首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Real‐time hybrid simulation is a viable experiment technique to evaluate the performance of structures equipped with rate‐dependent seismic devices when subject to dynamic loading. The integration algorithm used to solve the equations of motion has to be stable and accurate to achieve a successful real‐time hybrid simulation. The implicit HHT α‐algorithm is a popular integration algorithm for conducting structural dynamic time history analysis because of its desirable properties of unconditional stability for linear elastic structures and controllable numerical damping for high frequencies. The implicit form of the algorithm, however, requires iterations for nonlinear structures, which is undesirable for real‐time hybrid simulation. Consequently, the HHT α‐algorithm has been implemented for real‐time hybrid simulation using a fixed number of substep iterations. The resulting HHT α‐algorithm with a fixed number of substep iterations is believed to be unconditionally stable for linear elastic structures, but research on its stability and accuracy for nonlinear structures is quite limited. In this paper, a discrete transfer function approach is utilized to analyze the HHT α‐algorithm with a fixed number of substep iterations. The algorithm is shown to be unconditionally stable for linear elastic structures, but only conditionally stable for nonlinear softening or hardening structures. The equivalent damping of the algorithm is shown to be almost the same as that of the original HHT α‐algorithm, while the period elongation varies depending on the structural nonlinearity and the size of the integration time‐step. A modified form of the algorithm is proposed to improve its stability for use in nonlinear structures. The stability of the modified algorithm is demonstrated to be enhanced and have an accuracy that is comparable to that of the existing HHT α‐algorithm with a fixed number of substep iterations. Both numerical and real‐time hybrid simulations are conducted to verify the modified algorithm. The experimental results demonstrate the effectiveness of the modified algorithm for real‐time testing. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Real‐time hybrid testing combines experimental testing and numerical simulation, and provides a viable alternative for the dynamic testing of structural systems. An integration algorithm is used in real‐time hybrid testing to compute the structural response based on feedback restoring forces from experimental and analytical substructures. Explicit integration algorithms are usually preferred over implicit algorithms as they do not require iteration and are therefore computationally efficient. The time step size for explicit integration algorithms, which are typically conditionally stable, can be extremely small in order to avoid numerical stability when the number of degree‐of‐freedom of the structure becomes large. This paper presents the implementation and application of a newly developed unconditionally stable explicit integration algorithm for real‐time hybrid testing. The development of the integration algorithm is briefly reviewed. An extrapolation procedure is introduced in the implementation of the algorithm for real‐time testing to ensure the continuous movement of the servo‐hydraulic actuator. The stability of the implemented integration algorithm is investigated using control theory. Real‐time hybrid test results of single‐degree‐of‐freedom and multi‐degree‐of‐freedom structures with a passive elastomeric damper subjected to earthquake ground motion are presented. The explicit integration algorithm is shown to enable the exceptional real‐time hybrid test results to be achieved. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
The time-integration algorithm is an indispensable element to determine response of the boundary of the numerical as well as physical parts in a hybrid test. Instability of the time-integration algorithm may directly lead to failure of the test, so stability of an integration algorithm is particularly important for hybrid testing. The explicit algorithms are very popular in hybrid testing, because iteration is not needed. Many unconditionally stable explicit-algorithms have been proposed for hybrid testing. However, the stability analysis approaches used in all these methods are valid only for linear systems. In this paper, a uniform formulation for energy-consistent time integrations, which are unconditionally stable, is proposed for nonlinear systems. The solvability and accuracy are analyzed for typical energy-consistent algorithms. Some numerical examples and the results of a hybrid test are provided to validate the effectiveness of energy-consistent algorithms.  相似文献   

4.
The error-propagation characteristics of an implicit time integration algorithm in pseudodynamic testing are examined. It is shown that the implicit algorithm is superior to explicit integration algorithms in terms of experimental error amplification. The influence of systematic experimental errors is studied and methods for controlling these errors are examined. In spite of the fact that the implicit algorithm is unconditionally stable, it is shown that the integration time interval in a pseudodynamic test is limited by the calibration range of the electronic hardware as well as the degree of participation of the higher modes. Furthermore, the tolerance for experimental errors decreases as the integration time interval increases.  相似文献   

