.
In current seismic design procedures, base shear is calculated by the elastic strength demand divided by the strength reduction factor. This factor is well known as the response modification factor, R, which accounts for ductility, overstrength, redundancy, and damping of a structural system. In this study, the R factor accounting for ductility is called the ‘ductility factor’, Rμ. The Rμ factor is defined as the ratio of elastic strength demand imposed on the SDOF system to inelastic strength demand for a given ductility ratio. The Rμ factor allows a system to behave inelastically within the target ductility ratio during the design level earthquake ground motion. The objective of this study is to determine the ductility factor considering different hysteretic models. It usually requires large computational efforts to determine the Rμ factor. In order to reduce the computational efforts, the Rμ factor is prepared as a functional form in this study. For this purpose, statistical studies are carried out using forty different earthquake ground motions recorded at a stiff soil site. The Rμ factor is assumed to be a function of the characteristic parameters of each hysteretic model, target ductility ratio and structural period. The effects of each hysteretic model to the Rμ factor are also discussed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Numerical and analytical solutions are presented for the elastic and inelastic response of single‐degree‐of‐freedom yielding oscillators to idealized ground acceleration pulses. These motions are typical of near‐fault earthquake recordings generated by forward rupture directivity and may inflict damage in the absence of substantial structural strength and ductility capacity. Four basic pulse waveforms are examined: (1) triangular; (2) sinusoidal; (3) exponential; and (4) rectangular. In the first part of the article, a numerical study is presented of the effect of oscillator period, strength, damping, post‐yielding stiffness and number of excitation cycles, on inelastic response. Results are presented in the form of dimensionless graphs and regression formulas that elucidate the salient features of the problem. It is shown that conventional Rµ relations may significantly underestimate ductility demand imposed by near‐fault motions. The second part of the article concentrates on elastic‐perfectly plastic oscillators. Closed‐form solutions are derived for post‐yielding response and associated ductility demand. It is shown that all three ground motion histories (i.e. acceleration, velocity, and displacement) control oscillator response—contrary to the widespread view that ground velocity alone is of leading importance. The derived solutions provide insight on the physics of inelastic response, which is often obscured by the complexity of numerical algorithms and actual earthquake motions. The model is evaluated against numerical results from near‐field recordings. A case study is presented. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
This paper focuses on constant-ductility inelastic displacement ratios of self-centering single-degree-of-freedom (SDF) systems with two different levels of energy dissipation capacity, in the presence of 5% viscous damping ratio. A statistical analysis is developed considering an earthquake database composed of 228 ground motions recorded in California with magnitudes greater than six and organized for NEHRP soil class, ground motion duration, and peak ground acceleration. The response of self-centering SDF systems with large variability of initial periods, ductility levels, and postyield stiffness ratios is investigated and compared with the responses of SDF systems with bilinear plastic, Clough, and Takeda hysteresis. The inelastic demand variation with soil class, initial period, postyield stiffness ratio, unloading stiffness degradation, ductility level, and hysteretic behavior is highlighted. Simple and conservative analytical estimates of constant-ductility inelastic displacement ratios for mean and 90th percentile values in terms of initial period, ductility level, and postyield stiffness ratio are proposed to allow the extension of the Displacement-Based Design via Inelastic Displacement Ratio (CμDBD) to self-centering structural systems.  相似文献   

5.
