首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A fully integrated ice‐sheet and glacio‐isostatic numerical model was run in order to investigate the crustal response to ice loading during the Late Weichselian glaciation of the Barents Sea. The model was used to examine the hypothesis that relative reductions in water depth, caused by glacio‐isostatic uplift, may have aided ice growth from Scandinavia and High Arctic island archipelagos into the Barents Sea during the last glacial. Two experiments were designed in which the bedrock response to ice loading was examined: (i) complete and rapid glaciation of the Barents Sea when iceberg calving is curtailed except at the continental margin, and (ii) staged growth of ice in which ice sheets are allowed to ground at different water depths. Model results predict that glacially generated isostatic uplift, caused by an isostatic forebulge from loads on Scandinavia, Svalbard and other island archipelagos, affected the central Barents Sea during the early phase of glaciation. Isostatic uplift, combined with global sea‐level fall, is predicted to have reduced sea level in parts of the central Barents Sea by up to 200 m. This reduction would have been sufficient to raise the sea floor of the Central Bank into a subaerial position. Such sea‐floor emergence is conducive to the initiation of grounded ice growth in the central Barents Sea. The model indicates that, prior to its glaciation, the depth of the Central Deep would have been reduced from around 400 m to 200 m. Such uplift aided the migration of grounded ice from the central Barents Sea and Scandinavia into the Central Deep. We conclude that ice loading over Scandinavia and Arctic island archipelagos during the first stages of the Late Weichselian may have caused uplift within the central Barents Sea and aided the growth of ice across the entire Barents Shelf. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
A numerical ice-sheet model was used to reconstruct the Late Weichselian glaciation of the Eurasian High Arctic, between Franz Josef Land and Severnaya Zemlya. An ice sheet was developed over the entire Eurasian High Arctic so that ice flow from the central Barents and Kara seas toward the northern Russian Arctic could be accounted for. An inverse approach to modeling was utilized, where ice-sheet results were forced to be compatible with geological information indicating ice-free conditions over the Taymyr Peninsula during the Late Weichselian. The model indicates complete glaciation of the Barents and Kara seas and predicts a “maximum-sized” ice sheet for the Late Weichselian Russian High Arctic. In this scenario, full-glacial conditions are characterized by a 1500-m-thick ice mass over the Barents Sea, from which ice flowed to the north and west within several bathymetric troughs as large ice streams. In contrast to this reconstruction, a “minimum” model of glaciation involves restricted glaciation in the Kara Sea, where the ice thickness is only 300 m in the south and which is free of ice in the north across Severnaya Zemlya. Our maximum reconstruction is compatible with geological information that indicates complete glaciation of the Barents Sea. However, geological data from Severnaya Zemlya suggest our minimum model is more relevant further east. This, in turn, implies a strong paleoclimatic gradient to colder and drier conditions eastward across the Eurasian Arctic during the Late Weichselian.  相似文献   

3.
Late Pleistocene glacial and lake history of northwestern Russia   总被引:1,自引:0,他引:1  
Five regionally significant Weichselian glacial events, each separated by terrestrial and marine interstadial conditions, are described from northwestern Russia. The first glacial event took place in the Early Weichselian. An ice sheet centred in the Kara Sea area dammed up a large lake in the Pechora lowland. Water was discharged across a threshold on the Timan Ridge and via an ice-free corridor between the Scandinavian Ice Sheet and the Kara Sea Ice Sheet to the west and north into the Barents Sea. The next glaciation occurred around 75-70 kyr BP after an interstadial episode that lasted c. 15 kyr. A local ice cap developed over the Timan Ridge at the transition to the Middle Weichselian. Shortly after deglaciation of the Timan ice cap, an ice sheet centred in the Barents Sea reached the area. The configuration of this ice sheet suggests that it was confluent with the Scandinavian Ice Sheet. Consequently, around 70-65 kyr BP a huge ice-dammed lake formed in the White Sea basin (the 'White Sea Lake'), only now the outlet across the Timan Ridge discharged water eastward into the Pechora area. The Barents Sea Ice Sheet likely suffered marine down-draw that led to its rapid collapse. The White Sea Lake drained into the Barents Sea, and marine inundation and interstadial conditions followed between 65 and 55 kyr BP. The glaciation that followed was centred in the Kara Sea area around 55-45 kyr BP. Northward directed fluvial runoff in the Arkhangelsk region indicates that the Kara Sea Ice Sheet was independent of the Scandinavian Ice Sheet and that the Barents Sea remained ice free. This glaciation was succeeded by a c. 20-kyr-long ice-free and periglacial period before the Scandinavian Ice Sheet invaded from the west, and joined with the Barents Sea Ice Sheet in the northernmost areas of northwestern Russia. The study area seems to be the only region that was invaded by all three ice sheets during the Weichselian. A general increase in ice-sheet size and the westwards migrating ice-sheet dominance with time was reversed in Middle Weichselian time to an easterly dominated ice-sheet configuration. This sequence of events resulted in a complex lake history with spillways being re-used and ice-dammed lakes appearing at different places along the ice margins at different times.  相似文献   

