首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
BREY  G. P.; K?HLER  T. 《Journal of Petrology》1990,31(6):1353-1378
On the basis of experiments presented in Part I of this series,most of the published thermobarometers relevant to four-phaseperidotites are tested here for their ability to reproduce experimentalconditions. They were rejected if any systematic discrepancyin either pressure or temperature was discernible. This testcautions against the use of all published versions of thermometersbasad on the compositions of coexisting ortho- and clinopyroxenesand the use of existing barometers based on the Al content oforthopyroxene axxisting with garnet. Therefore, we formulatednew versions of the two-pyroxene thermometer and the Al-in-opxbarometer: with and is in degress Kelvin and P is in kilobars. Our new barometer is of the form (C1–C3) and site occupancies are given in the text. Temperatures may also be calculated from the Ca content of opxalone: This thermometer can be applied both to the CMS and the naturalsystem experiments, which may indicate that Fe and Na have counter-balancingeffects on the Ca content of opx. The partitioning of Na between opx and cpx can also serve asa useful thermometer, and was calibrated from natural rock data: where T is in degrees Kelvin, P is in kilobars, and DNa=Naopx/Nacpx. The following three published thermobarometers based on furtherexchange reactions are capable of reprducing experimental conditions:
  1. exchangeof Ca between olivine and clinopyroxene as a barometer(PKB),
  2. exchange of Fe and Mg between garnet and clinopyroxene asathermometer (TKrogh),
  3. exchange of Fe and Mg between garnetand olivine as a thermometer(TO'Neiii).
Our tests also show that the most accurate pressure and temperatureestimates arc obtained from the following combinations of thermometersand barometers:
  1. TBKN+PBKN,
  2. TBKN+PKB,
  3. TKrogh+PBKN,
  4. TO'Ne$$$ll+PBKN.
  相似文献   

2.
Significant petrogenetic processes governing the geochemicalevolution of magma bodies include magma Recharge (includingformation of ‘quenched inclusions’ or enclaves),heating and concomitant partial melting of country rock withpossible ‘contamination’ of the evolving magma body(Assimilation), and formation and separation of cumulates byFractional Crystallization (RAFC). Although the importance ofmodeling such open-system magma chambers subject to energy conservationhas been demonstrated, the effects of concurrent removal ofmagma by eruption and/or variable assimilation (involving imperfectextraction of anatectic melt from wall rock) have not been considered.In this study, we extend the EC-RAFC model to include the effectsof Eruption and variable amounts of assimilation, A. This model,called EC-E'RAFC, tracks the compositions (trace elements andisotopes), temperatures, and masses of magma body liquid (melt),eruptive magma, cumulates and enclaves within a composite magmaticsystem undergoing simultaneous eruption, recharge, assimilationand fractional crystallization. The model is formulated as aset of 4 + t + i + s coupled nonlinear differential equations,where the number of trace elements, radiogenic and stable isotoperatios modeled are t, i and s, respectively. Solution of theEC-E'RAFC equations provides values for the average temperatureof wall rock (Ta), mass of melt within the magma body (Mm),masses of cumulates (Mct), enclaves (Men) and wall rock () and the masses of anatectic melt generated () and assimilated (). In addition, t trace element concentrations and i + s isotopic ratios inmelt and eruptive magma (Cm, m, m), cumulates (Cct, m, m), enclaves(Cen, , ) and anatectic melt (Ca, , ) as a function of magma temperature (Tm) are also computed. Input parametersinclude the (user-defined) equilibration temperature (Teq),a factor describing the efficiency of addition of anatecticmelt () from country rock to host magma, the initial temperatureand composition of pristine host melt (, , , ), recharge melt (, , , ) and wall rock (, , , ), distribution coefficients (Dm, Dr, Da) and their temperaturedependences (Hm, Hr, Ha), latent heats of transition (meltingor crystallization) for wall rock (ha), pristine magma (hm)and recharge magma (hr) as well as the isobaric specific heatcapacity of assimilant (Cp,a), pristine (Cp,m) and recharge(Cp,r) melts. The magma recharge mass and eruptive magma massfunctions, Mr(Tm) and Me(Tm), respectively, are specified apriori. Mr(Tm) and Me(Tm) are modeled as either continuous orepisodic (step-like) processes. Melt productivity functions,which prescribe the relationship between melt mass fractionand temperature, are defined for end-member bulk compositionscharacterizing the local geologic site. EC-E'RAFC has potentialfor addressing fundamental questions in igneous petrology suchas: What are intrusive to extrusive ratios (I/E) for particularmagmatic systems, and how does this factor relate to rates ofcrustal growth? How does I/E vary temporally at single, long-livedmagmatic centers? What system characteristics are most profoundlyinfluenced by eruption? What is the quantitative relationshipbetween recharge and assimilation? In cases where the extractionefficiency can be shown to be less than unity, what geologiccriteria are important and can these criteria be linked to fieldobservations? A critical aspect of the energy-constrained approachis that it requires integration of field, geochronological,petrologic, and geochemical data, and, thus, the EC-ERAFC ‘systems’approach provides a means for answering broad questions whileunifying observations from a number of disciplines relevantto the study of igneous rocks. KEY WORDS: assimilation; energy conservation; eruption; open system; recharge  相似文献   

