首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
ABSTRACT

The Ordovician plutons in the Erguna Block, NE China, can be classified into two groups: Early Ordovician diorites with zircon U–Pb ages ranging from 486 to 485 Ma and Middle Ordovician gabbros and granites with zircon U–Pb ages ranging from 466 to 463 Ma. The diorites are calc-alkaline in nature and are characterized by weak to moderate enrichments of large ion lithophile elements (LILE) and light rare earth elements (LREE) relative to high field strength elements (HFSE) and heavy rare earth elements (HREE). The gabbros and granites have high total alkali contents, and all samples are enriched in LREE and LILE and depleted in HFSE such as Nb, Ta, and Ti. Isotopically, Early Ordovician diorites display values that are less radiogenic [εHf(t) = + 9.9–+16.8] compared to those of Middle Ordovician gabbros [εHf(t) = ? 3.0–+5.0]. Middle Ordovician granites have positive εHf(t) values of +1.4 to +4.3 and two-stage Hf model ages (TDM2) of 1167 to 1356 Ma. These data indicate that the diorites may have been generated by the partial melting of a recently metasomatized mantle source, whereas the gabbros and granites may have been formed by the partial melting of enriched lithospheric mantle and Mesoproterozoic crust, respectively. Our results, combined with other regional results, suggest that Early Ordovician magmatism was likely associated with the northward subduction of the Heihe–Xilinhot oceanic plate beneath the Erguna–Xing’an Block, whereas the Middle Ordovician gabbros and granites were most likely formed in an extensional setting controlled by the rollback of this subducted oceanic plate.  相似文献   

2.
The Chinese Altai in northwestern Xinjiang has numerous outcrops of granitoids which provide critical information on accretionary orogenic processes and crustal growth of the Central Asian Orogenic Belt.Zircon U-Pb ages, Hf-isotopic compositions and whole-rock geochemistry of monzogranite and granodiorites in the Qinghe County are employed to elucidate Paleozoic tectonics of the Chinese Altai. Granodiorites have crystallization ages of 424.6 ± 3.1 Ma(MSWD = 0.23) and 404.0 ± 3.4 Ma(MSWD = 0.18);monzogranite was emplaced in the early Permian with a crystallization age of 293.7 ± 4.6 Ma(MSWD = 1.06). Both granodiorites and monzogranite are I-type granites with A/CNK ratios of 0.92 -0.97 and 1.03 -1.06, respectively. They also show similar geochemical features of high HREE and Y contents, low Sr contents and Sr/Y ratios, as well as enrichment of Cs, Rb, Th and U, and depletion of Nb, Ta, P and Ti.These geochemical features indicate that the monzogranite and granodiorites were formed in an arc setting related to subduction. The gneissic monzogranites display high SiO_2 and K_2 O contents, and belong to the high-K calc-alkaline series. In the chondrite normalized REE distribution pattern, the monzogranite samples exhibit enrichment of LREE with strong negative Eu anomalies(σE u =0.44 -0.53), zircon εHf(t) values from +7.24 to +12.63 and two-stage Hf model ages of 463 -740 Ma. This suggests that the monzogranite was generated from the mixing of pelitic and mantle material. The granodiorite samples are calc-alkaline granites with lower contents of Si O_2 and Na_2 O + K_2 O, higher contents of TiO_2, Fe_2O_3~t, MgO and CaO compared to the monzogranite samples. They also show enrichment of LREE and moderate negative Eu anomalies(σE u= 0.54 =0.81), as well as slightly higher differentiation of LREE than that of HREE. The425 Ma granodiorite has zircon εHf(t) values from -0.51 to +1.98 and two-stage Hf model ages of 1133 -1240 Ma, whereas the 404 Ma granodiorite displays those of +2.52 to +7.50 and 816 -1071 Ma.Geochemistry and zircon Hf isotopic compositions indicate that granodiorites were formed by partial melting of juvenile lower crust. Together with regional geology and previous data, the geochemical and geochronological data of the monzogranite and granodiorites from this study suggest long-lived subduction and accretion along the Altai Orogen during ca. 425 -294 Ma.  相似文献   

