首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simultaneous monitoring of conservative and non-conservative tracers in streamflow offers a valuable means of obtaining information on the age and flow paths of water reaching the basin outlet. Previous studies of stormflow generation in a small forested basin on the Canadian Shield used isotopic (IHS) and geochemical hydrograph separations (GHS) to infer that some event water during snowmelt reaches the stream via subsurface pathways, and that surface water runoff is generated by direct precipitation on to saturated areas (DPSA) in the stream valley. These hypotheses were tested for rainfall inputs using simultaneous IHS (18O) and GHS (dissolved silica) of basin stormflow, supplemented by hydrochemical and hydrometric data from throughflow troughs installed on basin slopes. Comparison of pre-event and subsurface water hydrographs did not provide conclusive evidence for subsurface movement of event water to the stream, owing to the appreciable uncertainty associated with the hydrograph separations. However, IHSs of runoff at the soil–bedrock interface on basin slopes indicated that event water comprised 25–50% of total runoff from areas with deep soil cover, and that these contributions supplied event water flux from the basin in excess of that attributable to DPSA. The surface water component of stormflow estimated from the GHS was also largely the result of DPSA. GHS assumes that dissolved silica is rapidly and uniformly taken up by water infiltrating the soil and that water moving via surface pathways retains the low dissolved silica level of rainfall; however, neither assumption was supported by the hillslope results. Instead, results suggest that the observed depression of silica levels in basin stormflow previously attributed to dilution by DPSA was partly a function of transport of dilute event water to the channel via preferential pathways. Implications of these results for the general use of simultaneous IHS and GHS to infer hydrological processes are discussed. © 1997 by John Wiley & Sons, Ltd.  相似文献   

2.
Stable isotope variability and fractionation associated with transformation of precipitation/accumulation to firn to glacial river water is critical in a variety of climatic, hydrological and paleoenvironmental studies. This paper documents the modification of stable isotopes in water from precipitation to glacier runoff in an alpine catchment located in the central Tibetan Plateau. Isotopic changes are observed by sampling firnpack profiles, glacier surface snow/ice, meltwater on the glacier surface and catchment river water at different times during a melt season. Results show the isotopic fractionation effects associated with glacier melt processes. The slope of the δD‐δ18O regression line and the deuterium excess values decreased from the initial precipitation to the melt‐impacted firnpack (slope from 9.3 to 8.5 and average d‐excess from 13.4‰ to 7.4‰). The slope of the δD‐δ18O line further decreased to 7.6 for the glacier runoff water. The glacier surface snow/ice from different locations, which produces the main runoff, had the same δD‐δ18O line slope but lower deuterium excess (by 3.9‰) compared to values observed in the firnpack profile during the melt season. The δD‐δ18O regression line for the river water exhibited a lower slope compared to the surface snow/ice samples, although they were closely located on the δD‐δ18O plot. Isotope values for the river and glacier surface meltwater showed little scatter around the δD‐δ18O regression line, although the samples were from different glaciers and were collected on different days. Results indicate a high consistency of isotopic fractionation in the δD‐δ18O relationships, as well as a general consistency and temporal covariation of meltwater isotope values at the catchment scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The stable water isotopes, 2H and 18O, can be useful environmental tracers for quantifying snow contributions to streams and aquifers, but characterizing the isotopic signatures of bulk snowpacks is challenging because they can be highly variable across the catchment landscape. In this study, we investigate one major source of isotopic heterogeneity in snowpacks: the influence of canopy cover. We measured amounts and isotopic compositions of bulk snowpack, throughfall, and open precipitation during seven campaigns in mid-winter 2018 along forest-grassland transects at three different elevations (1196, 1297, and 1434 m above sea level) in a pre-Alpine catchment in Switzerland. Snowpack storages under forest canopies were 67 to 93% less than in adjacent open grasslands. On average, the water isotope ratios were higher in the snowpacks under forest canopy than in open grasslands (by 13.4 ‰ in δ2H and 2.3 ‰ in δ18O). This isotopic difference mirrored the higher isotope values in throughfall compared with open snowfall (by 13.5 ‰ in δ2H and 2.2 ‰ in δ18O). Although this may suggest that most of the isotopic differences in snowpacks under forests versus in open grasslands were attributable to canopy interception effects, the temporal evolution of snowpack isotope ratios indicated preferential effluxes of lighter isotopes as energy inputs increased and the snowpack ripened and melted. Understanding these effects of forest canopy on bulk snowpack snow water equivalent and isotopic composition are useful when using isotopes to infer snowmelt processes in landscapes with varying forest cover.  相似文献   

