首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 649 毫秒
1.
卢萍  杨康权  李英 《大气科学》2017,41(6):1234-1245
本文利用中国气象局成都高原气象研究所西南涡加密观测试验获取的探空资料及地面台站资料,对比分析了高原东侧的四川省境内不同海拔高度台站的边界层特征,结果表明:高海拔地区地表大气受陆面的影响更为剧烈,日变化幅度更大,且极值出现时间更早。温度/比湿/风速的差异都主要体现在低层边界层大气中,越靠近地面,差异越显著。其中,温度递减率在02:00(北京时,下同)最小,14:00最大,高海拔测站受陆面影响的大气层厚度比低海拔测站大,低海拔测站在近地层300 m以下大气中存在明显的逆温现象。14:00近地层大气的比湿最小,午夜02:00近地层大气的比湿最大,高海拔地区低层大气的平均比湿递减率小于低海拔地区。高海拔地区风速日变化幅度大,4个时次的风速廓线形态差异也大;低海拔地区风速变化幅度小,4个时次的风速廓线形态也比较一致。高海拔台站地表大气的日变化幅度大,极值出现时间略早。  相似文献   

2.
夹卷对郊外大气边界层内臭氧影响的数值模拟研究   总被引:3,自引:2,他引:3  
夹卷是大气边界层与自由大气进行能量和物质交换的重要途径,对边界层动力结构及边界层内温度、水汽和各种污染物浓度有重要影响。利用化学-地表-大气-土壤(CLASS)模式定量评估了夹卷过程对远郊地区大气边界层内臭氧(O3)浓度的影响并与大气化学反应贡献进行了对比,结合地面O3、NOx及边界层高度、位温和比湿等观测资料和再分析资料对CLASS模拟结果进行了定量评估。结果表明:CLASS模式能较为真实地模拟夹卷和大气光化学反应对远郊地区大气边界层臭氧浓度的影响,且当自由大气层内臭氧浓度达到一定值时,两者对边界层内臭氧峰值影响相当。数值试验结果进一步揭示,夹卷对控制氮氧化物(NOX)和可挥发性有机物(VOCS)排放源控制效果有重要影响,且当夹卷区内O3跳跃值增大到一定时,可完全抵消源排放减排控制的效果。本研究旨在表明,为有效控制近地层臭氧浓度,在制定人为污染源减排措施时必须考虑自由大气层臭氧的夹卷贡献。   相似文献   

3.
利用地面观测资料参考标定雷达VAD资料气压高度方法研究   总被引:1,自引:1,他引:0  
朱立娟  龚建东  李泽椿  陶士伟 《气象》2012,38(2):250-256
针对雷达VAD资料因不包含气压高度信息而在使用中受到限制的问题,设计了VAD资料气压高度标定方案。提出了以雷达站所在地地面气象观测要素作为参考的标定方法。具体为在压高公式中引人多元大气温度递减方案,地面基础要素由雷达站配备的地面自动气象观测站提供。针对这个方案敏感的温度垂直递减率,利用2007年全年探空资料计算得到温度垂直递减率随高度、时间、区域变化的分布,并分别进行常数温度递减率、随高度变化、随时间变化的温度垂直递减率,以及随两者同时变化的温度垂直递减率对标定结果误差影响的敏感性分析,并与传统的气候标定方案误差进行对比。通过一年的实际观测资料试验,结果表明:相对于不引入观测的气候统计值标定方案,可大大缩减标定误差。尤其是随高度和时间同时调整的温度垂直递减率的地面观测要素参考标定方案的误差最小,适应VAD资料的特点。  相似文献   

4.
西藏改则地区在东亚季风前期大气层特征   总被引:1,自引:0,他引:1  
利用JICA项目改则站第二阶段加密探空观测资料,着重揭示了该地区大气层结构的观测事实,尤其是边界层风、温、湿特征。主要结论如下:(1)该地区不论是对流层还是边界层,温度递减率都较大,白天可以接近或超过干绝热直减率,在清晨出现逆温的频率较多。(2)该地区白天近地层存在逆湿现象,近地层上部是否存在逆湿现象与天气和下垫面背景有关。(3)该地区近地层风速极值也出现在早晚时刻,白天风速较小。边界层风则随高度呈多峰值变化。   相似文献   