5.
6.
采用模拟离散的有限体积法实现了双轴各向异性地层回线源瞬变电磁三维正演.首先引入内积定义,采用自然边界条件,将瞬变电磁法的控制方程转化为弱形式表示.将计算区域划分为一系列的控制体积单元,采用交错网格对控制方程进行模拟有限体积空间离散,包括旋度算子离散和空间内积离散.基于斯托克斯定理的旋度积分定义公式实现旋度算子离散.中点平均实现电导率双轴各向异性的空间内积离散,从而得到离散化的控制方程.时间步迭代采用无条件稳定的欧拉后向差分格式.并通过均匀全空间中稳定电流回线源的磁场解析表达式得到回线源初始时刻的电磁场分布.为了同时保证计算精度和效率,本文采用分段等间隔的时间步迭代,利用直接法求解器PARDISO实现其快速求解.最后通过对比层状模型和各向异性半空间模型的正演计算结果,验证了本文算法的计算精度和计算效率;计算三维双轴各向异性模型的正演响应可知,水平方向电导率变化对电磁响应产生显著影响,而垂直方向的电导率变化对电磁响应几乎没有影响.产生这一现象的主要原因是回线源产生的感应电流主要是水平方向的,因此响应主要受到水平方向电导率的影响,垂直方向的电导率影响很小.  相似文献   

7.
The use of unconditionally stable implicit time integration techniques for pseudodynamic tests has been recently proposed and advanced by several researchers. Inspired by such developments, a pseudodynamic test scheme based on an unconditionally stable implicit time integration algorithm and dual displacement control is presented in this paper. The accuracy of the proposed scheme is proved with error-propagation analysis. It is shown by numerical examples and verification tests that the error-correction method incorporated can eliminate the spurious higher-mode response, which can often be excited by experimental errors. The practicality of the proposed scheme lies in the fact that the implementation is as easy as that of explicit schemes and that the convergence criteria required are compatible with the accuracy limits of ordinary test apparatus.  相似文献   

