首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To dimension a geothermal array, it is necessary to explore the geophysical and geologic qualities of the subsoil. At the following example the project engineering of a prospective geothermal array is shown from the investigation up to the execution planning. For the geothermic investigation a 400 m (1312 ft.) deep drilling was established and equipped with 50 mm (1.97 in.) duplex BHE. With the mounting of the BHE a fiberglass hybrid cable was inserted as a loop parallel to the shanks of the BHE. By means of optical frequency domain reflectometry (OFDR) an enhanced geothermal response test has been executed. Due the high local resolution of the resulting profile of conductivities the geological profile can be differentiated in areas with mainly conductive and areas of convective influenced heat transfer. By knowledge of these both parts and its parameters the incident of groundwater flow on the BHE can be calculated (Peclet number analysis/ Darcy velocity). With the help of the ascertained geophysical and hydraulic rock parameters solid rock, cleavages and karst cavity could be identified. Also the undisturbed ground temperature, the effective thermal conductivity and areas with different geothermal gradients and the groundwater velocity in cleaved and caveated rocks could be determined.  相似文献   

2.
The purpose of this experimental investigation is to obtain strain measurements via optical fibre sensors in the drum geotechnical centrifuge of ETH Zurich. It is part of a test series with main goal to study the behaviour of reinforced slopes subjected to self weight loading and subsequently to an impact from a rockfall event. In total 13 scaled reinforced slope models were built with a height of 180 mm and a slope inclination of 2V:1H, optimising the materials used and the different ways of model making. The maximum g-levels were 50 and 100 g and the impact loading was applied at 50 g. The optical fibre sensors were placed on various layers of the reinforcement and at different positions. Strain measurements that were recorded during different tests are logical and expected, demonstrating that optical fibre sensors can successfully be used for measuring linear strain on reinforcement layers that are tested under enhanced gravity in the geotechnical centrifuge. The experimental set up as well as the opportunities and challenges of these measurements are presented and discussed. Finally, correspondent prototype numerical models were created and analysed and the results of this analysis are compared to the corresponding experimental ones.  相似文献   

3.
The geothermal site of Lavey-les-Bains, Switzerland is an Alpine deep flow system in fractured crystalline rocks. Groundwater analyses since 1973 reveal a mixing process between a deep warm component (68°C and TDS 1.4 g/L) and cold shallow water. The production rate of the new deep well P600, installed in 1997, has amplified this mixing process in well P201, for which a decline in temperature and TDS has been observed. Numerical hydrogeological two-dimensional and three-dimensional models of heat, flow and mass transport have been developed to reproduce the geothermal system and to forecast the long-term exploitation potential of the geothermal resource. The computed temperature of the deep inferred reservoir (100–130°C) is in agreement with the geothermometers, whereas the simulated thermal water flux (5,400–9,000 m3/day) is probably underestimated. Different fluid production scenarios can reproduce the decline and stabilization phases of temperatures in the geothermal field since 1997. For P201, the mixing ratio calculated before and during the exploitation of P600 is comparable with observed data; the modelled temperature tends towards stabilization in P201 at 56°C after 10–15 years of production at P600. Another proposed new well is likely to reduce the thermal output of the existing wells.  相似文献   

4.
Time-series temperature data can be summarized to provide valuable information on spatial variation in subsurface flow, using simple metrics. Such computationally light analysis is often discounted in favor of more complex models. However, this study demonstrates the merits of summarizing high-resolution temperature data, obtained from a fiber optic cable installation at several depths within a water delivery channel, into daily amplitudes and mean temperatures. These results are compared to fluid flux estimates from a one-dimensional (1D) advection-conduction model and to the results of a previous study that used a full three-dimensional (3D) model. At a depth of 0.1 m below the channel, plots of amplitude suggested areas of advective water movement (as confirmed by the 1D and 3D models). Due to lack of diurnal signal at depths below 0.1 m, mean temperature was better able to identify probable areas of water movement at depths of 0.25–0.5 m below the channel. The high density of measurements provided a 3D picture of temperature change over time within the study reach, and would be suitable for long-term monitoring in man-made environments such as constructed wetlands, recharge basins, and water-delivery channels, where a firm understanding of spatial and temporal variation in infiltration is imperative for optimal functioning.  相似文献   