5.
Although the residual layer has already been noted in the classical diurnal cycle of the atmospheric boundary layer,its effect on the development of the convective boundary layer has not been well studied. In this study, based on 3-hourly20 th century reanalysis data, the residual layer is considered as a common layer capping the convective boundary layer. It is identified daily by investigating the development of the convective boundary layer. The region of interest is bounded by(30°–60° N, 80°–120° E), where a residual layer deeper than 2000 m has been reported using radiosondes. The lapse rate and wind shear within the residual layer are compared with the surface sensible heat flux by investigating their climatological means, interannual variations and daily variations. The lapse rate of the residual layer and the convective boundary layer depth correspond well in their seasonal variations and climatological mean patterns. On the interannual scale, the correlation coefficient between their regional averaged(40°–50°N, 90°–110° E) variations is higher than that between the surface sensible heat flux and convective boundary layer depth. On the daily scale, the correlation between the lapse rate and the convective boundary layer depth in most months is still statistically significant during 1970–2012. Therefore, we suggest that the existence of a deep neutral residual layer is crucial to the formation of a deep convective boundary layer near the Mongolian regions.  相似文献   

6.
利用2012年6—9月南海夏季风期间的近海海洋气象观测平台 (海上平台站) 和电白国家气候观象台 (电白站) 的地面气象站资料,气象塔资料以及GPS探空资料对海上平台站和电白站两站在季风活跃期和非活跃期的大气边界层结构特征进行研究分析。结果表明,活跃期与非活跃期两地的大气边界层结构特征有明显差异。(1) 在活跃期两站近地层风向全天由东南风主导,风速较大,且两站均出现连续降水,受云系和降水的影响,与非活跃期相比,电白站近地层日平均气温降低约为2 ℃;非活跃期两站风向全天无规则变化,且风速值小。(2) 在活跃期大气边界层内风向均为一致的东南风,风速较大,200 m以上的风速均大于8 m/s,而在非活跃期大气边界层内风速较小,风向变化较大,同一时刻不同高度的风向差可达180 °。(3) 在季风非活跃期混合层高度最高可达937 m,而在活跃期,受降水和云系的影响混合层高度明显降低,最大高度仅为700 m左右。(4) 活跃期受连续降水影响,大部分时刻的大气边界层内相对湿度大于80%。由此可见在季风活跃期与非活跃期不仅海陆气能量交换发生变化,大气边界层结构特征也有显著变化。   相似文献   

7.
It is shown with simple two-dimensional advective models that artificial heat generation in the Sydney area, on early mornings in July, is largely responsible for the downwind temperature increase over the city. The models predict the height of the mixing layer and also the temperature increase downwind which agrees favourably with observations. The models require the following information: (1) average wind speed, (2) lapse rate difference between the stable upwind atmosphere and the air layer over the city, (3) the upwind surface temperature, (4) the vertical thermal diffusivity upwind, and (5) artificial heat generation. Data on energy use in the Sydney area have been presented elsewhere. A sensitivity analysis has been performed to study the interaction between the input parameters and their role in modifying the city's atmospheric boundary layer.  相似文献   

8.
The development of the atmospheric boundary layer is closely connected with the exchange of momentum, heat, and mass near the Earth’s surface, especially for a convective boundary layer (CBL). Besides being modulated by the buoyancy flux near the Earth’s surface, some studies point out that a neutrally stratified residual layer is also crucial for the appearance of a deep CBL. To verify the importance of the residual layer, the CBLs over two deserts in northwest China (Badan Jaran and Taklimakan) were investigated. The summer CBL mean depth over the Taklimakan Desert is shallower than that over the Badan Jaran Desert, even when the sensible heat flux of the former is stronger. Meanwhile, the climatological mean residual layer in the Badan Jaran Desert is much deeper and neutrally stratified in summer. Moreover, we found a significant and negative correlation between the lapse rate of the residual layer and the CBL depth over the Badan Jaran Desert. The different lapse rates of the residual layer in the two regions are partly connected with the advection heating from large-scale atmospheric circulation. The advection heating tends to reduce the temperature difference in the 700 to 500-hPa layer over the Badan Jaran Desert, and it increases the stability in the same atmospheric layer over the Taklimakan Desert. The advection due to climatological mean atmospheric circulation is more effective at modulating the lapse rate of the residual layer than from varied circulation. Also, the interannual variation of planetary boundary layer (PBL) height over two deserts was found to covary with the wave train.  相似文献   