4.
A study was undertaken during the winter of 1990–1991 in a small (3.7 ha) Canadian Shield catchment to examine the hydrological and hydrochemical response during rain-on-snow events. The results are presented of two large (37.9 and 34.6 mm) rain-on-snow events occurring in early and late March 1991. Peak and total runoff and the groundwater response from the two events are significantly different. Hydrological data indicate that these differences can be attributed to a combination of meteorological (temperature) and physical conditions (antecedent snowpack ripeness, soil moisture and groundwater levels). An immature snowpack (low temperature and density) combined with low antecedent soil moisture conditions significantly reduced the magnitude of the net hydrological input and runoff from the catchment during the early March event, whereas a more mature snowpack and high antecedent soil moisture conditions led to a large runoff event during late March. During both rain-on-snow events a significant portion of the pre-event snowpack chemical load was lost. Based on the maximum snowpack chemical load measured before the events, the two large rain-on-snow events and a brief mid-March warm period during which there were two much smaller rain-on-snow events removed 78% of the hydrogen ion and 63% of the sulphate and nitrate load from the snowpack, while only reducing snowpack water equivalence by 7%. A two-component (rain and snowmelt) isotopic (δ18O SMOW %0) separation of snowmelt lysimeter water during the two events indicated that snowmelt was an important (50 and 65%, respectively) water source available for infiltration and runoff at the snow-soil interface. Considering the high hydrogen ion loadings to the catchment during these two events (3.3 and 3.0 mequiv.m?2, respectively) streamflow pH was not significantly reduced due to an increase in the discharge of well-buffered groundwater. A two-component isotopic hydrograph separation of peak stream discharge during the 2–3 March event indicated that 75% of the total flow was groundwater. In mid-latitude acid-sensitive catchments, winter rain-on-snow events are an important hydrological occurrence due to their ability to elute much of the chemical load (H+, SO4, NO3) from the snowpack before the onset of spring melt when the maximum annual hydrological input typically occurs.  相似文献   

5.
We examine how the stable isotope composition of meteoric water is transmitted through soil and epikarst to dripwaters in a cave in western Romania. δ2H and δ18O in precipitation at this site are influenced by temperature and moisture sources (Atlantic and Mediterranean), with lower δ18O in winter and higher in summer. The stable isotope composition of cave dripwaters mimics this seasonal pattern of low and high δ18O, but the onset and end of freezing conditions in the winter season are marked by sharp transitions in the isotopic signature of cave dripwaters of approximately 1 ‰. We interpret these shifts as the result of kinetic isotopic fractionation during the transition phase from water to ice at the onset of freezing conditions and the input of meltwater to the cave at the beginning of the spring season. This process is captured in dripwaters and therefore speleothems from Ur?ilor Cave, which grew under such dripping points, may have the potential to record past changes in the severity of winters. Similar isotopic changes in dripwaters driven by freeze–thaw processes can affect other caves in areas with winter snow cover, and cave monitoring during such changes is essential in linking the isotopic variability in dripwaters and speleothems to surface climate.  相似文献   