5.
A versatile fluid–chemical monitoring unit has been developed in the framework of the geothermal research platform Groß Schönebeck, Germany. It enables selective online and in situ measurements of various physico-chemical parameters at different surface locations of a geothermal fluid loop. Sensors are provided for pressure, temperature, volumetric flow rate, density, pH-value, redox potential, oxygen content, and electrical conductivity. In addition, the apparatus features two fluid samplers to manually collect fluid under in situ conditions and ultimately analyze the solution composition. All devices are mounted on a rack allowing easy transfer of the apparatus to other geothermal plants. The maximum operating pressure and temperature of the unit are 15 bar and 150 °C, respectively. The scientific and technical purpose of the system is to monitor a compositional variability of the produced fluid and chemical processes potentially occurring within the plant. These may result from reactions between the fluid and the surrounding materials, e.g., corrosion. Also, mineral precipitation as a consequence of temperature and/or pressure decrease or oxygen contamination may occur. This information is of paramount importance as so induced reactions might lead to failure of plant components or may damage the geothermal reservoir upon fluid reinjection and thus decrease injectivity.  相似文献   

6.
This study investigates the characteristics of geothermal water in 10 geothermal fields in Beijing. The relationships between the deuterium excess parameter (d) and temperature, depth, age of geothermal groundwater, groundwater flow field, and Eh were investigated using geothermal groundwater samples. Results showed that (1) the average d value of geothermal water is 5.4, whereas that of the groundwater in normal temperature is 6.04. The differences are induced by the oxygen isotope exchange during the water–rock interaction, which may be more easily completed in geothermal water than in cold groundwater. (2) The d value increases remarkably with the age of the geothermal groundwater. The d value increases from 11.2 to 14.6 when the age of the geothermal water is 12,760 ± 130 a and 38,960 ± 630 a, respectively. Moreover, the isotope heat exchange for composition of the hydrogen and oxygen isotopes in the geothermal groundwater proceeds sufficiently with time. (3) The d value decreases from 5.72 to 3.03 when the depth increases from 125.13 to 3221 m. Generally, in the same area, the d value decreases with depth because the temperature is increasing. (4) The d value of the groundwater gradually reduces from the northern recharge area to the southern discharge area. The average d value is 7.31 in the northern recharge area and 5.68 in the middle Beijing Depression, whereas the d value in the southern area of Fengheying is ?9.20. The larger difference in d values between the recharge and discharge areas is due to the slower velocity of underwater flow, which induces longer time for oxygen exchange. (5) The relationship between the d and Eh is complex. When Eh is <200 mV, the d value of the geothermal water decreases with the decrease in Eh. When Eh is higher than 200 mV, the d value increases slightly with the decrease in Eh. The study of the characteristics of deuterium excess parameters for geothermal water could provide a scientific isotopic evidence for assessment and exploitation measures in geothermal groundwater systems.  相似文献   

7.
Tulsishyam thermal springs are located in the Saurashtra region of Gujarat, India with discharge temperatures varying from 39 to 42 °C. The pH of these thermal springs varies from 7.1 to 7.4, indicating neutral character. Though these thermal springs propagate through the near surface layer of Deccan basalt, detailed geochemical analysis of the thermal waters using Piper diagram suggests that the water is interacting with the granitic basement rock. Silica and cation geothermometry estimates have reservoir temperature in the range of 138 to 207 °C categorizing it into a low to moderate enthalpy geothermal system. Furthermore, the area has high heat flow values of 53–90 mW/m2 because of shallow Moho depth. The prevailing conditions suggest that the geothermal energy can potentially be exploited through an enhanced geothermal system (EGS). The study also indicates different mineral phases that may precipitate out of water during exploitation of geothermal energy and it should be taken into account while designing an EGS for the area.  相似文献   