3.
This issue of Earth Science FrontiersZENG Hualin,Consultant for Earth Science FrontiersThe theme of the issues 4 and 5 of Earth Science Frontiers is“Research on the Qinghai-Tibet Plateau”.There are 22 papers dealing withthis themeinthisissueincluding 20 papersin Chinese with English ab-stract and 2 papers in English. The other 3 papers deal with tectonics and energy resources .XU Zhi-qin et al .suggest that the Qinghai-Tibetplateau, a huge collisional orogenic collage , wasformed …  相似文献   

4.
5.
Counting and Sampling Errors in Modal Analysis by Point Counter   总被引:1,自引:1,他引:1  
SOLOMON  M. 《Journal of Petrology》1963,4(3):367-382
There are three principal sources of errors involved in modalanalyses by point counting: (a) operator variation, (b) thedetermination of area by grid counting, (c) the determinationof volumes from areal analyses. Operator variation is likely to be negligible but (b) and (c)may combine to give a variance equal to, or less than where A=measurement area, a=grid spacing, R=grain radius, andp=the fraction of the particular mineral in the rock (Hasofer,1963).  相似文献   

6.
Water resources issue is affecting regional stability and national relationship, which has become a vital issue. Based on SCIE papers from database of Web of Science, we analyze the international development trend of water governance research using the bibliometric analysis method. The results show that the number of publications in this field has been increasing rapidly since the 1990s. Most of the research subjects are interdisciplinary and mainly focus on the field of water resources and environmental science. Base on publications and its cited, the United States has the absolute advantage in total numbers of papers, but the articles has a low average influence in terms of citations; The total number of papers in China on water governance research ranks 10th among major countries in the world, but all papers in this field are cited, ranking second only to Germany. International water governance research focuses on water resource acquisition and water quality assessment, water vulnerability, adaptation and water demanding related to climate change; decision-making, water governance policies and water rights; water resource management, such as groundwater management, watershed management and comprehensive water resources management; global water governance and urban water crisis.  相似文献   

7.
ABSTRACT

The broad zone between old oceanic lithosphere of the NW Pacific and Eastern Eurasian continental lithosphere is home to a chain of marginal basins. Different from oceans, marginal basins are more influenced by the underlying subduction zone both geophysically and geochemically and are more likely to be blanketed by sediments from the nearby continent. This special issue collects 19 papers that explore the tectonic, magmatic, sedimentary and fluid activity features of marginal basins during rifting, spreading and post-spreading stages. Most papers in this special issue focus on South China Sea marginal basins, where abundant research provides interesting insights into how marginal sea basins evolve. Because South China Sea basins are fully evolved and their key features have not been overprinted by younger deformation, the results of this special issue are very useful for understanding the evolution of other marginal basins.  相似文献   

8.
Recent papers cite the similarity of rocks, particularly andesites,in continental and oceanic regions, but the similarity is primarilyone of name. The oceanic ‘andesites’ belong to thealkaline suite, whereas the typical continental andesites arecalc alkaline and hyperstheneor hornblende-bearing. To avoidfurther confusion it is suggested that the name ‘andesite’for the oceanic rocks be replaced by the names hawaiite andmugearite. Whatever name is used, it is essential to emphasizethe difference between the oceanic ‘andesites’ andthe andesites of continental orogenic regions. All members of the oceanic suite are present also in continentalregions, but the calc alkaline rocks characteristic of orogenicregions on the continents are absent within the true ocean basins,except in island arcs near the continents that were formerlyregarded as the continental border.  相似文献   