8.
In real‐time hybrid simulations (RTHS) that utilize explicit integration algorithms, the inherent damping in the analytical substructure is generally defined using mass and initial stiffness proportional damping. This type of damping model is known to produce inaccurate results when the structure undergoes significant inelastic deformations. To alleviate the problem, a form of a nonproportional damping model often used in numerical simulations involving implicit integration algorithms can be considered. This type of damping model, however, when used with explicit integration algorithms can require a small time step to achieve the desired accuracy in an RTHS involving a structure with a large number of degrees of freedom. Restrictions on the minimum time step exist in an RTHS that are associated with the computational demand. Integrating the equations of motion for an RTHS with too large of a time step can result in spurious high‐frequency oscillations in the member forces for elements of the structural model that undergo inelastic deformations. The problem is circumvented by introducing the parametrically controllable numerical energy dissipation available in the recently developed unconditionally stable explicit KR‐α method. This paper reviews the formulation of the KR‐α method and presents an efficient implementation for RTHS. Using the method, RTHS of a three‐story 0.6‐scale prototype steel building with nonlinear elastomeric dampers are conducted with a ground motion scaled to the design basis and maximum considered earthquake hazard levels. The results show that controllable numerical energy dissipation can significantly eliminate spurious participation of higher modes and produce exceptional RTHS results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
An accurate algorithm for the integration of the equations of motion arising in structural dynamics is presented. The algorithm is an unconditionally stable single-step implicit algorithm incorporating algorithmic damping. The displacement for a Single-Degree-of-Freedom system is approximated within a time step by a function which is cubic in time. The four coefficients of the cubic are chosen to satisfy the two initial conditions and two weighted integral equations. By considering general weight functions, eight additional coefficients arise. These coefficients are selected to (i) minimize the difference between exact and approximate solutions for small time steps, (ii) incorporate specified algorithmic damping for large time steps, (iii) ensure unconditional stability and (iv) minimize numerical operations in forming the amplification matrix. The accuracy of the procedure is discussed, and the solution time is compared with a widely used algorithm. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
《Advances in water resources》2003,26(11):1189-1198
A two-dimensional finite element based overland flow model was developed and used to study the accuracy and stability of three numerical schemes and watershed parameter aggregation error. The conventional consistent finite element scheme results in oscillations for certain time step ranges. The lumped and the upwind finite element schemes are tested as alternatives to the consistent scheme. The upwind scheme did not improve on the stability or the accuracy of the solution, while the lumped scheme provided stable and accurate solutions for time steps twice the size of time steps needed for the consistent scheme. A new accuracy based dynamic time step estimate for the two-dimensional overland flow kinematic wave solution is developed for the lumped scheme. The newly developed dynamic time step estimates are functions of the mesh size, and time of concentration of the watershed hydrograph. Due to lack of analytical solutions, the time step was developed by comparing numerical solutions of various levels of discretization to a reference solution using a very fine mesh and a very small time step. The time step criteria were tested on a different set of problems and proved to be adequate for accurate and stable solutions. A sensitivity analysis for the watershed slope, Manning’s roughness coefficient and excess rainfall rate was conducted in order to test the effect of parameter aggregation on the stability and accuracy of the solution. The results of this analysis show that aggregation of the slope data resulted in the highest error. The roughness coefficient had a smaller effect on the solution while the rainfall intensity did not show any significant effect on the flow rate solution for the range of rainfall intensity used. This work pioneers the challenge of providing guidelines for accurate and stable numerical solutions of the two-dimensional kinematic wave equations for overland flow.  相似文献   

11.
The evaluation of the dynamic response of non-classically damped linear structures requires the solution of an eigenproblem with complex eigenvalues and modal shapes. Since in practice only a small number of complex modes are needed, the complex eigenvalue problem is solved in the modal subspace in which the generalized damping matrix is not uncoupled by classical real modes. It follows that the evaluation of the structural response requires in both cases the determination of complex modes by numerical techniques, which are not as robust as techniques currently used for the solution of the real eigenvalue problem, and the use of complex algebra. In the present paper an unconditionally stable step-by-step procedure is presented for the response of non-classically damped structures in the modal subspace without using complex quantities. The method is based on the evaluation of the fundamental operator in approximated form of the numerical procedure. In addition, the method can be easily modified to incorporate the modal superposition pseudo-static correction terms.  相似文献   

12.
柯璇  石颖 《地球物理学报》2017,60(11):4468-4479
通常工业界实现逆时偏移算法时采用有限差分数值方法模拟地震波场,波场模拟常常受稳定性条件限制,且易产生数值频散,成像精度降低.本文引入了一步法波场延拓方法,首先构建声波传播算子,借助Chebyshev多项式和Jacobi-Anger展开式近似传播算子中的e指数项,进而实现波场递推,该方法时间步长的选取不受稳定性条件限制而且不存在空间频散现象.本文将一步法波场延拓方法用于逆时偏移成像的波场模拟,并提出双缓冲区存储策略,在不增加计算量的前提下,大幅降低了逆时偏移方法的波场存储量.波场模拟和逆时偏移成像测试表明,本文提出的一步法波场延拓方法模拟地震波场精度高,消除了频散影响,可在较大时间步长的情况下实现高精度波场模拟;提出的基于一步法波场延拓的逆时偏移方法成像质量好;基于双缓冲区存储策略的逆时偏移成像方法存储成本低.  相似文献   