8.
Oxygen fluxes across the sediment–water interface reflect primary production and organic matter degradation in coastal sediments and thus provide data that can be used for assessing ecosystem function, carbon cycling and the response to coastal eutrophication. In this study, the aquatic eddy covariance technique was used to measure seafloor–water column oxygen fluxes at shallow coastal sites with highly permeable sandy sediment in the northeastern Gulf of Mexico for which oxygen flux data currently are lacking. Oxygen fluxes at wave-exposed Gulf sites were compared to those at protected Bay sites over a period of 4 years and covering the four seasons. A total of 17 daytime and 14 nighttime deployments, producing 408 flux measurements (14.5 min each), were conducted. Average annual oxygen release and uptake (mean ± standard error) were 191 ± 66 and ?191 ± 45 mmol m?2 day?1 for the Gulf sites and 130 ± 57 and ?152 ± 64 mmol m?2 day?1 for the Bay sites. Seasonal variation in oxygen flux was observed, with high rates typically occurring during spring and lower rates during summer. The ratio of average oxygen release to uptake at both sites was close to 1 (Bay: 0.9, Gulf: 1.0). Close responses of the flux to changes in light, temperature, bottom current velocity, and wave action (significant wave height) documented tight physical–biological, benthic–pelagic coupling. The increase of the sedimentary oxygen uptake with increasing temperature corresponded to a Q10 temperature coefficient of 1.4 ± 0.3. An increase in flow velocity resulted in increased oxygen uptake (by a factor of 1–6 for a doubling in flow), which is explained by the enhanced transport of organic matter and electron acceptors into the permeable sediment. Benthic photosynthetic production and oxygen release from the sediment was modulated by light intensity at the temporal scale (minutes) of the flux measurements. The fluxes measured in this study contribute to baseline data in a region with rapid coastal development and can be used in large-scale assessments and estimates of carbon transformations.  相似文献   

9.
Geothermal springs are some of the most obvious indicators of the existence of high-temperature geothermal resources in the subsurface. However, geothermal springs can also occur in areas of low average subsurface temperatures, which makes it difficult to assess exploitable zones. To address this problem, this study quantitatively analyzes the conditions associated with the formation of geothermal springs in fault zones, and numerically investigates the implications that outflow temperature and discharge rate from geothermal springs have on the geothermal background in the subsurface. It is concluded that the temperature of geothermal springs in fault zones is mainly controlled by the recharge rate from the country rock and the hydraulic conductivity in the fault damage zone. Importantly, the topography of the fault trace on the land surface plays an important role in determining the thermal temperature. In fault zones with a permeability higher than 1 mD and a lateral recharge rate from the country rock higher than 1 m3/day, convection plays a dominant role in the heat transport rather than thermal conduction. The geothermal springs do not necessarily occur in the place having an abnormal geothermal background (with the temperature at certain depth exceeding the temperature inferred by the global average continental geothermal gradient of 30 °C/km). Assuming a constant temperature (90 °C here, to represent a normal geothermal background in the subsurface at a depth of 3,000 m), the conditions required for the occurrence of geothermal springs were quantitatively determined.  相似文献   

10.
An updated analysis of geothermal data from the highland area of eastern Brazil has been carried out and the characteristics of regional variations in geothermal gradients and heat flow examined. The database employed includes results of geothermal measurements at 45 localities. The results indicate that the Salvador craton and the adjacent metamorphic fold belts northeastern parts of the study area are characterized by geothermal gradients in the range of 6–17°C/km. The estimated heat flow values fall in the range of 28–53 mW/m2, with low values in the cratonic area relative to the fold belts. On the other hand, the São Francisco craton and the intracratonic São Francisco sedimentary basin in the southwestern parts are characterized by relatively higher gradient values, in the range of 14–42°C/km, with the corresponding heat flow values falling in the range of 36–89 mW/m2. Maps of regional variations indicate that high heat flow anomaly in the São Francisco craton is limited to areas of sedimentary cover, to the west of the Espinhaço mountain belt. Crustal thermal models have been developed to examine the implications of the observed intracratonic variations in heat flow. The thermal models take into consideration variation of thermal conductivity with temperature as well as change of radiogenic heat generation with depth. Vertical distributions of seismic velocities were used in obtaining estimates of radiogenic heat production in crustal layers. Crustal temperatures are calculated based on a procedure that makes simultaneous use of the Kirchoff and Generalized Integral Transforms, providing thereby analytical solutions in 2D and 3D geometry. The results point to temperature variations of up to 300°C at the Moho depth, between the northern Salvador and southern São Francisco cratons. There are indications that differences in rheological properties, related to thermal field, are responsible for the contrasting styles of deformation patterns in the adjacent metamorphic fold belts.  相似文献   