9.
This virtual special issue represents a collection of papers concerning Crustal Melting selected by the Editor from those published on various aspects of this theme in the JMG since 1982. The papers are grouped into sequences that address topics that have been prominent in the JMG during the last 30 years concerning the origin, evolution and tectonic role of migmatites and migmatitic granulites in crustal evolution. These topics are: Open‐ and closed‐system processes in the formation of migmatites and migmatitic granulites; thermobarometry, P–T paths, phase equilibria modelling and retrograde processes in formerly melt‐bearing rocks; geochronology in partially melted rocks; and, microstructures, deformation and tectonics of melt bearing rocks. About one‐third of the papers published in the JMG since its inception concern the origin, evolution and tectonic significance of migmatites and migmatitic granulites in crustal evolution, including the first special issue published by the JMG concerning ‘Studies in the genesis and deformation of migmatites’ edited by Tracy & Day ( 1988; Volume 6, Issue 4, Pages 385‐543 ). Three subsequent Special Issues of the JMG include papers relevant to the theme of this virtual special issue; they are ‘Metamorphic processes: a celebration of the career contribution of Ron Vernon’, ‘Processes in granulite metamorphism’ and ‘Granulites, partial melting and the rheology of the lower crust’, edited by Brown & Clarke ( 2002; Volume 20, Issue 1, Pages 1‐213 ), Brown & White ( 2008; Volume 26, Issue 2, Pages 121‐299 ) and Brown et al. ( 2011; Volume 29, Issue 1, Pages 1‐166 ), respectively. The selection of papers in this virtual special issue is by no means comprehensive, but it is intended as a representative selection of what has been published in the JMG over 30 years to give the reader a broad overview of crustal melting. Furthermore, although many papers address more than one topic, each is included only once and has been placed within the most appropriate section.  相似文献   

10.
Reversed Na-K exchange data between mica and a 2 molal aqueous(Na,K)Cl fluid (Flux & Chatterjee, 1986) have been employedto model the thermodynamic mixing behaviour of muscovite-paragonitecrystalline solutions on the basis of the Redlich-Kister equation.For these binary micas, Gexm may be expressed as where A=11222+1.389 T+0.2359 P, B=–1134+6.806 T–0.0840 P, and C=–7305+9.043 T, with T in K, P in b, Gexm, A, B, and C in joules/mol. Gmex is well constrained between 450 and 620?C, and may be extrapolatedbeyond that range with caution. The calculated solvi are skewedtoward the paragonite end member. In the range up to 15 kb,the critical temperature, Tc and the critical composition, Xcmay be expressed as a function of P by the relations: and with P indicated in bars. Calculated phase relations of muscovite-paragonite crystallinesolutions have been depicted in terms of the system KAlSi3O8-NaAlSi3O8-Al2O3-SiO2-H2O.These data may be applied to appropriate assemblages involvingmica, alkali feldspar, an Al2 polymorph, and quartz to estimateP, T and aH2O conditions of their equilibration. In principle,the muscovite limb of the solvus may be used to obtain geothermometricdata for coexisting muscovite-paragonite pairs, provided theequilibrium pressure is independently known. However, such applicationmust be restricted for the present to micas on the ideal muscovite-paragonitejoin. Mica-alkali feldspar-Al2SiO5-quartz or mica-plagioclase-Al2SiO5-quartzassemblages may be used to deduce aH2O in the coexisting fluid,if P, and T of equilibrium are independently known. Examplesof such geological applications are given.  相似文献   

11.
12.
The carbonate factories, their controlling factors and their palaeoecological and sedimentological signals recorded in sedimentary successions are key elements for understanding the evolution of carbonate platform systems. Luis Pomar has dedicated most of his academic life to the study of carbonate rocks and carbonate factories. The idea for this special issue to celebrate Pomar’s career arose during a session at the 34th International Association of Sedimentologists meeting held in Rome, entitled ‘Understanding carbonate factories through palaeoecological and geochemical signals’. The proposal encountered great response among participants, and additional contributions followed an email invitation to other specialists. This issue contains a variety of papers on carbonate sedimentology and carbonate factories. Here, an introduction that contextualizes the papers and key concepts discussed in this thematic issue is provided. It reviews Luis Pomar’s major achievements in carbonate sedimentology and discusses the evolution of the concept of the carbonate factory and the series of palaeoecological and sedimentological signals used to characterize the wide spectrum of carbonate depositional systems found in the natural world.  相似文献   

