首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A critical evaluation is made of the dynamic pressures and the associated forces induced by ground shaking on an upright, circular, rigid vault that is embedded in a uniform viscoelastic stratum of constant thickness and infinite extent in the horizontal plane. Both the vault and the stratum are presumed to be supported on a non-deformable base undergoing a space-invariant, uniform horizontal motion. The effects of both harmonic and earthquake-induced excitations are examined. Simple approximate expressions for the responses of the system are formulated, and comprehensive numerical data are presented which elucidate the underlying response mechanisms and the effects and relative importance of the various parameters involved. The parameters investigated include the height to radius ratio for the vault, the conditions at the vault-medium interface, and the material properties of the stratum. In addition to valuable insights into the response of the particular system being examined, the results presented provide a conceptual framework for the analysis and interpretation of solutions for more involved systems as well.  相似文献   

3.
A comprehensive study is made of the effects of soil-structure interaction on the response of liquid containing, upright, circular cylindrical tanks subjected to a horizontal component of ground shaking. A simple, physically motivated method of analysis is employed which elucidates the effects and relative importance of the principal actions involved. Both the impulsive and convective actions of the liquid are examined. The interrelationship of the tank responses to horizontal and rocking actions of the foundation is established, and the well known mechanical model for laterally excited, rigid tanks supported on a non-deformable medium is generalized to permit consideration of the effects of tank and ground flexibilities and base rocking. Critical responses are evaluated for harmonic and seismic excitations over wide ranges of tank proportions and soil stiffnesses, and the results are presented in a form convenient for use in practical applications. In addition to a precise method of analysis, an approximate, hand-computation method is presented with which the effects of the primary parameters may be evaluated readily. The soil-structure interaction effects in the latter approach are provided for by modifying the natural frequency and damping of the tank-liquid system and evaluating its response to the prescribed free-field ground motion considering the tank to be rigidly supported at the base. The requisite modifications may be determined from information presented herein. It is shown that soil-structure interaction may reduce significantly the impulsive components of response but that it has a negligible effect on the convective components.  相似文献   

4.
This work deals with the evaluation of the dynamic pressures and the associated forces on a pair of rigid vertical cantilever walls retaining a uniform, fully saturated poroelastic layer of soil. Hysteretic damping in the soil skeleton may also be present. Wall pressures and forces are induced by horizontal ground shaking harmonically varying with time and spatially invariant. The problem is solved analytically under conditions of plane strain. The governing partial differential equations of motion, after separation of variables and the simplifying assumptions of zero vertical normal stresses and zero horizontal variation of vertical displacements, reduce to a system of two ordinary differential equations for the amplitudes of the solid skeleton horizontal displacement and the pore water pressure, which are easily solved. The parameters examined include the ratio of the distance between walls to the height of the retained soil material and the soil material properties such as porosity, permeability and damping. The comprehensive numerical data presented indicate that the displacements, wall pressures and resultant forces are highly dependent on the distance between the walls for any values of porosity and permeability.  相似文献   