6.
Water resources are the most critical factors to ecology and society in arid basins, such as Kaidu River basin. Isotope technique was convenient to trace this process and reveal the influence from the environment. In this paper, we try to investigate the temporal and spatial characteristics in stable isotope (18O and 2H) of surface water and groundwater in Kaidu River. Through the water stable isotope composition measurement, spatial and temporal characteristics of deuterium (δ2H) and oxygen 18 (δ18O) were analysed. It is revealed that (1) comparing the stream water line with the groundwater line and local meteorological water line of Urumqi City, it is found that the contribution of precipitation to surface water in stream runoff is the main source, whereas the surface water is the main source of groundwater. Groundwater is mainly drainage of surface runoff in the river; (2) in the main stream of Kaidu River, the spatial variability of river water showed a ‘heavier‐lighter‐heavier’ change along with the main stream for δ18O, and temporal variability showed higher in summer and lower in winter; (3) the δ18O and δ2H values of groundwater samples ranged from ?11.36 to ?7.97‰ and ?73.45 to ?60.05‰, respectively. There is an increasing trend of isotopic values along the groundwater flow path. The seasonal fluctuation of δ18O is not clear in most samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The isotopic composition of solid and liquid portions of natural melting snowpack is investigated in detail by the separating of liquid water from snow grains at different depths of the snowpack. The slope of the δD–δ18O line for the liquid phase is found to be lower than for the solid phase. This is proved to be due to the isotopic fractionation occurring in the melt–freeze mass exchange within the snowpack. Melting of the snowpack has no clear impact on the δD–δ18O line for the solid phase, but the slope of the δD–δ18O line for the liquid shows an overall slight decrease in the melting period. When the snowpack is refrozen, the refreezing process would inevitably cause the slope of the solid phase to decrease because of the discrepancy between the slopes of the two phases. Thus the slope of the solid would become lower and lower as the diurnal melt–freeze episodes cycle throughout the melting season. This effect is then demonstrated by looking into the isotopic composition changes of glacier firn. The extent of the effect depends on the snowpack properties and environmental conditions. The slope changes also result in a decreasing trend in deuterium excess. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Stable isotope exchange processes between solid and liquid phases of a natural melting snowpack are investigated in detail by separating the liquid water from snow grains at different depths of the snowpack and collecting the bottom discharge using a lysimeter. In the melting–freezing mass exchange process between the two phases, the theoretical slope of the δD? δ18O line for newly refrozen ice is calculated to be nearly that of pore water. However, based on observations of the isotopic evolution and snow grain coarsening of the snowpack, it is demonstrated that the slope of the δD? δ18O line for newly refrozen ice is equal to that of the original ice. This is proved to be due to preferential water flow in the snowpack, which leads to relatively more deuterium and less oxygen‐18 in the mobile water than the immobile water because of the kinetic effect. Higher mass exchange rate in the mobile water region results in excess deuterium in the bulk refrozen ice, compared with the fractionation of uniform fractionation factors and exchange rate. This effect, which is termed the ‘preferential exchange rate effect of isotopic fractionation’, is shown to be larger in the lower part than the upper part of the snowpack. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Streamflow generation was investigated using isotopic and geochemical tracers in semiarid, glacier-covered, montane catchments in the upper Shule River, northeastern Tibetan Plateau. Samples from stream water, precipitation, glacier meltwater, and groundwater were collected at the Suli and Gahe catchments along the Shule River, with an area of 1908 and 4210 km2, respectively. The samples were analysed for stable isotopes of water and major ions. Results of diagnostic tools of mixing models showed that Ca2+, Mg2+ and Cl, along with δ18O and δ2H, behaved conservatively as a result of mixing of three endmembers. The three endmembers identified by the mixing analysis were surface runoff directly from precipitation, groundwater, and glacier meltwater. Streamflow was dominated by groundwater, accounting for 59% and 60% of streamflow on average in the Suli and Gahe catchments, respectively, with minimum groundwater contribution in July (47% and 50%) and maximum contribution in October (69% and 70%). The contributions of surface runoff were slightly higher in the Suli catchment (25%) than in the Gahe catchment (19%). However, the contributions of glacier meltwater were higher in the Gahe catchment (21%) compared to the Suli catchment (17%), as a result of a higher percentage of glacier covered area in the Gahe catchment. This difference followed well the non-linear power–law trend of many glacier-covered catchments around the world. As glacier retreat continues in the future, the reduction of streamflow in glacier-covered upper Shule catchment likely will be accelerated and possibly elsewhere in the Tibetan Plateau. This study suggests that it is critical to define the turning point of an accelerated reduction in glacier meltwater for glacier-covered catchments around the world in order to better assess and manage water resources.  相似文献   