13.
Aluminous granulites of the Archean (2?8 Ga) Kasai craton (Zaire)consist of two main mineral assemblages: Grt-Opx and Sil?Grt?Crdrocks. The high-grade metamorphic conditions as deduced from Grt-Opxand Grt-Opx-Pl-Qtz equilibria are 720?C-6?7 kb. Consideringthe zoning of the same minerals, the slope of the P-T path isestimated at 15 b/?C. Thermobarometry involving Crd is consistentwith those P-T conditions. Three cordierite-forming reactions have been observed petrographically: These equilibria are continuous reactions; end-member reactionshave slopes less than 15 b/?C; they are decompression reactionsoccurring after the metamorphic climax. Using available thermodynamic data, (R3) fixes the oxygen fugacityto a value below the QFM buffer (log10fO2 = – 17?6 at720?C, 6?7 kb and in the graphite stability field. The absence of graphite in the rocks showsthat the end of the granulite facies metamorphism did not occurunder important CO2 streaming. The polymetamorphic history of this Archean craton is considered.  相似文献   

14.
HOVIS  GUY L. 《Journal of Petrology》1988,29(4):731-763
In order to investigate the thermodynamic properties of alkalifeldspars, three new feldspar ion-exchange series have beensynthesized, two based on monoclinic parent materials havingintermediate degrees of Al—Si order, the other on Amelialow albite. Acid solution calorimetric measurements have beencarried out in 20?1% HF at 50?C under isoperibolic conditionson 30 members of the three series, and compared with revisedvalues for a previously reported sanidine—analbite series.Molar volumes have been determined for all feldspars, and foran additional series based on Eifel sanidine. Enthalpies of K—Na mixing (Aex) calculated from the 50?Cheats of solution are dependent on Al—Si distributionfor both topochemically monoclinic and triclinic alkali feldspars,and in general can be expressed as where NOr and NAb are mole fractions of KAlSi3O8 and NaAlSi3O8,respectively, and Z is an ordering parameter defined as twicethe difference in the mole fraction of Al in the T1 vs the T2tetrahedral sites. Aex values for all but the most disorderedseries are maximized toward sodic compositions, and increaseboth in magnitude and asymmetry as ordering increases. For topochemically monoclinic alkali feldspar series, volumesof K—Na mixing(Vex) are asymmetric with NOr, but withinthe precision of present data do not depend on Al—Si distribution: Microcline-low albite feldspars appear to have volumes of mixingwith the opposite asymmetry, but expressions of for these differ somewhat among various investigators. Since no single thermodynamic mixing property is markedly asymmetricwith respect to composition, the excess Gibbs energies impliedfrom solvus data for alkali feldspars, and maximized at sodiccompositions, are apparently the result of additive effectsof subtle asymmetries in the volumes, enthalpies, and entropiesof K—Na mixing in these minerals. The thermodynamic properties of an alkali feldspar at any compositionare significantly affected by the distribution of Al and Sibetween T1 and T2 tetrahedral sites. The enthalpy of formationat 50?C of a monoclinic potassium feldspar with perfect order(Z=1) differs by 2?19 kcal/mol from one with a completely randomAl—Si distribution (Z=0), while a value of 2?86 kcal/molapplies to analagous sodium end members. ConverselyY-ordering(between T1O andT1m sites) seems to have little or no effecton the enthalpy of formation of either end member, evidencedby the fact that most of the enthalpy differences for the lowmicrocline to sanidine and corresponding low albite to analbitetransitions (1?73 and 2?79 kcal/mol, respectively) can be attributedto Al—Si exchanges between T1 and T2 sites. Observed enthalpydifferences in alkali feldspars are probably related to strainat domain boundaries, whether the domains are extremely small,or somewhat larger as in modulated structures. Neither Z-nor Y-ordering has a substantial effect on the molarvolumes of alkali feldspars.  相似文献   