3.
In this paper, we present zircon U–Pb age and Hf isotope data to document the significance of magma mixing in the formation of Late Jurassic granitoid intrusions in the eastern Qinling Orogen, China. The Muhuguan granitoid pluton from this orogen consists of monzogranite and lesser biotite granite and granodiorite, all containing abundant hornblende-rich cumulates, dioritic xenoliths, and mafic magmatic enclaves (MMEs). The monzogranite and granodiorite are intruded by a number of lamprophyre dykes. Both a cumulate and a dioritic xenolith samples have concordant zircon U–Pb ages of ca. 161 ± 1 Ma, but possess contrasting Hf isotopic compositions. The cumulate has more radiogenic zircon Hf isotopes with negative ε Hf(t) values (?7.9 to ?2.5) and T DM1 ages of 0.9–1.1 Ga, indicating its derivation likely from basaltic rocks of the Neoproterozoic to early Paleozoic Kuanping Group in the area. The dioritic xenolith has much lower zircon ε Hf(t) values of ?19.5 to ?8.8 and T DM2 ages of 2.4–1.7 Ga, consistent with a juvenile Paleoproterozoic crust source presumably represented by the metabasic rocks of the Qinling Group in the area. Individual samples of the monzogranite, MME, and a lamprophyre dyke have U–Pb ages of 150 ± 1, 152 ± 1, and 152 ± 1 Ma, respectively, demonstrating coeval mafic and felsic magmatism in the Late Jurassic. The lamprophyre dyke has homogeneous, highly negative zircon ε Hf(t) values (?29.8 to ?24.8) and Archean T DM2 ages (3.0–2.7 Ga), and its genesis is interpreted as partial melting of an ancient enriched subcontinental mantle source. Zircons from the fine-grained MME show a large range of ε Hf(t) between ?29.1 and ?9.8, overlapping values of the monzogranite and lamprophyre dyke samples. Zircon U–Pb age and Hf isotopes of the MMEs are consistent with their formation by mixing of crustal- and enriched mantle-derived magmas. The main group of zircons from the monzogranite has ε Hf(t) values (?17.9 to ?9.3) and T DM2 ages (2.3–1.8 Ga) that are compatible with the dioritic xenoliths, indicating that the former was produced by partial melting of Paleoproterozoic crustal source with involvement of mantle-derived magmas. Mafic magmatism revealed from the Muhuguan pluton indicates that the eastern Qinling Orogen was dominated by lithospheric extension during the Late Jurassic. Compilation of existing geological and geochronological data suggests that this extensional event started in Late Jurassic (ca. 160 Ma) and persisted into the Early Cretaceous until ca. 110 Ma. The Jura-Cretaceous extension may have resulted from the late Mesozoic westward subduction of the Pacific plate beneath the East Asian continental margin.  相似文献   

4.
The Qinling Orogen in Central China records the history of a complex geological evolution and tectonic transition from compression to extension during the Late Mesozoic,with concomitant voluminous granitoids formation.In this study,we present results from petrological,geochemical,zircon U-Pb-Lu-Hf isotopic studies on the Lengshui felsic dykes from Luanchuan region in the East Qinling Orogen.We also compile published geochronological,geochemical,and Hf isotopic data from Luanchuan region and present zircon Hf isotopic contour maps.The newly obtained age data yield two group of ages at~145 Ma and 140 Ma for two granite porphyries from the Lengshui felsic dykes,with the ~145 Ma interpreted as response to the peak of magmatism in the region,and the ~140 Ma as the timing of formation of the felsic dykes.The corresponding Hf isotopic data of the granite porphyries display negativeeHit)values of-16.67 to-4.61,and Hf crustal model ages(T_(DM~C_)of 2255-1490 Ma,indicating magma sourced from the melting of Paleo-to Mesoproterozoic crustal materials.The compiled age data display two major magmatic pulses at 160-130 Ma and 111-108 Ma with magmatic quiescence in between,and the zircon Hf isotopic data display/ε_(Hf)(t)values ranging from-41.9 to 2.1 and T_(DM)~c values of3387-1033 Ma,suggesting mixed crustal and mantle-derived components in the magma source,and correspond to multiple tectonic events during the Late Mesozoic.The Luanchuan granitoids are identified as 1-type granites and most of these are highly fractionated granites,involving magma mixing and mingling and crystal fractionation.The tectonic setting in the region transformed from the Late Jurassic syn-collision setting to Early Cretaceous within-plate setting,with E-W extension in the Early Cretaceous.This extension is correlated with the N-S trending post-collisional extension between the North China Craton and Yangtze Craton as well as the E-W trending back-arc extension triggered by the westward Paleo-Pacific Plate subduction,eventually leading to lithospheric thinning,asthenospheric upwelling,mafic magma underplating,and crustal melting in the East Qinling Orogen.  相似文献   

5.
The Hongseong area of the Hongseong-Imjingang Belt in the central-western Korean Peninsula forms part of a subduction-collision system that is correlated with the Qinling-Dabie-Sulu Belt in China. Several serpentinized ultramafic bodies carrying blocks of metamorphosed mafic rocks occur in this area. Here we investigate zircon grains in serpentinites from Bibong(BB) and Wonnojeon(WNJ), and high-pressure(HP) mafic granulite from Baekdong(BD) localities based on U-Pb, REE and Lu-Hf analyses. The zircons from BD HP mafic granulite show distinct age peaks at 838 Ma, 617 Ma and 410 Ma, with minor peaks at1867 Ma, 1326 Ma and 167 Ma. The Neoproterozoic age peaks in these rocks as well as in the serpentinites suggest subduction-related melt-fluid interaction in the mantle wedge at this time. The older zircon grains ranging in age from the Early to Middle Paleoproterozoic might represent detrital grains from the basement rocks transferred to the wedge mantle through sediment subduction. The BD HP mafic granulite shows a Middle Paleozoic age peak(Devonian; 410 Ma). The 242-245 Ma age peaks in the compiled age data of zircon grains serpentinites from BB and WNJ correspond to a major Triassic event that further added melts and fluids into the ancient mantle wedge to crystallize new zircons. In the chondrite normalized rare earth element diagram, the magmatic zircon grains from the studied rocks show LREE depletion and HREE enrichment with sharply negative Eu and Pr anomalies and positive Ce and Sm anomalies. The REE patterns of hydrothermal zircons show LREE enrichment, and relatively flat patterns with negative Eu anomaly. Zircon Hf signature from the WNJ serpentinite show negative εHf(t)(-18.5 and-23.5) values indicating an enriched mantle source with TDM in the range of 1614 Ma and1862 Ma. Zircons from the BD HP mafic granulite also show slightly negative εHf(t)(average-4.3) and TDM in the range of 1365-1935 Ma. Our study provides evidence for multiple zircon growth in an evolving mantle wedge that witnessed melt and fluid interaction during different orogenic cycles.  相似文献   