In spite of important differences in structural response to near‐fault and far‐fault ground motions, this paper aims at extending well‐known concepts and results, based on elastic and inelastic response spectra for far‐fault motions, to near‐fault motions. Compared are certain aspects of the response of elastic and inelastic SDF systems to the two types of motions in the context of the acceleration‐, velocity‐, and displacement‐sensitive regions of the response spectrum, leading to the following conclusions. (1) The velocity‐sensitive region for near‐fault motions is much narrower, and the acceleration‐sensitive and displacement‐sensitive regions are much wider, compared to far‐fault motions; the narrower velocity‐sensitive region is shifted to longer periods. (2) Although, for the same ductility factor, near‐fault ground motions impose a larger strength demand than far‐fault motions—both demands expressed as a fraction of their respective elastic demands—the strength reduction factors Ry for the two types of motions are similar over corresponding spectral regions. (3) Similarly, the ratio um/u0 of deformations of inelastic and elastic systems are similar for the two types of motions over corresponding spectral regions. (4) Design equations for Ry (and for um/u0) should explicitly recognize spectral regions so that the same equations apply to various classes of ground motions as long as the appropriate values of Ta, Tb and Tc are used. (5) The Veletsos–Newmark design equations with Ta=0.04 s, Tb=0.35 s, and Tc=0.79 s are equally valid for the fault‐normal component of near‐fault ground motions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
Modern seismic design allows a structure to develop inelastic response during moderate to severe earthquakes. The emerging performance-based design requires more clearly defined levels of inelastic response, or damage, to be targeted for different earthquake hazard levels. While there are a range of factors that could influence the level of damage and hence the performance, the design strength remains to be a fundamental design parameter that is inherently related to the structural performance. In this paper, the response reduction factor, which is a normalized form of the design strength, is investigated on a direct damage basis. The implications of the damage-based strength reduction factor (SRF), denoted as RD factor, on multiple performance targets are discussed. A series of RD spectra are generated from a large set of ground motions in different groupings to examine the effects of local site condition, earthquake magnitude and distance to rupture on the RD spectra. The overall mean and standard deviation of the RD spectra for different levels of damage are obtained, and simple empirical formulas are proposed.  相似文献   

7.
This paper summarizes the results of a comprehensive statistical study aimed at evaluating peak lateral inelastic displacement demands of structures with known lateral strength and stiffness built on soft soil site conditions. For that purpose, empirical information on inelastic displacement ratios which are defined as the ratio of peak lateral inelastic displacement demands to peak elastic displacement demands are investigated. Inelastic displacement ratios were computed from the response of single‐degree‐of‐freedom systems having 6 levels of relative lateral strength when subjected to 118 earthquake ground motions recorded on bay‐mud sites of the San Francisco Bay Area and on soft soil sites located in the former lake‐bed zone of Mexico City. Mean inelastic displacement ratios and their corresponding scatter are presented for both ground motion ensembles. The influence of period of vibration normalized by the predominant period of the ground motion, the level of lateral strength, earthquake magnitude, and distance to the source are evaluated and discussed. In addition, the effects of post‐yield stiffness and of stiffness and strength degradation on inelastic displacement ratios are also investigated. It is concluded that magnitude and distance to the source have negligible effects on constant‐strength inelastic displacement ratios. Results also indicate that weak and stiffness‐degrading structures in the short spectral region could experience inelastic displacement demands larger than those corresponding to non‐degrading structures. Finally, a simplified equation obtained using regression analyses aimed at estimating mean inelastic displacement ratios is proposed for assisting structural engineers in performance‐based assessment of structures built on soft soil sites. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
The conventional approach of obtaining the inelastic response spectra for the aseismic design of structures involves the reduction of elastic spectra via response modification factors. A response modification factor is usually taken as a product of (i) strength factor, RS, (ii) ductility factor, Rμ, and (iii) redundancy factor, RR. Ductility factor, also known as strength reduction factor (SRF), is considered to primarily depend on the initial time period of the single‐degree‐of‐freedom (SDOF) oscillator and the displacement ductility demand ratio for the ground motion. This study proposes a preliminary scaling model for estimating the SRFs of horizontal ground motions in terms of earthquake magnitude, strong motion duration and predominant period of the ground motion, geological site conditions, and ductility demand ratio, with a given level of confidence. The earlier models have not considered the simultaneous dependence of the SRFs on various governing parameters. Since the ductility demand ratio is not a complete measure of the cumulative damage in the structure during the earthquake‐induced vibrations, the existing definition of the SRF is sought to be modified with the introduction of damage‐based SRF (in place of ductility‐based SRF). A parallel scaling model has been proposed for estimating the damage‐based SRFs. This model considers damage and ductility supply ratio as parameters instead of ductility demand ratio. Through a parametric study on ductility‐based SRFs, it has been shown that the hitherto assumed insensitivity of earthquake magnitude and strong motion duration may not be always justified and that the initial time period of the oscillator plays an important role in the dependence of SRF on these parameters. Further, the damage‐based SRFs are found to show similar parametric dependence as observed in the case of the ductility‐based SRFs. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
An energy-based methodology for the assessment of seismic demand   总被引:4,自引:0,他引:4  
A methodology for the assessment of the seismic energy demands imposed on structures is proposed. The research was carried out through two consecutive phases. Inelastic design input energy spectra for systems with a prescribed displacement ductility ratio were first developed. The study of the inelastic behavior of energy factors and the evaluation of the response modification in comparison with the elastic case were performed by introducing two new parameters, namely: (1) the Response Modification Factor of the earthquake input energy (RE), representing the ratio of the elastic to inelastic input energy spectral values and (2) the ratio α of the area enclosed by the inelastic input energy spectrum in the range of periods between 0.05 and 4.0 s to the corresponding elastic value. The proposed design inelastic energy spectra, resulting from the study of a large set of strong motion records, were obtained as a function of ductility, soil type, source-to-site distance and magnitude.Subsequently, with reference to single degree of freedom systems, the spectra of the hysteretic to input energy ratio were evaluated, for different soil types and target ductility ratios. These spectra, defined to evaluate the hysteretic energy demand of structures, were described by a piecewise linear idealization that allows to distinguish three distinct regions as a function of the vibration period. In this manner, once the inelastic design input energy spectra were determined, the definition of the energy dissipated by means of inelastic deformations followed directly from the knowledge of hysteretic to input energy ratio.The design spectra of both input energy and hysteretic to input energy ratio were defined considering an elasto-plastic behavior. Nevertheless, other constitutive models were taken into account for comparison purposes.  相似文献   

10.