4.
The youngest ice marginal zone between the White Sea and the Ural mountains is the W-E trending belt of moraines called the Varsh-Indiga-Markhida-Harbei-Halmer-Sopkay, here called the Markhida line. Glacial elements show that it was deposited by the Kara Ice Sheet, and in the west, by the Barents Ice Sheet. The Markhida moraine overlies Eemian marine sediments, and is therefore of Weichselian age. Distal to the moraine are Eemian marine sediments and three Palaeolithic sites with many C-14 dates in the range 16-37 ka not covered by till, proving that it represents the maximum ice sheet extension during the Weichselian. The Late Weichselian ice limit of M. G. Grosswald is about 400 km (near the Urals more than 700 km) too far south. Shorelines of ice dammed Lake Komi, probably dammed by the ice sheet ending at the Markhida line, predate 37 ka. We conclude that the Markhida line is of Middle/Early Weichselian age, implying that no ice sheet reached this part of Northern Russia during the Late Weichselian. This age is supported by a series of C-14 and OSL dates inside the Markhida line all of >45 ka. Two moraine loops protrude south of the Markhida line; the Laya-Adzva and Rogavaya moraines. These moraines are covered by Lake Komi sediments, and many C-14 dates on mammoth bones inside the moraines are 26-37 ka. The morphology indicates that the moraines are of Weichselian age, but a Saalian age cannot be excluded. No post-glacial emerged marine shorelines are found along the Barents Sea coast north of the Markhida line.  相似文献   

5.
Th/U dating and radiocarbon dating of 'old' shells are discussed, and amino acid ratios from shells are used as a method of relative-age dating. The Svalbard area has been completely covered by an extensive ice sheet at leats once. New data from Sjuøyane indicate that such glaciation took place in the Early Weichselian. The Middle Weichselian was a period of interstadial conditions. Series of beaches of assumed Middle Weichselian age occur in several places in western Spitsbergen while no such beaches are known in the eastern part of the archipelago. The maximum glaciation in the Late Weichselian is assumed to have taken place about 18,000 B.P. In the western part of Spitsbergen, the Late Weichselian glaciation was limited and local, while the eastern part of the archipelago was covered by an ice sheet. Kongsøya has a pattern of Holocene shoreline displacement which indicates that the centre of this ice sheet was east of kong karts Land.  相似文献   

6.
Based on a revised chronostratigraphy, and compilation of borehole data from the Barents Sea continental margin, a coherent glaciation model is proposed for the Barents Sea ice sheet over the past 3.5 million years (Ma). Three phases of ice growth are suggested: (1) The initial build-up phase, covering mountainous regions and reaching the coastline/shelf edge in the northern Barents Sea during short-term glacial intensification, is concomitant with the onset of the Northern Hemisphere Glaciation (3.6–2.4 Ma). (2) A transitional growth phase (2.4–1.0 Ma), during which the ice sheet expanded towards the southern Barents Sea and reached the northwestern Kara Sea. This is inferred from step-wise decrease of Siberian river-supplied smectite-rich sediments, likely caused by ice sheet blockade and possibly reduced sea ice formation in the Kara Sea as well as glacigenic wedge growth along the northwestern Barents Sea margin hampering entrainment and transport of sea ice sediments to the Arctic–Atlantic gateway. (3) Finally, large-scale glaciation in the Barents Sea occurred after 1 Ma with repeated advances to the shelf edge. The timing is inferred from ice grounding on the Yermak Plateau at about 0.95 Ma, and higher frequencies of gravity-driven mass movements along the western Barents Sea margin associated with expansive glacial growth.  相似文献   