9.
利用温江观测站边界层塔和探空获取的观测资料,从地表物理量的日变化、边界层的垂直结构及逐日变化这些方面分析该站夏季边界层特征,得到以下结论:(1)地表各物理量都具有明显的日变化特征,呈现一峰一谷的演变状态,其中地表热通量、动量通量、气温以及风速的峰值皆出现在午后,谷值出现在凌晨,湿度与气温日变化是反位相的。(2)近地层低层大气气温在早晚时段,随高度的增加而上升,呈逆温状态;午间时段随高度的增加而下降。9 m以下大气在午后的比湿梯度最大。风速值随着高度的增高而增大,风切变随着高度的增高而减小。(3)探空观测的边界层垂直结构显示:夏季温江站早晚边界层大气层结稳定,而午后表现为典型的混合边界层特征。大气温/湿度差异随高度增长而降低,各个时次温/湿度的差异都主要集中边界层低层,越靠近地面大气温/湿度差异越突出。8:00的温度最低,14:00最高。14:00的大气比湿最小,2:00和20:00较大。近地层风速随高度增长较快,在离地2~300 m左右高度达到一个极值,4个时次的风速差异不大。(4)地表温度、短波辐射、感热通量对边界层的高度和降水都有一定的影响。  相似文献   

10.
BJ-RUC系统对北京夏季边界层的预报性能评估   总被引:1,自引:0,他引:1       下载免费PDF全文
以北京市观象台2010年8月、2011年8月每日3次 (08:00, 14:00, 20:00,北京时,下同) L波段探空秒间隔数据为实况,对BJ-RUC系统 (rapid updated cycle system for the Beijing area) 分析和预报边界层性能进行了初步评估。结果表明:BJ-RUC系统对北京地区夏季白天边界层的细致特征具有较好的预报能力,但也存在明显的系统性误差。08:00边界层偏冷; 14:00和20:00 1 km以下的边界层则显著偏暖, 边界层内明显偏湿。整体上模式对边界层内温度、湿度的预报误差均高于自由大气。该系统对北京地区边界层内早晨 (08:00) 从夜间山风向白天谷风环流过渡、午后 (14:00) 到日落后 (20:00)1500 m以下盛行西南偏南气流的日变化特征具有较强的预报能力。系统预报的14:00边界层顶高度与评估时段内实际对流边界层高度的变化趋势一致。但预报的对流边界层顶偏高,这与BJ-RUC系统采用YSU边界层参数化方案的垂直混合更强有关。  相似文献   

11.
Atmospheric Boundary-Layer Dynamics with Constant Bowen Ratio   总被引:1,自引:1,他引:0  
Motivated by the observation that the diurnal evolution of sensible and latent heat fluxes tends to maintain a constant Bowen ratio, we derive approximate solutions of the ordinary differential equations of a simplified atmospheric boundary-layer (ABL) model. Neglecting the early morning transition, the potential temperature and specific humidity of the mixed layer are found to be linearly related to the ABL height. Similar behaviour is followed by the inversion strengths of temperature and humidity at the top of the ABL. The potential temperature of the mixed layer depends on the entrainment parameter and the free-atmosphere temperature lapse rate, while the specific humidity also depends on the free-atmosphere humidity lapse rate and the Bowen ratio. The temporal dynamics appear only implicitly in the evolution of the height of the boundary layer, which in turn depends on the time-integrated surface sensible heat flux. Studying the limiting behaviour of the Bowen ratio for very low and very large values of net available energy, we also show how the tendency to maintain constant Bowen ratio during midday hours stems from its relative insensitivity to the atmospheric conditions for large values of net available energy. The analytical expression for the diurnal evolution of the ABL obtained with constant Bowen ratio is simple and provides a benchmark for the results of more complex models.  相似文献   