6.
《地学前缘(英文版)》2020,11(5):1711-1725
The tectonic setting of the northern Alxa region during the Late Paleozoic is highly controversial.The key to resolve this controversy is to recognize the Late Paleozoic magmatic processes in the northern Alxa.In this paper,we present new zircon U-Pb ages,Hf-isotopic compositions and whole-rock geochemical data of four granitoids along the Zhusileng-Hangwula Tectonic Belt in the northern Alxa region that could provide critical information about the tectonic evolution of this region.The zircon U-Pb data could be grouped as two phases:Late Devonian granite and diorite(ca.373-360 Ma),and Late Carboniferous granodiorite(ca.318 Ma).The Late Devonian granites and diorites are metaluminous to slightly peraluminous,with A/CNK and A/NK ratios of 0.90-1.11 and0.95-2.19,respectively.The Late Devonian diorites are characterized by high MgO,Cr and Ni contents and MgO#values,together with variable ε_(Hf)(t) values from-1.0 to+1.3 and old T_(DM2) ages varied from 1283 Ma to 1426 Ma,indicating the primary magma was potentially derived from magma mixing of depleted mantle with Mesoproterozoic continental crust.Even though the Late Devonian granites yielded most positive and minor negative e_(Hf)(t) values between-1.1 to+5.7(three grains are negative) with two-stage model ages(T_(DM2)) of 1003-1438 Ma,they display low MgO,Cr and Ni contents and MgO#values,suggesting that they were mainly derived from juvenile crustal materials,mixed with a small amount of ancient crust.The Late Carboniferous granitoids are metaluminous and medium-K calc-alkaline series,with A/CNK and A/NK ratios ranging from 0.88 to 0.95 and1.75 to 1.90,respectively.These rocks were potentially derived from juvenile crustal materials mixed with depleted mantle,as evidenced by their high ε_(Hf)(t) values(+11.6 to+14.1) and young TDM2 ages(427 Ma to 586 Ma),as well as high Mg#values,and MgO,Ni and Cr contents.Our data,along with available sedimentary evidence and previous researches,indicate that the Late Devonian and Late Carboniferous rocks are arc-related granitoids under the subduction setting.The identification of arc-related granitoids in the northern Alxa region not only reveals the Late Paleozoic magmatic process in response to the subduction of Paleo Asian Ocean,but also provide significant constrains to the tectonic evolution of the Central Asian Orogenic Belt.  相似文献   

7.
The transition from oceanic subduction to continental collision is a key stage in the evolution of ancient orogens. We present new data for Early Cretaceous diorite and granite porphyry from north–central Tibet to constrain the evolution of the Bangong–Nujiang Tethyan Ocean (BNTO). The diorites have moderate SiO2 and high MgO contents, similar to high-Mg andesites. Zircon grains yield U–Pb ages of 128–124 Ma and positive εHf(t) values between +13.2 and + 16.3, corresponding to Hf depleted-mantle model ages (TDM) of 281–131 Ma. The high-Mg diorite was probably formed by partial melting of hydrous mantle wedge fluxed by slab-derived fluids in an oceanic subduction setting. The granite porphyries yield zircon U–Pb ages of 117–115 Ma and zircon εHf(t) values ranging from +0.1 to +4.5. Most samples have high SiO2 and Fe2O3T contents, variable FeOT/MgO and Ga/Al ratios, and are depleted in Ba, Sr, P, and Ti, similar to I- and A-type granites. The granite porphyries were most likely derived from partial melting of juvenile dioritic or granodioritic crust due to break-off of the BNTO lithosphere following collision between the Lhasa and Qiangtang blocks. The Early Cretaceous high-Mg diorite and A-type granite porphyry thus record the Early Cretaceous transition from oceanic subduction to continental collision along the Bangong–Nujiang suture zone (BNSZ).  相似文献   