15.
At the VIII. International Sedimentological Congress held in Heidelberg in 1971, a symposium with the above title was convened; a selection of the papers presented is assembled in this issue. In the introduction the approaches of the following studies are reviewed to show some trends and problems in reef research.  相似文献   

16.
The chemical compositions of synthetic paragonite-muscovitepairs were obtained by electron probe microanalysis of run productsprepared hydrothermally at 300, 400, 500, and 600 ?C and 2.07kbar. The microcrystalline run products were dispersed on polishedberyllium rods, and Na, K, and Si were determined simultaneously.Compositions were determined from K/Si and Na/Si ratios referredto standards. Tentative excess thermodynamic mixing properties of paragonite-muscovitecrystalline solutions, based on the two-phase composition dataand on X-ray diffraction data, are represented by the followingthird-order Margules formulation: which leads to a critical temperature of 833 ?C and a criticalcomposition of 39.0 mole per cent Mu at 2.07 kbar (the criticalphase is probably metastable with respect to alkali feldsparand corundum). These results are quantitatively in agreementwith Iiyama's (1964) ion-exchange data. From relationships amongthe quantities (arctanh s)/s, In r2, and 1/T we obtain criticalconditions which are in good agreement with the above (Tc =829 ?C, N2c = 0.396). The critical curve obtained from the aboveMargules parameters is given by: Tc(?C) = 768.8 + 31.00P(kbar). The above results are complicated by polymorphism and by possiblelack of complete equilibrium between the two-mica synthesisproducts and possible substitution of hydronium for alkalies.We emphasize, therefore, that the phase diagrams and derivedmixing properties should be applied with caution to naturalmuscovite- and paragonite-bearing assemblages.  相似文献   

17.
On the pseudobinary join CaO:3MgO:Al2O3:2SiO2:xH2O–CaO:1.25MgO:2.75 Al2O3: 0.25SiO2:xH2O clintonite mixed crystals Ca(Mg1+ xAl2 – x) (Al4 – xSixO10)(OH)2 with x rangingfrom 0.6 to 1.4 occur in the temperature range 600–830?C, 2 kb fluid pressure. On the MgSirich side clintonites coexistwith chlorite, forsterite, diopside, and calcite (due to smallamounts of CO2 in the gas phase) and, at lower temperatures,also with idocrase, hydrogrossularite, and aluminous serpentine.Decomposition of clintonite over a divariant temperature rangeoccurs above 830 ?C, 2 kb; clintonite-free subsolidus assemblagescomprising three or four solid phases are formed in the temperatureranges 890 ?–1120 ?C. The subsolidus assemblages can berepresented in a polyhedron defined by the corners forsterite,diopside, melilite, spinel, anorthite, corundum, and calciumdialuminate. Above 1120 ?C partial melting occurs. The upper thermal stability limits of three selected compositionshave been reversed in the P-T range 0.5–20 kb and 730–1050 ?C, respectively. Below some 4 kb breakdown is dueto the divariant reactions: (1)Ca(Mg2.25Al0.75)(Al2.75)(Si1.25O10)(OH)2 spinel+diopsidess+forsterite+clintonitess+vapor, (2)Ca(Mg2Al)(Al3SiO10)(OH)2 spinelx002B;melilitess+anorthite+clintonitess+vapor, (3)Ca(Mg1.75Al1.25)(Al3.25)(Si0.75O10)(OH)2 spinel+melilitess+corundum+clintonitess+vapor, At the terminations of the divariant temperature ranges (1)melilitess, (2) diopsidess, and (3) anorthite enter those assemblagesand clintonitess disappears completely. The reactions can berepresented by the following equations (1)log,H2O = 10.2879–8113/T+0.0856(P–1)/T, (2)log = 9.5852–7325/T+0.0794(P–1)/T, (3)log = 7.8358–5250/T+0.077(P–1)/T, with P expressed in bars and Tin ?K. Above 4 kb the upper thermalstability limit of clintonite is defined by incongruent melting,with grossularite participating at pressures above 9 kb. Thesecurves exhibit a very steep, probably even negative slope inthe P-T diagram. There is a close correspondence between natural clintonite-bearingassemblages and thosefound experimentally. The rarity of clintonitein nature is not due to special conditions of pressure and temperaturebut rather due to special bulk compositions of the rocks.  相似文献   