13.
A new method for the numerical integration of the equations for one-dimensional linear acoustics with large time steps is presented. While it is capable of computing the “slaved” dynamics of short-wave solution components induced by slow forcing, it eliminates freely propagating compressible short-wave modes, which are under-resolved in time. Scale-wise decomposition of the data based on geometric multigrid ideas enables a scale-dependent blending of time integrators with different principal features. To guide the selection of these integrators, the discrete-dispersion relations of some standard second-order schemes are analyzed, and their response to high wave number low frequency source terms are discussed. The performance of the new method is illustrated on a test case with “multiscale” initial data and a problem with a slowly varying high wave number source term.  相似文献   

14.
In the Newmark and other approximate step-by-step methods, having introduced assumptions in order to transform the differential equations, which are characteristic of response problems, into simultanéous equations, successive solutions lead to a response-time history. In this paper numerical results and formulae are given for the errors which are generated by this procedure. These errors are oscillatory in nature and, in general, the oscillations increase in magnitude as the number of time steps increases. Recommendations for upper limits on the time step, which will provide acceptable accuracy for a wide range of system and excitation parameters, are presented.  相似文献   

15.
A semi-analytical time integration method is proposed for the numerical simulation of transient groundwater flow in unconfined aquifers by the nonlinear Boussinesq equation. The method is based on the analytical solution of the system of ordinary differential equations with constant coefficients. While it is unconditionally stable and more accurate than the finite difference methods, the computational cost is much more expensive than (can be more than 10 times) that of the finite difference methods for a single time step. However, by partitioning the nonlinear parameters into linear and nonlinear parts, the costly computation can be performed only once. With larger and less variable time step sizes, the total computational cost can be significantly reduced. Three examples are included to illustrate the advantages and limitations of the proposed method.  相似文献   

16.
时域有限差分(FDTD)方法使用Yee网格剖分电磁场的空间采样,通过时间步迭代实现电磁场数值模拟,具有内存消耗低、计算简单等特点,常用于瞬变电磁三维正演.然而,常规FDTD方法的时间迭代步长Δt受Courant-Friedrich-Lewy(CFL)条件严格限制,过多的迭代次数以及过密的采样往往导致计算速度慢、累积误差不断增大.本文提出一种不受CFL条件约束的无条件稳定隐式差分算法Crank-Nicolson FDTD(CN-FDTD)用于瞬变电磁三维正演.基于Crank-Nicolson差分方法对Maxwell方程组重新离散,空间网格仍然采用Yee元胞,时间步进采用在整时间步电场、磁场同时采样的策略,建立无条件稳定FDTD格式,突破CFL条件限制.与常规FDTD交替采样相比,CN-FDTD电场、磁场同时采样的策略构成的隐式差分格式,需要求解大型稀疏矩阵方程组.通常,瞬变电磁三维正演模型中产生的矩阵阶数往往较大,需要占用大量内存和求解时间.为解决上述问题,采用Crank-Nicolson-cycle-sweep-uniform(CNCSU-FDTD)方法近似求解CN-FDTD方程,在保证求解精度的同时,计算效率大幅提高.在边界条件处理上,采用双线性变换推导了复频率参数完全匹配层(CFS-PML)吸收边界.采用均匀半空间模型、四类三层模型进行精度验证,发现CN-FDTD三维正演结果与解析解、线性数字滤波解吻合较好.之后,与接触带上的低阻复杂模型进行对比,结果显示CN-FDTD正演结果与矢量有限元、有限体积法以及FDTD计算结果吻合较好.在此基础上,研究了时间步放大对CN-FDTD计算精度的影响,发现最大时间步放大到常规FDTD的3200倍时才会在晚期出现较明显的误差.在一台CPU为Intel Core i5-7300HQ的笔记本电脑单线程计算条件下,模拟到关断后30 ms仅需要50 min.在进行并行化后,将有望实现复杂模型分钟级的三维正演,从而为三维反演提供可靠、快速的正演方法.  相似文献   