10.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   

11.
ABSTRACT

The temporal variations in electrical conductivity and the stable isotopes of water, δD and δ18O, were examined at Chhota Shigri Glacier, India, to understand water sources and flow paths to discharge. Discharge is highly influenced by supraglacially derived meltwater during peak ablation, and subglacial meltwaters are more prominent at the end of the melt season. The slope of the best fit linear regression line for δD versus δ18O, for both supraglacial and runoff water, is lower than that for precipitation (snow and rain) and surface ice, indicating strong isotopic fractionation associated with the melting processes. The slope of the local meteoric water line (LMWL) is close to that of the global meteoric water line (GMWL), reflecting that the moisture source is predominantly oceanic. The d-excess variation in rainwater confirms that the southwest monsoon is the main contributor during summer while the remainder including winter is mostly influenced by westerlies.  相似文献   

12.
Twelve modified passive capillary samplers (M‐PCAPS) were installed in remote locations within a large, alpine watershed located in the southern Rocky Mountains of Colorado to collect samples of infiltration during the snowmelt and summer rainfall seasons. These samples were collected in order to provide better constraints on the isotopic composition of soil‐water endmembers in the watershed. The seasonally integrated stable isotope composition (δ18O and δ2H) of soil‐meltwater collected with M‐PCAPS installed at shallow soil depths < 10 cm was similar to the seasonally integrated isotopic composition of bulk snow taken at the soil surface. However, meltwater which infiltrated to depths > 20 cm evolved along an isotopic enrichment line similar to the trendline described by the evolution of fresh snow to surface runoff from snowmelt in the watershed. Coincident changes in geochemistry were also observed at depth suggesting that the isotopic and geochemical composition of deep infiltration may be very different from that obtained by surface and/or shallow‐subsurface measurements. The M‐PCAPS design was also used to estimate downward fluxes of meltwater during the snowmelt season. Shallow and deep infiltration averaged 8·4 and 4·7 cm of event water or 54 and 33% of the measured snow water equivalent (SWE), respectively. Finally, dominant shallow‐subsurface runoff processes occurring during snowmelt could be identified using geochemical data obtained with the M‐PCAPS design. One soil regime was dominated by a combination of slow matrix flow in the shallow soil profile and fast preferential flow at depth through a layer of platy, volcanic rocks. The other soil regime lacked the rock layer and was dominated by slow matrix flow. Based on these results, the M‐PCAPS design appears to be a useful, robust methodology to quantify soil‐water fluxes during the snowmelt season and to sample the stable isotopic and geochemical composition of soil‐meltwater endmembers in remote watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Stable isotopic compositions (δ18O and d-excess) from 25 rivers in Thailand were analysed monthly during 2013–2015. Results indicated that monsoon precipitation fundamentally influences the river isotopes. The overland flow supplied from monsoon precipitation and human-altered flow regimes produces considerable isotopic variability. Spatial and temporal variations were observed among four principal geographical regions. The seasonality of monsoon precipitation in mountainous Thailand produced large variations in isotopic compositions because most rainfall occurred during the southwest monsoon, and dry conditions prevailed during the northeast monsoon. The northern and northeastern regions are mountainous, highland areas. Low δ18O values were found in these regions, likely because of altitude effects on precipitation. Conversely, monsoonal precipitation continually supplies rivers in southern Thailand all year round, producing higher and more consistent δ18O values than in the other regions. The Chao Phraya plain in the central region experienced enrichment of δ18O river runoff related to evaporation in irrigation systems. Larger catchment areas and longer residence times resulted in more pronounced evaporation effects, producing lower values of d-excess and local river water line slopes compared with precipitation. The isotopic differences between river waters and precipitation were utilized to determine river recharge elevations and water transit time. The methods presented here can be used to explore hydrological interactions in other tropical river basins.  相似文献   