11.
浅层地温能作为可再生能源,已经引起广泛关注。为了有效地监测南京市浅层地温场的时空演化,针对4种温度传感器:DTS、FBG、Pt100和iButton,通过野外和室内试验进行分析对比,从测温精度、适用范围、工作特性等方面展开研究。结合试验结果和目前的实际应用情况,总结出四种传感器在浅层地温场监测方面的优缺点和特性,并制定出一套较为完善的监测方案,为浅层地温场的长期时空监测提供参考:在所有钻孔中埋设分布式测温光纤,并根据地温钻孔的土层分布和所获取的地温分布数据,选取两个较为典型的地温钻孔布设FBG测温串;在所有钻孔点距地表5 cm处布设iButton,并使用Pt100监测地表以下25 m内的精确地温。根据已获得的监测数据,可总结出南京地区浅层地温在垂向上的大体分布规律,发现其分布在空间上具有差异性,浅地表地温与地表覆盖层、大气及太阳辐射有关,深部地温受地质构造和水文地质条件等因素控制。  相似文献   

12.
Afyonkarahisar is a very important geothermal province of western Anatolia and has low and medium enthalpy geothermal areas. This study has been carried out for the preparation of distribution maps of soil gases (radon and carbon dioxide) and shallow soil temperature and the exploration of permeable tectonic regions associated with geothermal systems and reveal the origins of radon and carbon dioxide gases. The western district of the study area is characterized by the high radon concentration (168.30 kBq/m3), carbon dioxide ratio (0.30%), and soil temperature (21.0 °C) values. Fethibey and Demirçevre faults, which allow the circulation of geothermal fluids, have been detected in the distribution maps of radon, carbon dioxide, and shallow depth temperature and the directions of the curves in these maps correspond to the strikes of Demirçevre faults. The effect of the fault plays an important role in the change of carbon dioxide concentration along the W-E directional geological section prepared to determine the change of soil gas and shallow depth temperature values depending on lithological differences, fault existence, and geothermal reservoir depth. On the other hand, it was determined that Rn222 concentration and soil temperature changed as a function of geothermal reservoir depth or lithological difference. Tuffs in Köprülü volcano-sedimentary units are the main source of radon due to their higher uranium contents. Besides, the carbon dioxide in Ömer–Gecek soils has geothermal origin because of the highest carbon dioxide content (99.3%) in non-condense gas. The similarities in patterns of soil temperature, radon, and carbon dioxide indicate that the variation in soil temperatures is related to radon and carbon dioxide emissions. It is concluded that soil gas and temperature measurements can be used to determine the active faults in the initial stage of geothermal exploration successfully.  相似文献   

13.
The thermal profile of a streambed is affected by a number of factors including: temperatures of stream water and groundwater, hydraulic conductivity, thermal conductivity, heat capacity of the streambed, and the geometry of hyporheic flow paths. Changes in these parameters over time cause changes in thermal profiles. In this study, temperature data were collected at depths of 30, 60, 90 and 150 cm at six streambed wells 5 m apart along the thalweg of Little Kickapoo Creek, in rural central Illinois, USA. This is a third-order low-gradient baseflow-fed stream. A positive temperature gradient with inflection at 90-cm depth was observed during the summer period. A negative temperature gradient with inflection at 30 cm was observed during the winter period, which suggests greater influence of stream-water temperatures in the substrate during the summer. Thermal models of the streambed were built using VS2DHI to simulate the thermal profiles observed in the field. Comparison of the parameters along with analysis of temperature envelopes and Peclet numbers suggested greater upwelling and stability in temperatures during the winter than during the summer. Upwelling was more pronounced in the downstream reach of the pool in the riffle and pool sequence.  相似文献   