5.
This paper aims to shed some further light on the seismic behaviour and design of reinforced concrete (R/C) walls which form part of dual (frame + wall) structures. The significance of post‐elastic dynamic effects is recognized by most seismic codes in the definition of the design action effects on walls, i.e. bending moments and shear forces. However, the resulting envelopes are not always fully satisfactory, particularly in the case of medium‐to‐high‐rise buildings. The relevant provisions of modern seismic codes are first summarized and their limitations discussed. Then an extensive parametric study is presented which involves typical multi‐storey dual systems that include walls with unequal lengths, designed according to the provisions of Eurocode 8 for two different ductility classes (M and H) and two effective peak ground acceleration levels (0.16 and 0.24g). The walls of these structures are also designed according to other methods, such as those used in New Zealand and Greece. The resulting different designs are then assessed by subjecting the structures to a suite of records from strong ground motions, carrying out inelastic time history analysis, and comparing the results with the design action effects. It is found that for (at least) the design earthquake intensity, the first two modes of vibration suffice for describing the seismic response of the walls. The bending moment envelope, as well as the base shear of each wall, is found to be strongly dependent on the second mode effect. As far as the code‐prescribed design action effects are concerned, only the NZ Code was found to be consistently conservative, whereas this was not always the case with EC8. A new method is then proposed which focuses on quantifying in a simple way the second mode effects in the inelastic response of the walls. This procedure seems to work better than the others evaluated herein. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The paper focuses on the seismic response of walls in dual (frame + wall) structures, with particular emphasis on shear behaviour. Although dual structures are widely used in earthquake-resistant medium-rise and high-rise buildings, the provisions of modern seismic codes regarding design of walls for shear are not fully satisfactory, particularly in the (common) case that walls of substantially different length form part of the same structure. Relevant provisions of the leading seismic codes are first summarised and their limitations discussed. Then an extensive parametric study is presented, involving two multistorey dual systems, one with identical walls, and one with walls with unequal length, designed to the provisions of Eurocode 8 for two different ductility classes (H and M). The walls of the same structures are also designed to other methods such as those used in New Zealand and Greece. The resulting different designs are then assessed by subjecting the structures to a suite of strong ground motions, carrying out inelastic time history analysis, and comparing the results against design action effects. It is found that although modern code procedures generally lead to satisfactory performance (differences among them do exist), the design of walls seems to be less appropriate in the case of unequal length walls. For this case a modified procedure is proposed, consisting of an additional factor to account for the relative contribution of walls of the same length to the total base and an improved envelope of wall shears along the height; this improved method seems to work better than the other procedures evaluated herein, but further calibration is clearly required.  相似文献   

7.
As a supplement to a recently reported study, the hydrodynamic wall pressures and the associated tank forces induced by horizontal ground shaking in a rigid, vertical, circular cylindrical tank containing liquid layers of different thicknesses and mass densities are examined, and comprehensive numerical solutions are presented for two-layered and some three-layered systems which elucidate the underlying response mechanisms and the effects of the various parameters involved. Both the impulsive and convective actions are studied. Additionally, solutions are presented for multi-layered systems approximating a liquid with an exponential, continuous variation in density, and the interrelationship of the solutions for the continuous system and its discretized, layered approximation is discussed.  相似文献   

8.
A discussion of the effects of soil-structure interaction on the dynamic response of linear structures which respond as single-degree-of-freedom systems in their fixed-base condition is presented. The structures are presumed to be supported at the surface of a homogeneous, elastic halfspace and to be excited at the base. The free-field ground motions investigated include a harmonic motion, a relatively simple pulse-type excitation and an actual earthquake record. Comprehensive response spectra are presented for a range of the parameters defining the problem, and the results are used to assess the accuracy of a simple, approximate method of analysis in which the system is represented by a viscously damped, simple oscillator. Special attention is given to defining the conditions under which the interaction effect is of sufficient importance to warrant consideration in design. The method of analysis used to obtain the numerical data reported herein is reviewed only briefly, the emphasis of the paper being on the interpretation of the results.  相似文献   

9.
A method to combine probabilistic seismic hazard analysis and stochastic earthquake motion models is presented. A set of parameters characterizing stochastic earthquake motion models is determined on a consistent probabilistic basis. The method proposed herein consists of two steps. First, the ground motion intensity is determined in the context of the conventional hazard curve technique. Next, other ground motion parameters such as duration, predominant frequency and spectral shape parameters are determined as conditional means corresponding to the annual probability of exceedance for the ground motion intensity. Some example applications are presented.  相似文献   

10.
The paper is a study of the natural frequencies and mode shapes of planar, coupled shear walls, a common lateral resistive element in building construction. The equations of motion are derived for the general case, and the eigenvalue problem associated with free vibrations of equal, constant shear walls is solved, both with and without the inclusion of the inertia of vertical motion. Explicit solutions are presented for the characteristic equation and the mode shapes and the results are illustrated with figures, including an example calculation based on the shear walls of the Mt. McKinley Building, damaged by the Alaskan earthquake of 1964. The results affirm the necessity of including vertical displacement of the shear walls in the analysis of such systems, and suggest that the inertia of vertical motion also must be considered in the analysis for certain ranges of the parameters.  相似文献   