14.
A portable Wavelength Scanned‐Cavity Ring‐Down Spectrometer (Picarro L2120) fitted with a diffusion sampler (DS‐CRDS) was used for the first time to continuously measure δ18O and δ2H of stream water. The experiment took place during a storm event in a wet tropical agricultural catchment in north‐eastern Australia. At a temporal resolution of one minute, the DS‐CRDS measured 2160 δ18O and δ2H values continuously over a period of 36 h with a precision of ±0.08 and 0.5‰ for δ18O and δ2H, respectively. Four main advantages in using high temporal resolution stream δ18O and δ2H data during a storm event are highlighted from this study. First, they enabled us to separate components of the hydrograph, which was not possible using high temporal resolution electrical conductivity data that represented changes in solute transfers during the storm event rather than physical hydrological processes. The results from the hydrograph separation confirm fast groundwater contribution to the stream, with the first 5 h of increases in stream discharge comprising over 70% pre‐event water. Second, the high temporal resolution stream δ18O and δ2H data allowed us to detect a short‐lived reversal in stream isotopic values (δ18O increase by 0.4‰ over 9 min), which was observed immediately after the heavy rainfall period. Third, δ18O values were used to calculate a time lag of 20 min between the physical and chemical stream responses during the storm event. Finally, the hydrograph separation highlights the role of event waters in the runoff transfers of herbicides and nutrients from this heavily cultivated catchment to the Great Barrier Reef. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
It is often assumed that stable water isotopes (δD and δ18O) provide redundant information for a given sample of water. In this note we illustrate that the choice of isotope used may influence the resultant hydrograph separation. This is especially true in light of the spatial and temporal variability in the isotopic composition of rainfall water at the catchment scale. We present several possible hydrograph separations based on both δD and δ18O observed in rainfall for a single runoff event occurring in the southwest USA. This study demonstrates the potential of using both stable water isotopes by showing that δD and δ18O may provide unique information for catchment hydrologists. We also report on the utility of new technology capable of simultaneous measurements of both δD and δ18O using off‐axis integrated cavity output spectroscopy (OA‐ICOS) methods. This may be of interest to catchment hydrologists seeking to incorporate this type of equipment into their laboratory. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.

Sampling was carried out at Baishui No. 1, the largest glacier on Mt. Yulong, China, during the summers of 1999 and 2000, to investigate the spatial variations of oxygen isotopes in the atmosphere-glacier-river system. The results confirm that there is an inverse relation between the oxygen isotopic composition of precipitation and air temperature/precipitation amount. This suggests that a strong “precipitation amount effect” exists in this typical monsoon temperate-glacier region. There are marked differences of the δ18O values of winter-accumulated snow, glacial meltwater, summer precipitation and the glacier-fed river water. Spatial and temporal variations of isotopic composition are controlled by climatic conditions. Isotopic fractionation and differentiation occur during phase changes, snow-to-ice and ice-to-meltwater transformations, and runoff processes. Variations of stable isotopes in glacier runoff can indicate variations of sources of supply, as well as different discharge-related processes. Ionic changes occur as a result of meltwater contact with glacier bed materials.

  相似文献   

17.
Based on stable isotopes in stream water, groundwater, and meltwater in the Kaidu River Basin, NW China, we estimated the evaporation enrichment of stable oxygen isotopes in different types of water and separated the contribution of each streamflow component in river run‐off. Our results indicated that δ18O and δ2H in stream water did not vary with altitude regularly but with seasons, with low concentrations in spring and high concentrations in summer. However, the seasonal variations of δ18O and δ2H in groundwater were not as obvious. The mean evaporation enrichment was between 26% and 44% for δ18O. Of the various water types under investigation, we found glaciers were influenced the most, showing an evaporation enrichment of 44%, followed by oasis groundwater (37%), stream water (36%), and mountain groundwater (26%). Overall, meltwater and groundwater were the predominant streamflow components, with their contributions were governed by temperature, and varied both temporally and specially. In the oasis region, groundwater was the predominant contributor (64% in spring, 50% in summer, and 66% in autumn), whereas in the mountains, groundwater was the dominant in spring (53%) and autumn (51%), and meltwater contributed the most in summer (52%). Precipitation contributed less than 15% to the streamflow.  相似文献   