8.
The Dharwar Craton is a composite Archean cratonic collage that preserves important records of crustal evolution on the early Earth. Here we present results from a multidisciplinary study involving field investigations, petrology, zircon SHRIMP U–Pb geochronology with in-situ Hf isotope analyses, and whole-rock geochemistry, including Nd isotope data on migmatitic TTG (tonalite-trondhjemite-granodiorite) gneisses, dark grey banded gneisses, calc-alkaline and anatectic granitoids, together with synplutonic mafic dykes along a wide Northwest – Southeast corridor forming a wide time window in the Central and Eastern blocks of the Dharwar Craton. The dark grey banded gneisses are transitional between TTGs and calc-alkaline granitoids, and are referred to as ‘transitional TTGs’, whereas the calc-alkaline granitoids show sanukitoid affinity. Our zircon U–Pb data, together with published results, reveal four major periods of crustal growth (ca. 3360-3200 Ma, 3000-2960 Ma, 2700-2600 Ma and 2570-2520 Ma) in this region. The first two periods correspond to TTG generation and accretion that is confined to the western part of the corridor, whereas widespread 2670-2600 Ma transitional TTG, together with a major outburst of 2570–2520 Ma juvenile calc-alkaline magmatism of sanukitoid affinity contributed to peak continental growth. The transitional TTGs were preceded by greenstone volcanism between 2746 Ma and 2700 Ma, whereas the calc-alkaline magmatism was contemporaneous with 2570–2545 Ma felsic volcanism. The terminal stage of all four major accretion events was marked by thermal events reflected by amphibolite to granulite facies metamorphism at ca. 3200 Ma, 2960 Ma, 2620 Ma and 2520 Ma. Elemental ratios [(La/Yb)N, Sr/Y, Nb/Ta, Hf/Sm)] and Hf-Nd isotope data suggest that the magmatic protoliths of the TTGs emplaced at different time periods formed by melting of thickened oceanic arc crust at different depths with plagioclase + amphibole ± garnet + titanite/ilmenite in the source residue, whereas the elemental (Ba–Sr, [(La/Yb)N, Sr/Y, Nb/Ta, Hf/Sm)] and Hf-Nd isotope data [εHf(T) = −0.67 to 5.61; εNd(T) = 0.52 to 4.23; ] of the transitional TTGs suggest that their protoliths formed by melting of composite sources involving mantle and overlying arc crust with amphibole + garnet + clinopyroxene ± plagioclase + ilmenite in the residue. The highly incompatible and compatible element contents (REE, K–Ba–Sr, Mg, Ni, Cr), together with Hf and Nd isotope data [εHf(T) = 4.5 to −3.2; εNd(T) = 1.93 to −1.26; ], of the sanukitoids and synplutonic dykes suggest their derivation from enriched mantle reservoirs with minor crustal contamination. Field, elemental and isotope data [εHf(T) = −4.3 to −15.0; εNd(T) = −0.5 to −7.0] of the anatectic granites suggest their derivation through reworking of ancient as well as newly formed juvenile crust. Secular increase in incompatible as well as compatible element contents in the transitional TTGs to sanukitoids imply progressive enrichment of Neoarchean mantle reservoirs, possibly through melting of continent-derived detritus in a subduction zone setting, resulting in the establishment of a sizable continental mass by 2700 Ma, which in turn is linked to the evolving Earth. The Neoarchean geodynamic evolution is attributed to westward convergence of hot oceanic lithosphere, with continued convergence resulted in the assembly of micro-blocks, with eventual slab break-off leading to asthenosphere upwelling caused extensive mantle melting and hot juvenile magma additions to the crust. This led to lateral flow of hot ductile crust and 3D mass distribution and formation of an orogenic plateaux with subdued topography, as indicated by strain fabric data and strong seismic reflectivity along an E-W crustal profile in the Central and Eastern blocks of the Dharwar Craton.  相似文献   

9.
《地学前缘(英文版)》2020,11(6):1975-1992
The early Paleozoic tectonic framework and evolutionary history of the eastern Central Asian Orogenic Belt (CAOB) is poorly understood. Here we present zircon U–Pb geochronology, whole rock geochemistry, and Sr-Nd-Hf isotope data of the early Paleozoic granitoids in eastern CAOB to investigate the petrogenesis and geodynamic implications.The early Paleozoic granitoids from the Songnen Block yield zircon U–Pb ages of 523–490 ​Ma, negative εNd(t) values of –6.7 to –0.8, and εHf(t) values of –8.6 to 7.1, indicating they were generated by partial melting of ancient crustal materials with various degrees of mantle contribution. They generally show affinities to A-type granites, implying their generation from an extensional environment after the collision between the Songnen and Jiamusi blocks. In comparison, the early Paleozoic granitoids from the Xing’an Block have zircon U–Pb ages of 480–465 ​Ma, εNd(t) values of –5.4 to 5.4, and εHf(t) values of –2.2 to 12.9, indicating a dominated juvenile crustal source with some input of ancient crustal components. They belong to I-type granites and were likely related to subduction of the Paleo-Asian Ocean. The statistics of TDM2 Hf model ages of the granitoids indicate that the Erguna and Jiamusi blocks contain a significant proportion of Mesoproterozoic crystalline basement, while the Xing’an Block is dominated by a Neoproterozoic basement.Based on these observations, the early Paleozoic evolutionary history of eastern CAOB can be divided into four stages: (1) before 540 ​Ma, the Erguna, Xing’an, Songnen, and Jiamusi blocks were discrete microcontinents separated by different branches of the Paleo-Asian Ocean; (2) 540–523 ​Ma, the Jiamusi Block collided with the Songnen Block along the Mudanjiang suture; (3) ca. 500 Ma, the Erguna Block accreted onto the Xing’an Block along the Xinlin–Xiguitu suture; (4) ca. 480 Ma, the Paleo-Asian Ocean started a double-side subduction beneath the united Erguna–Xing’an and Songnen–Jiamusi blocks.  相似文献   