11.
爆破地震动效应的数值模拟分析   总被引:13,自引:0,他引:13  
爆破设计中,场地条件复杂时经验公式的应用受到一定限制。本文采用波动有限元分析方法,研究复杂场地条件下工程爆破时场地的地震动效应,研究爆破地震动特征及衰减规律。根据某重点工程场地岩土参数的原位测试和试验结果,用自行研制的软件包进行场地爆破地震动效应的数值模拟分析,为工程爆破设计及施工前建筑物、仪器设备的加固提供了依据。施工试爆实测结果与本文数值模拟分析给出的结果一致,说明本文方法是可行的,对其它工程也有借鉴作用。  相似文献   

12.
The coupled torsional-flexural vibration of open-section shear walls, braced by connecting beams at each floor level, is analysed on the basis of Vlasov's theory of thin-walled beams. The basic dynamic equations and boundary conditions are derived from Hamilton's principle, and a numerical solution obtained by the Ritz-Galerkin method. In addition to the primary torsional and flexural inertias, secondary effects due to rotatory and warping inertia forces have also been taken into account. The method is suitable for both rigid and flexible base conditions. A series of numerical examples is presented in which analytical results are compared with available experimental data, and the effects of secondary inertia forces, base flexibility and connecting beams upon the vibration characteristics of such shear walls are examined for two different structural forms.  相似文献   

13.
A numerical solution for evaluating the effects of foundation embedment on the effective period and damping and the response of soil–structure systems is presented. A simple system similar to that used in practice to account for inertial interaction effects is investigated, with the inclusion of kinematic interaction effects for the important special case of vertically incident shear waves. The effective period and damping are obtained by establishing an equivalence between the interacting system excited by the foundation input motion and a replacement oscillator excited by the free-field ground motion. In this way, the use of standard free-field response spectra applicable to the effective period and damping of the system is permitted. Also, an approximate solution for total soil–structure interaction is presented, which indicates that the system period is insensitive to kinematic interaction and the system damping may be expressed as that for inertial interaction but modified by a factor due to kinematic interaction. Results involving both kinematic and inertial effects are compared with those obtained for no soil–structure interaction and inertial interaction only. The more important parameters involved are identified and their influences are examined over practical ranges of interest. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
Novel approaches to the dynamic analysis of the reinforced soil walls have been reported in the literature. Use of marginal soils reduces the cost of geosynthetic reinforced soil walls if proper drainage measures are taken. Therefore the affect of using cohesive marginal soils as backfill in geosynthetic reinforced retaining structures were investigated in this research. The dynamic response of reinforced soil walls was investigated in a similar focus, using finite element analysis. The results obtained from walls with cohesive backfill were compared to the results obtained from walls with granular backfill. The height of the wall was chosen as 6 m in the two-dimensional plane strain finite element model and the base acceleration was chosen to be a harmonic motion. The effects of various parameters like the backfill type, facing type, reinforcement stiffness, and peak ground acceleration on the cyclic response of reinforced soil retaining walls were investigated. After analyzing the wall response for end of construction and dynamic excitation phases, it was determined that the deformations and reinforcement tensile loads increased during the cyclic load application and that the amount of additional deformation that occurred during cyclic load application was strongly related to backfill soil type, facing type, reinforcement type and peak ground acceleration. It was determined that a cohesive backfill and geotextile reinforcement was a good combination to reduce the deformations of geosynthetic reinforced walls during cyclic loading for medium height walls.  相似文献   