12.
半干旱区植被覆盖度对边界层气候热力影响的数值模拟   总被引:14,自引:0,他引:14  
在陆-气相互作用的中小尺度系统研究中,水平非均匀下垫面的强迫作用是主要的物理过程。本文利用能量闭合二维陆面过程与大气边界层耦合模式,研究了我国西北半干旱地区(38°N,105°E)夏季下垫面物理特征的变化对区域边界层气候的影响。结果表明:土壤湿度、植被覆盖度对局地环流和区域边界层气候的形成起着决定性的作用。模拟结果揭示了在半干旱地区大面积植树造林、提高植被覆盖度,可涵养土壤水分,改善局地生态环境,是人工持续改造干旱、半干旱荒漠地区局地气候的重要途径。  相似文献   

13.
A simple model of the atmospheric boundary layer over the ocean where the swell impact on the atmosphere is explicitly accounted for is suggested. The model is based on Ekman’s equations, where the stress in the wave boundary layer is split into two parts: the turbulent and wave-induced stress. The turbulent stress is parameterized traditionally via the eddy viscosity proportional to the generalized mixing length. The wave-induced stress directed upward (from swell to the atmosphere) is parameterized using the formalism of the wind-over-waves coupling theory. The model can be seen as an extension of the model by Kudryavtsev and Makin (J Phys Oceanogr 34:934–949, 2004) to the scale of the entire atmospheric boundary layer by including the Coriolis force into the momentum conservation equation and generalizing the definition of the mixing length. The regime of low winds for swell propagating along the wind direction is studied. It is shown that the impact of swell on the atmosphere is governed mainly by the swell parameter—the coupling parameter that is the product of the swell steepness and the growth rate coefficient. When the coupling parameter drops below − 1 the impact of swell becomes significant and affects the entire atmospheric boundary layer. The turbulent stress is enhanced near the surface as compared to the no-swell case, and becomes negative above the height of the inner region. The wind profile is characterized by a positive gradient near the surface and a negative gradient above the height of the inner region forming a characteristic bump at the height of the inner region. Results of the model agree at least qualitatively with observations performed in the atmosphere in presence of swell.  相似文献   

14.
The climatic effects of the atmospheric boundary aerosols are studied by the use of a three-dimensional climatemodel.Simulated results show that the climate states both at the surface and in the atmosphere change remarkably whenthe aerosols with different optical thicknesses and properties are introduced into the atmospheric boundary layer of themodel.The aerosols absorb and scatter the solar shortwave radiation,therefore,they reduce the solar energy reachingthe ground surface and decrease the surface and the soil temperatures.The temperature in the boundary layer increasesbecause of the supplementary absorption of radiation by the boundary aerosols.In the atmosphere,the temperatures atall isobaric surfaces rise up except for the 100 hPa level.The atmospheric temperatures below the 500 hPa level aredirectly influenced by the boundary aerosols,while the atmospheric temperatures above the 500 hPa level are influencedby the heating due to convective condensation and the changes in the vertical motion field.Cyclonic differential circula-tions appear over the desert areas at the low levels,and anticyclonic differential circulations exist at the upper levels inthe horizontal flow fields.The vertical motions change in correspondence with the differential circulations.The changesin precipitation are directly related to that of vertical motions.The mechanisms of climate effects of the boundaryaerosols are also discussed in this paper.  相似文献   

15.
Simultaneous measurements of the instantaneous values of absolute temperatureat seven heights within the lower 36 m of the atmospheric boundary layer underdifferent stability conditions were carried out, accompanied by measurements ofthe wind velocity components at two levels and of solar radiation flux at the surface.The data obtained allow one to investigate individual convective cells known ascoherent structures (CS). Outside the CS, i.e., during quiet periods, an instanttemperature profile is in close agreement with the dry-adiabatic lapse rate, butwithin CS the temperature changes much faster with height, and the shape ofthe profile varies significantly.A method was developed to transform temperature records from sensors atseveral heights into an other form, namely, into temporal variations of theheights of isothermal surfaces. Since coherent structures were found to advectwith the mean wind velocity, these temporal height variations may be transformedinto the spatial ones, i.e., into the xoz-plane section of the temperature field.In such a pictorial presentation coherent structures look like asymmetric columnsof heat, penetrating the whole atmospheric surface layer.Coherent structures also exist in the stable stratified surface layer, but they have aninverse asymmetry and occupy only the lower several metres. Wavelike activitydominates in the upper part of the stable surface layer.The characteristic time of surface-layer adjustment to the rapid changes of solarradiation (due to cloud shadows or cloud gaps) was found to be on the order ofone minute. Such a time interval is required for coherent structure to reach the topof surface layer.  相似文献   