7.
Direct evidence for Late Weichselian grounded glacier ice over extensive areas of the Barents Sea is based largely on indirect observations, including elevations of old shorelines on Svalbard and arguments of isostatic rebound. Such isostatic models are discussed here for two cases representing maximum and minimum ice-sheet reconstructions. In the former model the ice extends over the Kara Sea, whereas in the latter the ice is limited to the Barents Sea and island archipelagos. Comparisons of predictions with observations from a number of areas, including Spitsbergen, Nordaustlandet, Edgeøya, Kong Karls Land, Franz Josef Land, Novaya Zemlya and Finnmark, support arguments for the existence of a large ice sheet over the region at the time of the last glacial maximum. This ice sheet is likely to have had the following characteristics, conclusions that are independent of assumptions made about the Earth's rheological parameters. (i) The maximum thickness of this ice was about 1500–2000 m with the centre of the load occurring to the south and east of Kong Karls Land. (ii) The ice sheet extended out to the western edge of the continental shelf and its maximum thickness over western Spitsbergen was about 800 m. (iii) To the north of Svalberg and Frans Josef Land the ice sheet extended out to the northern shelf edge. (iv) Retreat of the grounded ice across the southern Barents Sea occurred relatively early such that this region was largely ice free by about 15,000 BP. (v) By 12,000 BP the grounded ice had retreated to the northern archipelagos and was largely gone by 10,000 BP. (vi) The ice sheet may have extended to the Kara Sea but ice thicknesses were only a fraction of those proposed in those reconstructions where the maximum ice thickness is centered on Novaya Zemlya. Models for the palaeobathymetry for the Barents Sea at the time of the last glacial maximum indicate that large parts of the Barents Sea were either very shallow or above sea level, providing the opportunity for ice growth on the emerged plateaux, as well as on the islands, but only towards the end of the period of Fennoscandian ice sheet build-up.  相似文献   

8.
The Taymyr Peninsula constitutes the eastern delimitation of a possible Kara Sea basin ice sheet. The existence of such an ice sheet during the last global glacial maximum (LGM), i.e. during the Late Weichselian/Upper Zyryansk, is favoured by some Russian scientists. However, a growing number of studies point towards a more minimalistic view concerning the areal extent of Late Weichselian/Upper Zyryansk Siberian glaciation. Investigations carried out by us along the central Byrranga Mountains and in the Taymyr Lake basin south thereof, reject the possibility of a Late Weichselian/Upper Zyryansk glaciation of this area. Our conclusion is based on the following: Dating of a continuous lacustrine sediment sequence at Cape Sabler on the Taymyr Lake shows that it spans at least the period 39-17 ka BP. Even younger ages have been reported, suggesting that this lacustrine environment prevailed until shortly before the Holocene. The distribution of these sediments indicates the existence of a paleo-Taymyr lake reaching c. 60 m above present sea level. A reconnaissance of the central part of the Byrranga Mountains gave no evidence of any more recent glacial coverage. The only evidence of glaciation - an indirect one - is deltaic sequences around 100-120 m a.s.l., suggesting glacio-isostatic depression and a large input of glacial meltwater from the north. However, 14C and ESR datings of these marine sediments suggest that they are of Early Weichselian/Lower Zyryansk or older age. As they are not covered by till and show no glaciotectonic disturbances, they support our opinion that there was no Late Weichselian/Lower Zyryansk glaciation in this area. We thus suggest that the Taymyr Peninsula was most probably glaciated during the early part of the last glacial cycle (when there was only small- to medium-scale glaciation in Scandinavia), but not glaciated during the later part of that cycle (which had the maximum ice-sheet coverage over north-western Europe). This fits a climatic scenario suggesting that the Taymyr area, like most of Siberia, would come into precipitation shadow during times with large-scale ice-sheet coverage of Scandinavia and the rest of north-western Europe.  相似文献   