15.
A procedure is presented to analyse the response of concrete gravity dams due to horizontal and vertical earthquake ground motion components considering dam-water interaction and partial absorption of hydrodynamic pressure waves at the reservoir bottom into the foundation medium. The effects of reservoir bottom absorption on the hydrodynamic force on a rigid dam are examined first. The harmonic response of an idealized dam cross-section is presented for a wide range of parameters characterizing the properties of the dam, the impounded water and the foundation medium. Based on these frequency response functions the effects of dam-water interaction and of reservoir bottom absorption in the response of dams due to horizontal and vertical components of ground motion are investigated.  相似文献   

16.
A three‐dimensional beam‐truss model for reinforced concrete (RC) walls developed by the first two authors in a previous study is modified to better represent the flexure–shear interaction and more accurately capture diagonal shear failures under static cyclic or dynamic loading. The modifications pertain to the element formulations and the determination of the inclination angle of the diagonal elements. The modified beam‐truss model is validated using the experimental test data of eight RC walls subjected to static cyclic loading, including two non‐planar RC walls under multiaxial cyclic loading. Five of the walls considered experienced diagonal shear failure after reaching their flexural strength, while the other three walls had a flexure‐dominated response. The numerically computed lateral force–lateral displacement and strain contours are compared with the experimentally recorded response and damage patterns for the walls. The effects of different model parameters on the computed results are examined by means of parametric analyses. Extension of the model to simulate RC slabs and coupled RC walls is presented in a companion paper. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
18.
The assessment of the out-of-plane response of masonry structures has been largely investigated in literature assuming that walls respond as rigid or semi-rigid bodies, and relevant equations of motion of single-degree-of-freedom and multi-degree of freedom systems have been proposed. Therein, energy dissipation has been usually modelled resorting to the classical hypotheses of impulsive dynamics, delivering a velocity-reduction coefficient of restitution applied at impact. In fewer works, a velocity-proportional damping force has been introduced, by means of a viscous coefficient being constant or variable. A review of such models is presented, a criterion for equivalence of dissipated energy is proposed, equations predicting equivalent viscous damping ratios are derived and compared with experimental responses. Finally, predictive equations are examined in terms of incremental dynamic analyses for large sets of natural ground motions.  相似文献   

19.
Motivated by the seismic damage observed to reinforced concrete (RC) frame structures during the Wenchuan earthquake, the effect of infill walls on the seismic performance of a RC frame is studied in this paper. Infill walls, especially those made of masonry, offer some amount of stiffness and strength. Therefore, the effect of infill walls should be considered during the design of RC frames. In this study, an analysis of the recorded ground motion in the Wenchuan earthquake is performed. Then, a numerical model is developed to simulate the infill walls. Finally, nonlinear dynamic analysis is carried out on a RC frame with and without infill walls, respectively, by using CANNY software. Through a comparative analysis, the following conclusions can be drawn. The failure mode of the frame with infill walls is in accordance with the seismic damage failure pattern, which is strong beam and weak column mode. This indicates that the infill walls change the failure pattern of the frame, and it is necessary to consider them in the seismic design of the RC frame. The numerical model presented in this paper can effectively simulate the effect of infill walls on the RC frame.  相似文献   

20.
This paper is concerned with testing the validity of the ground motions estimated by combining a boundary integral equation method to simulate dynamic rupture along finite faults with a finite difference method to compute the subsequent wave propagation. The validation exercise is conducted by comparing the calculated ground motions at about 100 hypothetical stations surrounding the pure strike-slip and pure reverse faults with those estimated by recent ground motion estimation equations derived by regression analysis of observed strong-motion data. The validity of the ground motions with respect to their amplitude, frequency content and duration is examined. It is found that the numerical simulation method adopted leads to ground motions that are mainly compatible with the magnitude and distance dependence modelled by empirical equations but that the choice of a low stress drop leads to ground motions that are smaller than generally observed. In addition, the scatter in the simulated ground motions, for which a laterally homogeneous crust and standard rock site were used, is of the same order as the scatter in observed motions therefore, close to the fault, variations in source propagation likely contribute a significant proportion of the scatter in observed motions in comparison with travel-path and site effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号