10.
A complex of gabbro (with metamorphic pyroxenite xenoliths)–gabbroic diorite–granodiorite was recently discovered in Tongxunlian, Xilinhot city, Inner Mongolia. Zircon U–Pb isotopic dating showed that the gabbro and the granodiorite were formed ca. 319 ± 1 Ma and ca. 318 ± 1 Ma respectively, indicating that emplacement of the composite rocks occurred in the late Carboniferous. Positive εHf(t) values of +12.0 to +14.1 and two‐stage model ages (TDM2) of 418 to 537 Ma of these rocks are similar to the age of formation of metamorphic pyroxenite (560 Ma, based on Sm–Nd isochron dating) and suggest that the rocks were derived from depleted lithospheric mantle (metamorphic pyroxenite). Our findings revealed that all of these calc‐alkaline and metaluminous intrusive rocks formed from the fractional crystallization of comagmatic evolution in an island‐arc setting. Moreover, the gabbro–gabbroic diorite in the study region was characterized by a low TiO2 content, a slight deficit of Nb, a surplus of Ta, and relatively low LREE/HREE ratios. Along with a relatively high Zr/Y ratio (4.0 to 5.6), these characteristics indicate that the rocks may have been formed by melting of the mantle wedge via metasomatism. Combination with other features of the rocks indicates a two‐episode tectonic model: we conclude that first, the fluid and Si‐rich melt metasomatism caused partial melting of the enriched lithospheric mantle, and these influences were then stored in the mantle; and second, slab breakoff resulted in upwelling of the upper mantle's soft fluid (stratum), which melted the enriched mantle of the lithosphere and formed the basaltic magma of the gabbro–gabbroic diorite. This study provides new geological evidence to support the Neoproterozoic subduction between the Paleo‐Asian Ocean plate and the Xilinhot microcontinent. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
We report geochemical data, SHRIMP zircon ages and Hf-in-zircon isotopic compositions for Cenozoic granitoids from major fault systems in the Tethyan belt in western Yunnan Province, southwestern China.Four magmatic pulses occurred in the Paleogene, namely at ca.57 Ma, ca.50 Ma, 45–40 Ma, and 38–34 Ma.Early magmatism of this episode(57–50 Ma) produced S-type granites whose zircons yielded εHf(t) values of-5.0 to-0.3.In contrast, late magmatism of this episode reflects heterogeneous sources.Zircons from a granite porphyry along the Ailaoshan-Red River fault system have slightly positive εHf(t) values suggesting derivation from relatively young crust and/or a juvenile source.However, zircons from a granite along the Gaoligong fault system have strongly negative εHf(t) values and suggest derivation from a Paleoproterozoic crustal source.The composition of the granitoids varies with age(from ca.57 Ma to ca.34 Ma) from peraluminous to metaluminous and also suggests a change from syn-collisional to late-orogenic tectonic setting.A new tectonic model, impacting lithospheric wedge(ILW) is shown for the origin of Paleogene granitoids in this paper.  相似文献   

12.
The NS-treading Zhongdian Arc located in the southern part of the Yidun Arc is an important region to address the evolution and reconstruction of the Palaeo-Tethys Ocean and related mineralization. In this study, we investigate three barren intrusions in the Zhongdian Arc and present geochemical compositions, zircon U–Pb dating and Hf isotopic compositions. Zircons from the three intrusions yielded U–Pb ages of ~227.5, ~222.5, and ~230 Ma, with highly variable εHf(t) values (?20.5 to 4.3). These quartz monzonite porphyries show typical adakitic affinity, and it is inferred that these intrusions in the Zhongdian Arc, together with those in the northern Yidun Arc, were derived from the partial melting of mantle wedge and contaminated by minor lower crustal components during the westward subduction of the Ganzi-litang Ocean, which probably resulted from the Triassic continental collision between the south China and the north China blocks. In the Yidun Arc, the Triassic ore-bearing intrusions have εHf(t) values that cluster around zero, while the barren intrusions possess negative εHf(t) values, suggesting that the mantle lithospheric components played an important role in the Triassic ore-bearing porphyries.  相似文献   

13.
Multi-stage igneous rocks developed in the recently discovered Huoluotai Cu-(Mo) deposit provide new insights into the controversial late Mesozoic geodynamic evolution of the northern segment of the Great Xing’an Range (NSGXR). Zircon U-Pb dating suggests that the monzogranite, ore-bearing granodiorite porphyry, diorite porphyry, and granite porphyry in the deposit were emplaced at 179.5 ± 1.6, 148.9 ± 0.9, 146.1 ± 1.3, and 142.2 ± 1.5 Ma, respectively. The Re-Os dating of molybdenite yielded an isochron age of 146.9 ± 2.3 Ma (MSWD = 0.27). The Jurassic adakitic monzogranite and granodiorite porphyry are characterized by high SiO2 and Na2O contents, low K2O/Na2O ratios, low MgO, Cr, and Ni contents, low zircon εHf(t) values relative to depleted mantle, and relatively high Th contents. They were produced by partial melting of a subducted oceanic slab, with involvement of marine sediments in the magma source and limited interaction with mantle peridotites during magma ascent. The Late Jurassic diorite porphyry is characterized by moderate SiO2 contents, high MgO, Cr, and Ni contents, and positive dominated εHf(t) values, indicating it was produced by partial melting of a subduction-modified lithospheric mantle wedge and underwent limited crustal contamination during magma ascent. The early Early Cretaceous adakitic granite porphyry shows high SiO2 and K2O contents and K2O/Na2O ratios, low MgO, Cr, and Ni contents, enriched Sr–Nd isotopic compositions, and slightly positive zircon εHf(t) values, suggesting it was produced by partial melting of thickened mafic lower crust. The NSGXR experienced a tectonic history that involved flat-slab subduction (200–160 Ma), and tearing and collapse (150–145 Ma) of the Mongol–Okhotsk oceanic lithosphere. The period of magmatic quiescence from ca. 160 to 150 Ma was a response to flat-slab subduction of the Mongol–Okhotsk oceanic lithosphere. Crustal thickening in the NSGXR (145–133 Ma) was due to the collision between the Amuria Block and the Siberian Craton.  相似文献   