17.
In pseudodynamic tests, experimental feedback errors are accumulated in the step-by-step integration procedure. In this paper, the growth of cumulative experimental errors is examined. Approximate cumulative error bounds are derived for linear single- and multi-degree-of-freedom systems, based on realistic models of random and systematic feedback errors. These studies show that the rate of cumulative error growth with respect to the integration time step increases rapidly with the natural frequency of the specimen and the integration time interval used. Hence, the higher modes of a multi-degree-of-freedom system are more sensitive to experimental errors than the lower ones. Furthermore, it is shown that some systematic errors are extremely undesirable. Rational criteria for assessing the reliability of pseudodynamic test results are presented.  相似文献   

18.
交替方向隐式差分(ADI-FDTD)法突破了Courand-Friedrich-Levy(CFL)条件的约束,具有无条件稳定的特点;而单轴各向异性完全匹配层(UPML)边界条件具有宽频带吸收特性,不需要对电场和磁场进行分裂,迭代公式简单,便于编程的特点.综合两者优势,本文提出了基于UPML边界条件的ADI-FDTD探地雷达数值模拟算法,通过对3个二维Maxwell方程进行离散化,推导了GPR波的ADI-FDTD及其UPML边界条件的两个子时间步的迭代差分公式,并分别给出了详细计算步骤.在此基础上,开发了相应的模拟程序,应用该程序对两个GPR模型进行了正演模拟,得到了两个正演模型的wiggle图、扫描图与全波场快照.通过分析这些雷达剖面图与波场快照,可以了解雷达波形在空间中的传播过程及变化规律,有助于雷达资料更可靠、更准确的解释.模拟结果表明,基于UPML边界条件的ADI-FDTD算法可取较大的时间步长,消除了截断边界处的强反射,能对简单与复杂GPR模型进行快速、高效模拟.  相似文献   

19.
This paper proposes a non‐iterative time integration (NITI) scheme for non‐linear dynamic FEM analysis. The NITI scheme is constructed by combining explicit and implicit schemes, taking advantage of their merits, and enables stable computation without an iteration process for convergence even when used for non‐linear dynamic problems. Formulation of the NITI scheme is presented and its stability is studied. Although the NITI scheme is not unconditionally stable when applied to non‐linear problems, it is stable in most cases unless stiffness hardening occurs or the problem has a large velocity‐dependent term. The NITI scheme is applied to dynamic analysis of the non‐linear soil–structure system and computation results are compared with those by the central difference method (CDM). Comparison shows that the stability of the NITI scheme is superior to that of the CDM. Accuracy of the NITI scheme is verified because its results are identical with those by the CDM in which the time step is set as 1/10 of that for the NITI scheme. The application of the NITI scheme to the mesh‐partitioned FEM is also proposed. It is applied to dynamic analysis of the linear soil–structure system. It yields the same results as a conventional single‐domain FEM analysis using the Newmark β method. This result verifies the usability of mesh‐partitioned FEM analysis using the NITI scheme. Copyright © 2003 John Wiley& Sons, Ltd.  相似文献   

20.
An unconditionally stable explicit time integrator has recently been developed for parabolic systems of equations. This rational Runge Kutta (RRK) method, proposed by Wambecq1 and Hairer2, has been applied by Liu et al.3 to linear heat conduction problems in a time-partitioned solution context. An important practical question is whether the method has application for the solution of (nearly) hyperbolic equations as well.In this paper the RRK method is applied to a nonlinear heat conduction problem, the advection-diffusion equation, and the hyperbolic Buckley-Leverett problem. The method is, indeed, found to be unconditionally stable for the linear heat conduction problem and performs satisfactorily for the nonlinear heat flow case. A heuristic limitation on the utility of RRK for the advection-diffusion equation arises in the Courant number; for the second-order accurate one-step two-stage RRK method, a limiting Courant number of 2 applies. First order upwinding is not as effective when used with RRK as with Euler one-step methods. The method is found to perform poorly for the Buckley-Leverett problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号