9.
The extent of the Barents-Kara Sea ice sheet (northern Europe and Russia) during the Last Glacial Maximum (LGM), in Marine Isotope Stage (MIS) 2 is controversial, especially along the southern and northeastern (Russian High Arctic) margins. We conducted a multi-disciplinary study of various organic and mineral fractions, obtaining chronologies with 14C and luminescence dating methods on a 10.5 m long core from Changeable Lake (4 km from the Vavilov Ice Cap) on Severnaya Zemlya. The numeric ages indicate that the last glaciation at this site occurred during or prior to MIS 5d-4 (Early Middle Weichselian). Deglaciation was followed by a marine transgression which affected the Changeable Lake basin. After the regression the basin dried up. In late Middle Weichselian time (ca 25–40 ka), reworked marine sediments were deposited in a saline water body. During the Late Weichselian (MIS 2), the basin was not affected by glaciation, and lacustrine sediments were formed which reflect cold and arid climate conditions. During the termination of the Pleistocene and into the Holocene, warmer and wetter climate conditions than before led to a higher sediment input. Thus, our chronology demonstrates that the northeastern margin of the LGM Barents-Kara Sea ice sheet did not reach the Changeable Lake basin. This result supports a modest model of the LGM ice sheet in northern Europe determined from numeric ice sheet modelling and geological investigations.  相似文献   

10.
On the basis of geomorphological and sedimentological data, we believe that the entire Barents Sea was covered by grounded ice during the last glacial maximum. 14C dates on shells embedded in tills suggest marine conditions in the Barents Sea as late as 22 ka BP; and models of the deglaciation history based on uplift data from the northern Norwegian coast suggest that significant parts of the Barents Sea Ice Sheet calved off as early as 15 ka BP. The growth of the ice sheet is related to glacioeustatic fall and the exposure of shallow banks in the central Barents Sea, where ice caps may develop and expand to finally coalesce with the expanding ice masses from Svalbard and Fennoscandia.The outlined model for growth and decay of the Barents Sea Ice Sheet suggests a system which developed and existed under periods of maximum climatic deterioration, and where its growth and decay were strongly related to the fall and rise of sea level.  相似文献   

11.
A coastal cliff facing the ocean at the west coast of Spitsbergen has been studied, and seven formations of Weichselian and Holocene age have been identified. A reconstruction of the palaeoenvironment and glacial history shows that most of the sediments cover isotope stage 5. From the base of the section, the formation 1 and 2 tills show a regional glaciation that reached the continental shelf shortly after the Eemian. Formation 3 consists of glacimarine to marine sediments dated to 105,000–90,000 BP. Amino acid diagenesis indicates that they were deposited during a c . 10,000-year period of continuous isostatic depression, which indicates contemporaneous glacial loading in the Barents Sea. Foraminifera and molluscs show influx of Atlantic water masses along the west coast of Svalbard at the same time. Local glaciers advanced during the latter part of this period, probably due to the penetration of moist air masses, and deposited formation 4. A widespread weathering horizon shows that the glacial retreat was succeeded by subaerial conditions during the Middle Weichselian. Formation 5 is a till deposited during the Late Weichselian glacial maximum in this area. The glaciation was dominated by ice streams from a dome over southern Spitsbergen, and the last deglaciation of the outer coast is dated to 13,000 BP. A correlation of the events with other areas on Svalbard is discussed, and at least two periods of glaciation in the Barents Sea during the Weichselian are suggested.  相似文献   

12.
New marine geological evidence provides a better understanding of ice-sheet dynamics along the western margin of the last Svalbard/Barents Sea Ice Sheet. A suite of glacial sediments in the Kongsfjordrenna cross-shelf trough can be traced southwards to the shelf west of Prins Karls Forland. A prominent moraine system on the shelf shows minimum Late Weichselian ice extent, indicating that glacial ice also covered the coastal lowlands of northwest Svalbard. Our results suggest that the cross-shelf trough was filled by a fast-flowing ice stream, with sharp boundaries to dynamically less active ice on the adjacent shelves and strandflats. The latter glacial mode favoured the preservation of older geological records adjacent to the main pathway of the Kongsfjorden glacial system. We suggest that the same model may apply to the Late Weichselian glacier drainage along other fjords of northwest Svalbard, as well as the western margin of the Barents Ice Sheet. Such differences in glacier regime may explain the apparent contradictions between the marine and land geological record, and may also serve as a model for glaciation dynamics in other fjord regions.  相似文献   