14.
Latest Permian to Triassic plutons are widespread in the northern North China Craton(NCC); most of them show calc-alkaline, high-K calc-alkaline, or alkaline geochemical features. The Shadegai pluton in the Wulashan area has shoshonitic affinity and I-type character, and is composed of syenogranites containing abundant mafic microgranular enclaves(MMEs). LA-MC-ICP-MS U-Pb data yield weighted mean 206 Pb/238 U ages of 222 ± 1 Ma and 221 ± 1 Ma for the syenogranites and MMEs, respectively, suggesting their coeval formation during the Late Triassic. The syenogranites have high SiO_2(70.42-72.30 wt%),K_2O(4.58-5.22 wt.%) and Na_2O(4.19-4.43 wt.%) contents but lower concentrations of P_2O_5(0.073-0.096 wt.%) and TiO_2(0.27-0.37 wt.%), and are categorized as I-type granites, rather than A-type granites, as previously thought. These syenogranites exhibit lower(~(87)Sr/~(86)Sr)i ratios(0.70532-0.70547) and strongly negative whole-rock εNd(t) values(-12.54 to-11.86) and zircon εHf(t) values(-17.81 to-10.77),as well as old Nd(1962-2017 Ma) and Hf(2023-2092 Ma) model ages, indicating that they were derived from the lower crust.Field and petrological observations reveal that the MMEs within the pluton probably represent magmatic globules commingled with their host magmas. Geochemically, these MMEs have low SiO_2(53.46-55.91 wt.%)but high FeOt(7.27-8.79 wt.%) contents. They are enriched in light rare earth elements(LREEs) and large ion lithophile elements(LILEs), and are depleted in heavy rare earth elements(HREEs) and high field strength elements(HFSEs). They have whole-rock(~(87)Sr/~(86)Sr)i ratios varying from 0.70551 to 0.70564, εNd(t) values of -10.63 to -9.82, and zircon εHf(t) values of -9.89 to 0.19. Their geochemical and isotopic features indicate that they were derived from the subcontinental lithospheric mantle mainly metasomatized by slab-derived fluids, with minor involvement of melts generated from the ascending asthenospheric mantle. Petrology integrated with elemental and isotopic geochemistry suggest that the Shadegai pluton was produced by crust-mantle interactions, i.e., partial melting of the lower continental crust induced by underplating of mantle-derived mafic magmas(including the subcontinental lithospheric mantle and asthenospheric mantle), and subsequent mixing of the mantle-and crust-derived magmas. In combination with existing geological data, it is inferred that the Shadegai pluton formed in a post-collisional extensional regime related to lithospheric delamination following the collision between the NCC and Mongolia arc terranes.  相似文献   

15.
《International Geology Review》2012,54(11):1370-1390
ABSTRACT

To better understand the Neoproterozoic tectonic evolution along the northern margin of Yangtze Block, we have determined the geochronological and geochemical compositions of newly recognized bimodal volcanic suite and coeval granites from the western Dabie terrain. LA-ICP-MS zircon U-Pb dating reveals that the felsic and mafic volcanics from the Hong’an unit have crystallization ages of 730 ± 4Ma and 735 ± 5Ma, respectively, indicating that the bimodal suite was erupted during the Neoproterozoic. The Xuantan, Xiaoluoshan, and Wuchenhe granites yield U-Pb ages of 742 ± 4 Ma, 738 ± 4 Ma, and 736 ± 4 Ma, respectively. The felsic volcanic rocks show peraluminous characteristics, and have a close affinity to S-type granite. The mafic volcanic rocks are basalt in compositions, and are likely generated from a depleted mantle source. The granites belong to high-K calc-alkaline and calc-alkaline series, display metaluminous to peraluminous, and are mainly highly fractionated I-type and A-type granite. The granites and felsic volcanics have zircon εHf(t) values of ?16.4 to + 5.6 and two-stage Hf model ages (TDM2) of 1.28 to 2.40 Ga, suggesting that they were partial melting of varying Mesoproterozoic–early-Neoproterozoic crust. The granites have εNd(t) of -14.7 to -1.5, and the two-stage Nd model ages (TDM2) values of 1.54 to 2.61 Ga, also implying the Yangtze crustal contribution. These Neoproterozoic bimodal suite and coeval granites were most likely generated in a rifting extensional setting, triggered by the mantle upwelling, associated with crust–mantle interaction. Intensive magmatic rocks are widespread throughout the South Qingling, Suizhao, western Dabie and eastern Dabie areas during 810–720 Ma, and show peak ages at ~ 740 Ma. Combining regional geology, we support a continental rifting extensional setting for the north margin of the Yangtze Block during the break-up of the supercontinent Rodinia.  相似文献   