14.
Northeast China as an important agricultural zone for commercial and economic crop in China suffered from increased drought risk that seriously threatened agricultural production and food security in recent decades. Based on precipitation datasets from 71 stations from 1960 to 2009 and on the reliable statistical methods of the Mann–Kendall test, Sen’s slope and the Standardized Precipitation Index, we analyzed the temporal and spatial variation of drought occurrence during the crop-growing season (from May to September) and summer (from June to August). The results showed that regional mean precipitation during the crop-growing season and summer over the last 40 years has decreased at the rate of ?1.72 and ?1.12 mm/year, respectively. According to timescale analysis of abrupt changes, there were two distinct time series (1965–1983 and 1996–2009) with decreasing precipitation trends at a 95 % confidence level. A comparison between the two time series of these two periods demonstrated that more frequent and more severe drought occurred during 1996–2009. Furthermore, drought risk in recent decades has become even more serious both in severity and in extent. Especially in the crop-growing season of 2001 and summer of 2007, over 25 % (2.0 × 105 km2) of study area experienced severe drought (serious and extreme droughts). Our results highlight the urgent need for the development of effective drought adaptations for cropland over northeast China.  相似文献   

15.
主动加热型分布式温度感测技术(AH-DTS)可通过植入土体中的光缆实现不同层位土体导热系数的分布式连续测量,但AH-DTS光缆导热系数测量方法的准确性和敏感性有待进一步研究。通过室内试验,对比了碳纤维加热感测光缆(CFHC)和铜网加热感测光缆(CMHC)的热响应过程,通过数值模拟验证了光缆结构对导热系数测量结果的影响。研究结果表明:(1)CFHC和CMHC的热响应过程可通过微分法分为光缆内部传热、纤-土过渡以及土体稳定传热3个阶段,光缆结构差异导致传热速率不同,使得CFHC导热系数测量初始时刻比CMHC提前100 s;(2)光缆尺寸与比热容差异下CFHC的升温值更高,相同测温精度CFHC的导热系数测量结果较CMHC更加稳定准确;(3)增大加热功率或延长加热时间均会提高CFHC和CMHC测量土体导热系数的准确性。研究成果为该技术的进一步完善和推广提供了重要依据。  相似文献   

16.
地下连续墙作为深基坑的支护墙体,具有良好的强度和安全稳定性。但墙体的不完整性会引起渗漏问题的发生,严重影响墙体的功能。针对地下连续墙的渗漏问题,设计模型试验探索了不同加压功率、不同加压时长下不同含泥量混凝土的温升稳定情况,通过温升曲线中的异常点,可分析墙体的完整性及发生墙体渗漏情况,提出了基于分布式光纤温度感测(Distributed Temperature Sensing,DTS)技术的地下连续墙混凝土浇筑完整性检测方法及对地下连续墙接头处渗漏的预测方法。以昆明地铁四号线的深基坑地下连续墙项目为例,介绍了利用DTS监测地下连续墙渗漏的感测光缆及其布设方法,对比检测结果及现场实际渗漏情况,验证了这一方法的可行性和有效性。  相似文献   

17.
Understanding the thermal distribution within the crust and rheology of the earth’s lithosphere requires the knowledge of the Depth to the Bottom of Magnetic Sources (DBMS). This depth is an important parameter in this regard, which can be derived from aeromagnetic data and can be used as a representation for temperature at depth where heat flow values can be evaluated. In this work, high-resolution aeromagnetic (HRAM) data of part of Chad Basin (covering about 80% of the entire basin), an area bounded by eastings 769,000 and 1,049,900 mE and northings 1,200,000 and 1,500,000 mN, were divided into 25 overlapping blocks and each block was analyzed using spectral fractal analysis method. The spectral analysis method was used to obtain the Depth to the Top of Magnetic Source (DTMS), centroid depth, and DBMS. From the calculated DBMS, the geothermal gradient and heat flow parameters were evaluated and the result obtained shows that DBMS varies between 18.18 and 43.64 km. Also the geothermal gradient was found to be varying between 13.29 and 31.90 °C/km and heat flow parameters vary between 33.23 and 79.76 mW/m2, respectively. The heat distribution of this area is one of the key parameters responsible for various geodynamic processes; therefore, this work is important for numerically understanding the thermal distribution in Chad Basin, Nigeria since rock rheologies depend on temperature, which is a function of depth.  相似文献   