18.
A method to estimate the oxygen fugacity (fO2) during the crystallizationof kimberlites is developed using the Fe content of CaTiO3 perovskite(Pv), a common groundmass phase in these rocks. With increasingfO2, more Fe exists in the kimberlitic liquid as Fe3+, and thuspartitions into Pv. Experiments to study the partitioning ofFe between Pv and kimberlite liquid were conducted at 100 kPaon simple and complex anhydrous kimberlite bulk compositionsfrom 1130 to 1300°C over a range of fO2 from NNO –5 to NNO + 4 (where NNO is the nickel–nickel oxide buffer),and at Nb and rare earth element (REE) contents in the startingmaterials of 0–5 wt % and 1500 ppm, respectively. Thepartitioning of Fe between Pv and kimberlite liquid is influencedmostly by fO2, although the presence of Nb increases the partitionof Fe3+ into perovskite at a given T and fO2. Multiple linearregression (MLR) of all the experimental data produces a relationshipthat describes the variation of Fe and Nb in Pv with fO2 relativeto the NNO buffer:

(uncertaintiesat 2, and Nb and Fe as cations per three oxygens). Over therange of conditions of our experiments, this relationship showsno temperature (T) dependence, is not affected by the bulk Fecontent of the kimberlite starting material and reproduces experimentaldata to within 1 log fO2 unit. KEY WORDS: kimberlites; oxygen fugacity; perovskite; ferric iron; magma  相似文献   

19.
Interlayered and cofolded charnockites and metapelites of thetype charnockite area near Madras were metamorphosed under granulitefades conditions. Fe-Mg partitioning between orthopyroxene,garnet, and biotite indicates that chemical equilibrium wasapproached under similar P-T conditions in the two rock suites.Several geothennometers and geobarometers give P-T values whichconverge at 750–800?C and 6.5–7.5 kb. Computations utilizing data from high pressure phase equilibriumexperiments of Bohlen et al. (1983a) and Wones & Dodge (1977)point to several significant relations regarding the behaviourof H2O during the granulite metamorphism. aH2O values, computedfrom Bohlen et al.'s (1983a) reversal data and the a-X modelfor phlogopite after Bohlen et al. (1980), show distinctly lowermagnitudes in metapelites (0.10–0.16) than in charnockites(0.23–0.34). No systematic spatial gradients exist withinthe charnockites or metapelites, and aH2O has similar valuesin metapelite exposures widely separated in the field. Theseimply an internal, rather than an external (e.g., by CO2 influx),control of the fluids. Applying the algebraic method developed by Rumble (1976), Gibbsanalysis in the system K2O-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2Oshows that the chemical potentials of H2O and to O2, as monitoredagainst biotite composition and , exhibit gradients with respect to XMg in the two rock suites under isothermal-isobaricconditions. µH2O was found to decrease with XMgbt in both,while µO2 increases with decreasing XMgbt in metapelitesbut increases sympathetically with XMgbt in charnockites. Thesefindings point out again that µH2O and µO2 wereinternally buffered. The absence of graphite in the metapelites,at an estimated fO2 = 10–14.7 b, also argues against anexternal influx of CO2 and, inter alia, supports internal buffering.A complementary enquiry into variations of aTIO2 reveals aninverse relation between aTIO2 and aH2O, suggesting a similarcontrol for aTIO2. The inferences from biotite dehydration equilibria, when combinedwith the P-T data and with several field and chemical featuresof these rocks noted earlier (Sen, 1974), make dehydration meltinga distinct possibility for the Madras rocks. It is argued thatthe low aH2O and high aTIO2 ({small tilde} 0.9) observed inthe metapelites have been caused by a greater extent of meltingin the precursors of metapelites, which were more hydrous thanthose of charnockites, coupled with preferential partitioningof Ti into the residual rocks—thus strengthening the casefor dehydration melting.  相似文献   

20.
This paper provides a short introduction to the papers in this special issue on Rethinking economies/economic geographies. It focuses on the diversity within and between Economics and Economic Geography in their performative relationships with economies and economic geographies. Questions of power/knowledge and cross-disciplinarity are raised. Five hoped-for consequences of the debate are identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号