16.
ABSTRACT

The results of SHRIMP U-Pb ages and in situ Hf isotope of zircons from three granites in the southern Manzhouli region of northeast China, provide new data to understand the subduction process of Mongol-Okhotsk Plate beneath the Erguna massif. SHRIMP U-Pb zircon geochronology results yield an age of 265.5 Ma (middle Permian) for fine-grained monzogranite. Rocks from the Early–Middle Triassic are mainly granodiorite (247.4 ± 4.6 and 249.3 ± 4.9 Ma), the granites are with SiO2 = 60.0–77.4 wt.%, Al2O3 = 12.3–16.8wt.% and Na2O/K2O = 0.7–1.9. Chemically, they are metaluminous to peraluminous and belong to the high-K calc-alkaline series. Enrichments in the large ion lithophile elements (e.g., Rb, Ba, and K) and depletions in the high field strength elements (e.g., Nb, Ta, and Ti) are typical for these rock types. The monzogranite (~265 Ma) and granodiorite (~247 Ma) contain zircons with εHf(t) values of 6.3–8.5 and 5.1–7.9, yielding TDM2 model ages of 888–752 and 958–774 Ma, respectively. These geochemical and zircon Hf isotopic data indicate that primary magmas for Middle Permian–Early Triassic granites crystallized from primary magmas generated by Neoproterozoic crustal materials, formed in an active continental margin setting. The andesite of the Gegenaobao formation is similar with the Izu–Bonin–Mariana arc, relating to subduction initiation. Based on the characteristics of exposed rocks and zircon U-Pb ages of andesite and granitoid rocks in the study area, we conclude the onset subduction of Mongol-Okhotsk Plate beneath the Erguna massif may occur at early-middle Permian.  相似文献   

17.
The Mesozoic granitoids in the Dabie Orogen are of particular geological interest as indicators for Mesozoic lithospheric evolution and because of their close association with porphyry Mo mineralization. Here, we present a study using zircon laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb dating, petrogeochemistry, and Hf isotopic data to constrain the timing of the magmatism and petrogenesis of the Xinxian granites in the Dabie Mo mineralization belt (DMB), Henan Province, China. Field investigations combined with previously published data show that the Xinxian pluton mainly consists of four phases. Zircon LA-ICP-MS U–Pb dating yielded ages from 153.4 ± 1.1 Ma for Phase 1 to 146.4 ± 1.6 Ma for Phase 2, 131.6 ± 1.8 Ma for Phase 3, and 125.5 ± 1.5 Ma for Phase 4. The Xinxian granites have high SiO2 contents of 74.94–78.70 wt.% (average: 76.63 wt.%), Al2O3 contents of 11.59–13.68 wt.% (average: 13.01 wt.%), and K2O contents of 3.85–4.86 wt.% (average: 4.36 wt.%) with Na2O/K2O ratios of 0.78–1.03 (average: 0.92) and low MgO (0.04–0.15 wt.%), TiO2 (0.03–0.13 wt.%), and P2O5 (0.006–0.07 wt.%) contents. They are enriched in Rb, U, K, and Hf, but depleted in Ba, Nb, Ta, Sr, P, and Ti. The zircon εHf(t) values for Phases 1, 2, 3, and 4 vary as follows: from – 22.8 to – 20.3 with TDM2 values from 2682 to 2869 Ma, from – 24.2 to – 21.2 with TDM2 values from 2738 to 2925 Ma, from ?24.5 to ?21.5 with TDM2 values from 2722 to 2915 Ma, and from ?22.9 to ?19.4 with TDM2 values from 2421 to 2643 Ma, respectively. By integrating previous geological, geochronological, and geochemical data for the DMB, we propose that the Xinxian pluton was dominantly sourced from the crust. The granites were most likely derived from the partial melting of the Northern Dabie Complex (NDC) with some Yangtze lower crust and Southern Dabie Complex (SDC). The Xinxian pluton may have formed in a post-collision extensional setting.  相似文献   