13.
Based on field investigations in northern Russia and interpretation of offshore seismic data, we have made a preliminary reconstruction of the maximum ice-sheet extent in the Barents and Kara Sea region during the Early/Middle Weichselian and the Late Weichselian. Our investigations indicate that the Barents and Kara ice sheets attained their maximum Weichselian positions in northern Russia prior to 50 000 yr BP, whereas the northeastern flank of the Scandinavian Ice Sheet advanced to a maximum position shortly after 17 000 calendar years ago. During the Late Weichselian (25 000-10 000 yr BP), much of the Russian Arctic remained ice-free. According to our reconstruction, the extent of the ice sheets in the Barents and Kara Sea region during the Late Weichselian glacial maximum was less than half that of the maximum model which, up to now, has been widely used as a boundary condition for testing and refining General Circulation Models (GCMs). Preliminary numerical-modelling experiments predict Late Weichselian ice sheets which are larger than the ice extent implied for the Kara Sea region from dated geological evidence, suggesting very low precipitation.  相似文献   

14.
A section, almost 20 km long and up to 80 m high, through alternating layers of diamict and sorted sediments is superbly exposed on the north coast of the Kanin Peninsula, northwestern Russia. The diamicts represent multiple glacial advances by the Barents Sea and the Kara Sea ice sheets during the Weichselian. The diamicts and stratigraphically older lacustrine, fluvial and shallow marine sediments have been thrust as nappes by the Barents Sea and Kara Sea ice sheets. Based on stratigraphic position, OSL dating, sea level information and pollen, it is evident that the sorted sediments were deposited in the Late Eemian-Early Weichselian. Sedimentation started in lake basins and continued in shallow marine embayments when the lakes opened to the sea. The observed transition from lacustrine to shallow marine sedimentation could represent coastal retreat during stable or rising sea level.  相似文献   

15.
《Quaternary Science Reviews》2007,26(5-6):627-643
Buried submarine landforms mapped on 3D reflection seismic data sets provide the first glacial geomorphic evidence for glacial occupation of the central North Sea by two palaeo-ice-streams, between 58–59°N and 0–1°E. Streamlined subglacial bedforms (mega-scale glacial lineations) and iceberg plough marks, within the top 80 m of the Quaternary sequence, record the presence and subsequent break-up of fast-flowing grounded ice sheets in the region during the late Pleistocene. The lengths of individual mega-scale glacial lineations vary from ∼5 to ∼20 km and the distance between lineations typically ranges from 100 to 1000 m. The lineations incise to a depth of 10–12 m, with trough widths of ∼100 m. The most extensive and best-preserved set of lineations, is attributed to the action of a late Weichselian ice stream which either drained the NE sector of the British–Irish ice sheet or was sourced from the SW within the Fennoscandian ice sheet. The 30–50 km wide palaeo ice-stream is imaged along its flow direction for 90 km, trending NW–SE. An older set of less well-preserved lineations is interpreted as an earlier Weichselian or Saalian ice-stream, and records ice flow in an SW–NE orientation. Cored sedimentary records, tied to 3D seismic observations, support grounded ice sheet coverage in the central North Sea during the last glaciation and indicate that ice flowed over a muddy substrate that is interpreted as a deformation till. The identification of a late Weichselian ice stream in the Witch Ground area of the North Sea basin provides independent geomorphic evidence in support of ice-sheet reconstructions that favour complete ice coverage of the North Sea between Scotland and Norway during the Last Glacial Maximum.  相似文献   

16.
Late Weichselian glacier limits for the Forlandsundet area, western Spitsbergen are reconstructed from the stratigraphic distribution of tills and deglacial deposits, variations in the altitude of the marine limit, distribution of pre-Late Weichselian raised beach deposits, and the rare occurrence of moraines and striated bedrock. The Late Weichselian glaciation was primarily a local event with fjord outlet-glaciers expanding no more than 15 km beyond their present position; cirque glaciers were similar to their neoglacial limits. A previously reconstructed ice sheet centered over the Barents Shelf had little direct influence on the glaciation of the Forlandsundet area. Glacier retreat began at or prior to 10.5 ka ago and possibly as early as 13 ka ago with fjords mostly, and perhaps rapidly deglaciated by 10 to 9 ka ago.  相似文献   