18.
Soil moisture and its isotopic composition were observed at Spasskaya Pad experimental forest near Yakutsk, Russia, during summer in 1998, 1999, and 2000. The amount of soil water (plus ice) was estimated from volumetric soil water content obtained with time domain reflectometry. Soil moisture and its δ18O showed large interannual variation depending on the amount of summer rainfall. The soil water δ18O decreased with soil moisture during a dry summer (1998), indicating that ice meltwater from a deeper soil layer was transported upward. On the other hand, during a wet summer (1999), the δ18O of soil water increased due to percolation of summer rain with high δ18O values. Infiltration after spring snowmelt can be traced down to 15 cm by the increase in the amount of soil water and decrease in the δ18O because of the low δ18O of deposited snow. About half of the snow water equivalent (about 50 mm) recharged the surface soil. The pulse of the snow meltwater was, however, less important than the amount of summer rainfall for intra‐annual variation of soil moisture. Excess water at the time just before soil freezing, which is controlled by the amount of summer rainfall, was stored as ice during winter. This water storage stabilizes the rate of evapotranspiration. Soil water stored in the upper part of the active layer (surface to about 120 cm) can be a water source for transpiration in the following summer. On the other hand, once water was stored in the lower part of the active layer (deeper than about 120 cm), it would not be used by plants in the following summer, because the lower part of the active layer thaws in late summer after the plant growing season is over. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Precisely dated high-resolution speleothems may record past typhoon events, however, the state of the art cave monitoring is a prerequisite to identify suitable stalagmites for the reconstruction of such events. With this motivation, we examined the isotopic composition (δ18O and d-excess values) of rainfall, outside river, cave drip water, and an underground river in the Xianyun cave system, located in southeastern China. Monthly to bi-monthly monitoring of environmental and isotopic conditions was conducted for 1 year, from December 2018 to December 2019, including a typhoon event (August 24, 2019 to August 26, 2019), called Bailu. The δ18O of rainfall samples over the cave and outside river water ranged from −9.7‰ to −1.9‰ and −8.2‰ to −6.3‰, respectively, while the δ18O of Typhoon Bailu rainfall and instantaneous outside river water ranged from −19.6‰ to −6.3‰ and −10.4‰ to −7.7‰, respectively. Typhoon Bailu-induced rainfall showed distinctly negative δ18O values as compared to those of the monthly and bi-monthly rainfall, exhibiting a three-stage inverted U-shaped variation characteristic. Four drip water monitoring sites inside the cave revealed low variations during the studied period with average values of −7.8‰, −8.0‰, −8.0‰, and −8.1‰. However, during the typhoon, the drip water δ18O values exhibited similar characteristic as outside rainfall but with just 0.2‰ negative deviation owing to precipitation amount and drip water source reservoir. The integration of rainfall amount with drip water source reservoir determines the degree to which a typhoon isotopic signature gets diluted during epikarst infiltration. This study provides the first instrumental evidence of typhoon signal in karst system in southeastern China. Our results imply that the δ18O of drip water in Xianyun cave can instantaneously respond to typhoon rainfall. However, the 0.2‰ shift in drip water δ18O is difficult to be recorded by speleothems. We suggest multi-year monitoring to ascertain fully if the stalagmites could be used as paleotyphoon proxy.  相似文献   

20.
ABSTRACT

Runoff generation and dynamics is an important issue in watershed and water resource management. Taking the Aksu River as a typical inland river, the spatial and temporal variations of δ18O and δD of the river water and its sources component pattern were investigated from May 2012 to May 2013. The results showed the following three main findings. Firstly, we analysed the runoff generation and mechanism over a longer time-scale in two tributaries of the Aksu River. Secondly, 46–54% of the runoff in the Aksu River was derived from groundwater, 31–36% from glacier meltwater, 5–8.8% from snow meltwater and 10% from precipitation. The third major finding was the significant inconsistency of the climate change impact on water resources. Specifically, our results showed that the Toxkan River is recharged by more glacier meltwater (36%), and responds to sensitive temperature changes. Autumn runoff is more sensitive to changes of precipitation and temperature.
Editor Z.W. Kundzewicz Associate editor Not assigned  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号