18.
Abstract

New zircon laser ablation inductively coupled plasma mass spectrometry and secondary ion mass spectroscopy U–Pb ages, and Hf isotope and whole-rock geochemical data are reported for Mesozoic igneous rocks from the eastern margin of the Songnen–Zhangguangcai Range Massif, Northeast China, in order to document the petrogenesis of the igneous rocks and reconstruct the early Mesozoic tectonic setting of the region. Zircons from five representative igneous rocks are euhedral–subhedral and display oscillatory growth zoning or striped absorption in cathodoluminescence images, suggesting a magmatic origin. The dating results indicate that granite, gabbro, and rhyolite from the eastern Songnen–Zhangguangcai Range Massif formed during Late Triassic (204–211 Ma). The Late Triassic granitoids and rhyolites have an affinity to A-type granites or rhyolites. Their zircon εHf(t) values and Hf two-stage model ages range from –3.8 to +3.8 and from 999 to 1485 Ma, respectively, indicating that their primary melts were derived from the partial melting of the Meso-Proterozoic crust. The geochemistry of coeval gabbros, which reflects primary magma composition, shows a significant large ion lithophile element (e.g. Ba and Sr) enrichment and high field strength element (i.e. Zr, Hf, Nb, Ta, and Ti) depletion. Based on zircon εHf(t) values (–4.2 to +2.8) and Hf single-stage model ages (746–1031 Ma), we conclude that the mafic magma is the product of partial melting of lithospheric mantle that was metasomatically enriched by fluids derived from the subducted oceanic crust. The Late Triassic magmatism along the eastern margin of the Eurasian continent has bimodal magma compositions, indicating an extensional setting after the final closure of the Palaeo-Asian Ocean rather than being related to subduction of the Palaeo-Pacific Plate beneath the Eurasian continent. The occurrence of Late Triassic igneous rocks on the eastern side of the Mudanjiang Fault suggests that this fault does not represent the suture zone between the Songnen–Zhangguangcai Range and Jiamusi massifs.  相似文献   

19.
The East Kunlun Orogenic Belt(EKOB) provides an important link to reconstruct the evolution of the Proto-Tethys and Paleo-Tethys realm. The EKOB is marked by widespread Early Paleozoic magmatism.Here we report the petrology, bulk geochemistry, zircon Ue Pb dating and, Lue Hf and SreN d isotopic data of the Early Paleozoic granitic rocks in Zhiyu area of the southern EKOB. Based on the zircon U-Pb dating, these granitoids, consisting of diorite, granodiorite and monzogranite, were formed during 450 -430 Ma the Late Ordovician to Middle Silurian. The diorite and granodiorite are high Sr/Y ratio as adakitic affinities, and the monzogranite belongs to highly fractionated I-type. Their(~(87)Sr/~(86)Sr)ivalues range from 0.7059 to 0.7085, εNd(t) values from -1.6 to -6.0 and the zircon εHf(t) values show large variations from +9.1 to -8.6 with Hf model ages(T_(DM2)) about 848 Ma and 1970 Ma. The large variations of whole-rock Nd and zircon Hf isotopes demonstrate strong isotopic heterogeneity of the source regions which probably resulted from multi-phase underplating of mantle-derived magmas. Geochemical and isotopic studies proved that the diorite and granodiorite had been derived from partial melting of heterogeneous crustal source with variable contributions from ancient continental crust and juvenile components, and the monzogranites were representing fractional crystallization and crustal contamination for arc magma. The Early Paleozoic adakitic rocks and high-K calc-alkaline granitoids in the southern EKOB were likely emplaced in a continental marginal arc setting possibly linked to the southwards subduction of the Paleo Kunlun Ocean and the magma generation is linked to partial melting of thickened continental crust induced by underplating of mantle-derived magmas.  相似文献   

20.
The Solonker zone in northern Inner Mongolia (China) is considered as the suture between the North China Craton and the South Mongolian microcontinent. Two magmatic belts are recognized along the suture zone: a subduction-related magmatic belt (represented by the Baolidao arc rocks), and a younger, collision-related granite belt (represented by the Halatu granites). We use zircon U–Pb ages, zircon in-situ Hf isotopic analyses and whole-rock Nd–Sr isotopic data of the two magmatic belts and related forearc sediments (the Xilinhot metamorphic complex) to constrain timing of the suturing and to discuss the petrogenesis of the magmatic rocks. A gabbroic diorite (BLD-1) of the Baolidao arc was dated at 310 ± 5 Ma (by SHRIMP). This sample shows an εNd(t) value of +2.5 and ISr of 0.7052. Hf isotopic analyses on 25 zircons from the same sample show εHf(t) = +5.4 to +11.5. Another diorite sample (XH-2) of the same arc from south of Xilinhot displays even more “depleted” isotopic compositions, with εNd(t) = +5.6 and ISr = 0.7037. The main population of zircons from this sample have highly variable and depleted Hf isotopic compositions (εHf(t) = 0–18.3). The large variation in Hf isotopic composition of zircons (with largely the same crystallization age) from a single pluton is explained by a mixing process between depleted mantle-derived magma and continental crust in an active continental arc setting. The Halatu granite (HLT-2) was dated at 234 ± 7 Ma (by SHRIMP). Zircons from the granite also show a large variation of εHf(t) values (+9.1 to ?26), despite most samples having whole-rock εHf(t) > +2. The large variation in εHf(t) values suggests that the granite formed probably by partial melting of two source regions – a dominant juvenile crust and a subordinate old continental crust. Most zircons from the Xilinhot metamorphic complex show ages comparable with those of the Baolidao arc rocks, suggesting that the protolith of the metamorphic complex was probably deposited during or after arc magmatism. Some zircons, however, show Precambrian ages that fall into two groups: one with ages of 780–900 Ma, resembling those from the South Mongolian microcontinent, and the other with ages of 1524–2900 Ma, similar to those of the North China Craton. Thus, the protolith of the metamorphic complex probably formed in a forearc basin during convergence of the two continents, and metamorphosed subsequently during collision in the late Paleozoic. Our zircon age data thus constrain timing of collision between the South Mongolian microcontinent and the North China Craton to have been between 296 and 234 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号