17.
Svalbard has been completely covered by an extensive ice sheet at least once, but not in the Late Weichselian (max. 18,000–20,000 years ago). Areas in the western and northwestern parts of Svalbard have been ice-free for more than 40,000 years. The extension and time of a Barents Shelf glaciation are questions still open for discussion. For most of the Svalbard area we do not know when the last deglaciation started, geographically and in time. The oldest datings for the interval 15,000 to 10,000 years B.P. have an age of about 12,600 years, and datings from between 11,000 and 10,000 years B.P. are rather frequent in the western and northern parts of Spitsbergen. No moraines from Younger Dryas have been found in Svalbard and the glaciers were probably less extensive 10,000 years ago than today. The maximum extension of glaciers in the Holocene took place only a few hundred years ago.  相似文献   

18.
Three localities with marginal moraines deposited by former cirque glaciers are investigated in east-central southern Norway. The wet-based (erosive) cirque glaciers with aspects towards S-SW and N-NE are mapped at altitudes above 1100 m, and have a mean equilibrium-line altitude of 1275 m. With a suggested mean annual winter precipitation close to the average for the modern accumulation season (1 October-30 April) when the cirque glaciers existed, the mean air-temperature depression during the ablation season (1 May-30 September) is calculated to be 6–7°C lower than at present. The high-altitude cirques of central Rondane were still covered by ice when the low-altitude cirque glaciers developed in distal position for this massif in eastern Rondane and on isolated mountains. Hence, the cirque glaciers are suggested to have existed during the deglaciation after the Late Weichselian maximum, and most likely during the Younger Dryas (11000–10000 BP). The cirque glaciers indicate a downwasting ice-sheet surface well below an altitude of 1100 m prior to the Younger Dryas, and this supports a limited (small) vertical extent for the Late Weichselian ice sheet in this region. With the contemporaneous level for instantaneous glacierization (glaciation threshold) just below the highest elevated peaks in east-central southern Norway, this fits with the idea of a continuous downwasting of the Late Weichselian ice sheet since the 'first' nunataks appeared. The occurrence of the cirque glaciers indicates a multidomed Scandinavian ice-sheet geometry during the Late Weichselian.  相似文献   

19.
Late Quaternary glaciation in the south-western Barents Sea   总被引:1,自引:0,他引:1  
Moraine ridges have been morphologically and seismically identified in the south-western Barents Sea. Some of these ridges were deposited in front of ice lobes from the northern part of the Fennoscandian Ice Sheet, others in front of glaciers located on the southern Barents Sea shelf. The moraine ridges were probably deposited during the Weichselian, possibly the Late Weichselian.  相似文献   

20.
Advance of the Late Weichselian (Valdaian) Scandinavian Ice Sheet (SIS) in northwestern Russia took place after a period of periglacial conditions. Till of the last SIS, Bobrovo till, overlies glacial deposits from the previous Barents and Kara Sea ice sheets and marine deposits of the Last Interglacial. The till is identified by its contents of Scandinavian erratics and it has directional properties of westerly provenance. Above the deglaciation sediments, and extra marginally, it is replaced by glaciofluvial and glaciolacustrine deposits. At its maximum extent, the last SIS was more restricted in Russia than previously outlined and the time of termination at 18-16 cal. kyr BP was almost 10 kyr delayed compared to the southwestern part of the ice sheet. We argue that the lithology of the ice sheets' substrate, and especially the location of former proglacial lake basins, influenced the dynamics of the ice sheet and guided the direction of flow. We advocate that, while reaching the maximum extent, lobe-shaped glaciers protruded eastward from SIS and moved along the path of water-filled lowland basins. Ice-sheet collapse and deglaciation in the region commenced when ice lobes were detached from the main ice sheet. During the Lateglacial warming, disintegration and melting took place in a 200-600 km wide zone along the northeastern rim of SIS associated with thick Quaternary accumulations. Deglaciation occurred through aerial downwasting within large fields of dead ice developed during successively detached ice lobes. Deglaciation led to the development of hummocky moraine landscapes with scattered periglacial and ice-dammed lakes, while a sub-arctic flora invaded the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号