18.
The surface energy budget on the debris-covered Koxkar Glacier in China   总被引:1,自引:1,他引:0  
Energy fluxes were measured by using the eddy covariance system plus an automatic weather station at the debris-covered area on Koxkar Glacier from March to August, 2009. The coldest month of the glacier was January, and air temperature reached a maximum in July and August. Wind velocity at 2.0 m was higher in summer and lower in winter as a whole. Precipitation was concentrated from May to September and accounted for about 80 % of the total. Daily latent heat fluxes were higher than daily sensible heat fluxes during the observation period. The main reason for higher latent heat fluxes from March to April was snow cover. From June to August, latent heat fluxes during the daytime were limited by surface water content, and were lower than sensible heat fluxes, but latent heat fluxes were higher than sensible heat fluxes during summer nights because of air convection in the debris layer. Summer evaporation was higher than in the spring, and evaporation was 53.7 % of the precipitation from 19 June to 23 August. The Bowen ratio ranged from ?2.0 to 2.0 at the site.  相似文献   

19.
Geothermal water sources located within The Erzurum province were identified and hot water samples were taken from four different geothermal areas. The results of in situ and hydrogeochemical analyses of these hot water samples were interpreted and the properties of hot water, water–rock associations, estimated reservoir temperature and hot water usage areas were determined. The temperatures of the samples collected from the study area vary between 26.2 and 57.7 °C, while pH values change from 6.09 to 7.33, EC values obtained from in situ measurements are between 1829 and 9480 µS/cm and Eh values are (??190) to (26.3) mV. Total dissolved solids of the hot waters have a range from 838.7 to 3914.1 mg/l. The maximum estimated reservoir temperature is calculated as 250 °C by applying chemical geothermometers. However, considering the actual temperatures of Pasinler, Köprüköy, Horasan and Il?ca thermal waters and wells, the most reliable temperature range depending on the applied geothermometers’ results indicate minimum and maximum reservoir temperatures 85–158.9 °C, respectively, taking in account the errors. According to the isotope analysis, the waters circulating within the geothermal system are of meteoric origin and modern waters. In addition, two samples taken from clayey levels observed in the field were analyzed and the mineralogy of the clays was evaluated.  相似文献   

20.
In this paper, the hydrochemical isotopic characteristics of samples collected from geothermal springs in the Ilica geothermal field, Eastern Anatolia of Turkey, are examined and described. Low-temperature geothermal system of Ilica (Erzurum, Turkey) located along the Eastern Anatolian fault zone was investigated for hydrogeochemical and isotopic characteristics. The study of ionic and isotopic contents shows that the thermal water of Ilica is mainly, locally fed by groundwater, which changes chemically and isotopically during its circulation within the major fault zone reaching depths. The thermal spring has a temperature of 29–39 °C, with electrical conductivity ranging from 4,000 to 7,510 µS/cm and the thermal water is of Na–HCO3–Cl water type. The chemical geothermometers applied in the Ilica geothermal waters yielded a maximum reservoir temperature of 142 °C according to the silica geothermometers. The thermal waters are undersaturated with respect to gypsum, anhydrite and halite, and oversaturated with respect to dolomite. The dolomite mineral possibly caused scaling when obtaining the thermal waters in the study area. According to the enthalpy chloride-mixing model, cold water to the thermal water-mixing ratio is changing between 69.8 and 75 %. The δ18O–δ2H compositions obviously indicate meteoric origin of the waters. Thermal water springs derived from continental precipitation falling on to higher elevations in the study area. The δ13C ratio for dissolved inorganic carbonate in the waters lies between 4.63 and 6.48 ‰. In low-temperature waters carbon is considered as originating from volcanic (mantle) CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号