This study investigates the seismic design factors for three reinforced concrete (RC) framed buildings with 4, 16 and 32-stories in Dubai, UAE utilizing nonlinear analysis. The buildings are designed according to the response spectrum procedure defined in the 2009 International Building Code (IBC’09). Two ensembles of ground motion records with 10% and 2% probability of exceedance in 50 years (10/50 and 2/50, respectively) are used. The nonlinear dynamic responses to the earthquake records are computed using IDARC-2D. Key seismic design parameters are evaluated; namely, response modification factor (R), deflection amplification factor (Cd), system overstrength factor (Ωo), and response modification factor for ductility (Rd) in addition to inelastic interstory drift. The evaluated seismic design factors are found to significantly depend on the considered ground motion (10/50 versus 2/50). Consequently, resolution to the controversy of Dubai seismicity is urged. The seismic design factors for the 2/50 records show an increase over their counterparts for the 10/50 records in the range of 200%-400%, except for the Ωo factor, which shows a mere 30% increase. Based on the observed trends, period-dependent R and Cd factors are recommended if consistent collapse probability (or collapse prevention performance) in moment frames with varying heights is to be expected.  相似文献   

11.
In two companion papers a simplified non‐linear analysis procedure for infilled reinforced concrete frames is introduced. In this paper a simple relation between strength reduction factor, ductility and period (R–µ–T relation) is presented. It is intended to be used for the determination of inelastic displacement ratios and of inelastic spectra in conjunction with idealized elastic spectra. The R–µ–T relation was developed from results of an extensive parametric study employing a SDOF mathematical model composed of structural elements representing the frame and infill. The structural parameters, used in the proposed R–µ–T relation, in addition to the parameters used in a usual (e.g. elasto‐plastic) system, are ductility at the beginning of strength degradation, and the reduction of strength after the failure of the infills. Formulae depend also on the corner periods of the elastic spectrum. The proposed equations were validated by comparing results in terms of the reduction factors, inelastic displacement ratios, and inelastic spectra in the acceleration–displacement format, with those obtained by non‐linear dynamic analyses for three sets of recorded and semi‐artificial ground motions. A new approach was used for generating semi‐artificial ground motions compatible with the target spectrum. This approach preserves the basic characteristics of individual ground motions, whereas the mean spectrum of the whole ground motion set fits the target spectrum excellently. In the parametric study, the R–µ–T relation was determined by assuming a constant reduction factor, while the corresponding ductility was calculated for different ground motions. The mean values proved to be noticeably different from the mean values determined based on a constant ductility approach, while the median values determined by the different procedures were between the two means. The approach employed in the study yields a R–µ–T relation which is conservative both for design and performance assessment (compared with a relation based on median values). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Hysteretic energy spectrum and damage control   总被引:1,自引:0,他引:1  
The inelastic response of single‐degree‐of‐freedom (SDOF) systems subjected to earthquake motions is studied and a method to derive hysteretic energy dissipation spectra is proposed. The amount of energy dissipated through inelastic deformation combined with other response parameters allow the estimation of the required deformation capacity to avoid collapse for a given design earthquake. In the first part of the study, a detailed analysis of correlation between energy and ground motion intensity indices is carried out to identify the indices to be used as scaling parameters and base line of the energy dissipation spectrum. The response of elastoplastic, bilinear, and stiffness degrading systems with 5 per cent damping, subjected to a world‐wide ensemble of 52 earthquake records is considered. The statistical analysis of the response data provides the factors for constructing the energy dissipation spectrum as well as the Newmark–Hall inelastic spectra. The combination of these spectra allows the estimation of the ultimate deformation capacity required to survive the design earthquake, capacity that can also be presented in spectral form as an example shows. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
Results of an analytical study aimed at evaluating residual displacement ratios, Cr, which allow the estimation of residual displacement demands from maximum elastic displacement demands is presented. Residual displacement ratios were computed using response time‐history analyses of single‐degree‐of‐freedom systems having 6 levels of relative lateral strength when subjected to an ensemble of 240 earthquake ground motions recorded in stations placed on firm sites. The results were statistically organized to evaluate the influence of the following parameters: period of vibration, level of relative lateral strength, site conditions, earthquake magnitude, and distance to the source. In addition, the influence of post‐yield stiffness ratio in bilinear systems and of the unloading stiffness in stiffness‐degrading systems was also investigated. A special emphasis is given to the uncertainty of these ratios. From this study, it is concluded that mean residual displacement ratios are more sensitive to changes in local site conditions, earthquake magnitude, distance to the source range and hysteretic behaviour than mean inelastic displacement ratios. In particular, residual displacement ratios exhibit large levels of record‐to‐record variability and, therefore, this dispersion should be taken into account when estimating residual displacements. A simplified expression is presented to estimate mean residual displacements ratios for elastoplastic systems during the evaluation of existing structures built on firm soil sites. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Displacement response spectrum (DRS), as the input, is of great significance to the displacement-based design just like the acceleration response spectrum to the traditional force-based design. Although the procedure of performance-based, in particular the displacement-based design has achieved considerable development, there is not a general DRS covering an enough long period range for common seismic design yet. This paper develops a systematic ground motion data processing procedure for the purpose of correcting the noise in the earthquake records and generating consistent DRS for seismic design. An adaptive algorithm is proposed to determine the cutoff frequency of the high-pass digital filter. The DRS of more than 500 recorded earthquake ground motions are generated and they are classified into three groups according to the ratio of the peak ground acceleration to the peak ground velocity (A/V) and/or the ratio of the peak ground velocity to the peak ground displacement (V/D). In each group, all the ground motions are normalized with respect to a selected scaling factor. Their corresponding DRS are obtained and then averaged to get the mean and standard deviation DRS, which can be used for both deterministic and probabilistic displacement-based design.  相似文献   

15.
In order to investigate the response of structures to near‐fault seismic excitations, the ground motion input should be properly characterized and parameterized in terms of simple, yet accurate and reliable, mathematical models whose input parameters have a clear physical interpretation and scale, to the extent possible, with earthquake magnitude. Such a mathematical model for the representation of the coherent (long‐period) ground motion components has been proposed by the authors in a previous study and is being exploited in this article for the investigation of the elastic and inelastic response of the single‐degree‐of‐freedom (SDOF) system to near‐fault seismic excitations. A parametric analysis of the dynamic response of the SDOF system as a function of the input parameters of the mathematical model is performed to gain insight regarding the near‐fault ground motion characteristics that significantly affect the elastic and inelastic structural performance. A parameter of the mathematical representation of near‐fault motions, referred to as ‘pulse duration’ (TP), emerges as a key parameter of the problem under investigation. Specifically, TP is employed to normalize the elastic and inelastic response spectra of actual near‐fault strong ground motion records. Such normalization makes feasible the specification of design spectra and reduction factors appropriate for near‐fault ground motions. The ‘pulse duration’ (TP) is related to an important parameter of the rupture process referred to as ‘rise time’ (τ) which is controlled by the dimension of the sub‐events that compose the mainshock. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
A statistical approach is proposed for nonlinear surface ground analysis. In contrast to the conventional method which deals with only a single ground motion for equivalent linearization of soil properties, a design response spectrum defined at the upper level (bottom of the surface ground) of an engineering bedrock can be handled as the target design earthquake in the present paper. The effective shear strain in each soil layer is evaluated by means of a statistical procedure in which the mean peak shear strain is computed in terms of its standard deviation and the corresponding peak factor. The stiffness and damping ratio of each soil layer are obtained iteratively from the nonlinear relation of stiffness reduction factors and damping ratios with respect to the strain level. After the evaluation of the equivalent stiffness and damping ratio of every soil layer, the ground surface response spectrum is transformed from the design response spectrum defined at the upper level of the engineering bedrock via the one-dimensional wave propagation theory. The reliability and accuracy of the proposed analysis method is examined through the comparison with the results by the conventional method (represented by the program) for many simulated spectrum-compatible ground motions.  相似文献   

17.
In many parts of the world, the repetition of medium–strong intensity earthquake ground motions at brief intervals of time has been observed. The new design philosophies for buildings in seismic areas are based on multi‐level design approaches, which take into account more than a single damageability limit state. According to these approaches, a sequence of seismic actions may produce important consequences on the structural safety. In this paper, the effects of repeated earthquake ground motions on the response of single‐degree‐of‐freedom systems (SDOF) with non‐linear behaviour are analysed. A comparison is performed with the effect of a single seismic event on the originally non‐damaged system for different hysteretic models in terms of pseudo‐acceleration response spectra, behaviour factor q and damage parameters. The elastic–perfect plastic system is the most vulnerable one under repeated earthquake ground motions and is characterized by a strong reduction of the q‐factor. A moment resisting steel frame is analysed as well, showing a reduction of the q‐factor under repeated earthquake ground motions even larger than that of an equivalent SDOF system. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
This paper aimed to examine the site dependence and evaluate the methods for site analysis of far-source ground motions. This was achieved through the examination of frequency content estimated by different methods based on strong ground motions recorded at twelve far-source stations in Shandong province during the Wenchuan earthquake. The stations were located in sites with soil profiles ranging from code classes Ⅰ to Ⅲ. Approaches used included the Fourier amplitude spectrum (FAS), the earthquake response spectrum (ERS), the spectral ratio between the horizontal and the vertical components (H/V), the spectral ratio between the spectra at the site and at a reference site (SRRS), and coda wave analysis (CWA). Results showed that major periods of these ground motions obtained by FAS, ERS and H/V ratio methods were all evidently larger than site dominant periods; the periods were also different from each other and mainly reflected the frequency content of long period components. Prominent periods obtained by the SRRS approach neither illuminated the long period aspect nor efficiently determined site features of the motions. The CWA resulted in a period close to site period for stations with good quality recordings. The results obtained in this study will be useful for the evaluation of far-source effect in constructing seismic design spectra and in selecting methods for ground motion site analysis.  相似文献   

19.
A statistical analysis of the peak acceleration demands for nonstructural components (NSCs) supported on a variety of stiff and flexible inelastic regular moment‐resisting frame structures with periods from 0.3 to 3.0 s exposed to 40 far‐field ground motions is presented. Peak component acceleration (PCA) demands were quantified based on the floor response spectrum (FRS) method without considering dynamic interaction effects. This study evaluated the main factors that influence the amplification or decrease of FRS values caused by inelasticity in the primary structure in three distinct spectral regions namely long‐period, fundamental‐period, and short‐period region. The amplification or decrease of peak elastic acceleration demands depends on the location of the NSC in the supporting structure, periods of the component and building, damping ratio of the component, and level of inelasticity of the supporting structure. While FRS values at the initial modal periods of the supporting structure are reduced due to inelastic action in the primary structure, the region between the modal periods experiences an increase in PCA demands. A parameter denoted as acceleration response modification factor (Racc) was proposed to quantify this reduction/increase in PCA demands. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
竖向地震动加速度反应谱特性   总被引:3,自引:0,他引:3  
以33次地震中的地表地震动记录为数据基础,考虑场地条件、震级和距离的影响,分别对竖向地震动的加速度规准化反应谱和双规准化反应谱进行了研究。结果表明,规准反应谱明显受到场地条件、震级和震中距的影响,不同场地、距离和震级的平均规准反应谱之间差别显著;相比较而言,不依赖于场地、距离和震级的平均双规准反应谱之间却表现出良好的规律性和一致性。双规准反应谱的统一特性可以为竖向地震动设计谱的预测提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号