16.
利用JICA项目改则站第二阶段加密探空观测资料,着重揭示了该地区大气层结构的观测事实,尤其是边界层风、温、湿特征。主要结论如下:(1)该地区不论是对流层还是边界层,温度递减率都较大,白天可以接近或超过干绝热直减率,在清晨出现逆温的频率较多。(2)该地区白天近地层存在逆湿现象,近地层上部是否存在逆湿现象与天气和下垫面背景有关。(3)该地区近地层风速极值也出现在早晚时刻,白天风速较小。边界层风则随高度呈多峰值变化。  相似文献   

17.
The development and characteristics of coastal internal boundary layers were investigated in 28 tests. These were made at all seasons and in both gradient and sea-breeze flows but only during mid-day periods. Measurements of turbulence and temperature were taken from a light aircraft which flew traverses across Long Island at successive altitudes parallel to the wind direction. These were used to locate the boundary between modified and unmodified air as a function of height and distance from the coast. The same measurements plus tower measurements of wind, turbulence and temperature, pilot balloon soundings and measurements of land and water surface temperatures by a remote sensing IR thermometer were used to quantify the characteristics of the modified and unmodified air. The boundary layer slope was steep close to the land-water interface and became shallower with downwind distance. Growth of the boundary layer was initially slower with stable lapse rates upwind than with neutral or unstable conditions over the water. An equilibrium height was found in many tests except under conditions of free convection when the internal boundary layer merged into the mixed layer inland and with sea-breeze conditions. The equilibrium height depended on downwind conditions and was greater with low wind speeds and strong land surface heating than with stronger winds and small land-water temperature differences. Current theoretical models are not adequate to predict the height of the boundary layer at the altitudes and distances studied but reasonably good predictions were given by an empirical model developed earlier. Wind speed in the modified air averaged about 70% of that at the coast but turbulence levels were several times higher both near the surface and aloft. These findings have important implications for diffusion from coastal sites.  相似文献   

18.
The development and characteristics of coastal internal boundary layers were investigated in 28 tests. These were made at all seasons and in both gradient and sea-breeze flows but only during mid-day periods. Measurements of turbulence and temperature were taken from a light aircraft which flew traverses across Long Island at successive altitudes parallel to the wind direction. These were used to locate the boundary between modified and unmodified air as a function of height and distance from the coast. The same measurements plus tower measurements of wind, turbulence and temperature, pilot balloon soundings and measurements of land and water surface temperatures by a remote sensing IR thermometer were used to quantify the characteristics of the modified and unmodified air. The boundary layer slope was steep close to the land-water interface and became shallower with downwind distance. Growth of the boundary layer was initially slower with stable lapse rates upwind than with neutral or unstable conditions over the water. An equilibrium height was found in many tests except under conditions of free convection when the internal boundary layer merged into the mixed layer inland and with sea-breeze conditions. The equilibrium height depended on downwind conditions and was greater with low wind speeds and strong land surface heating than with stronger winds and small land-water temperature differences. Current theoretical models are not adequate to predict the height of the boundary layer at the altitudes and distances studied but reasonably good predictions were given by an empirical model developed earlier. Wind speed in the modified air averaged about 70% of that at the coast but turbulence levels were several times higher both near the surface and aloft. These findings have important implications for diffusion from coastal sites.  相似文献   

19.
The climatic effects of the atmospheric boundary aerosols are studied by the use of a three-dimensional climate model.Simulated results show that the climate states both at the surface and in the atmosphere change remarkably when the aerosols with different optical thicknesses and properties are introduced into the atmospheric boundary layer of the model.The aerosols absorb and scatter the solar shortwave radiation,therefore,they reduce the solar energy reaching the ground surface and decrease the surface and the soil temperatures.The temperature in the boundary layer increase because of the supplementary absorption of radiation by the boundary aerosols.In the atmosphere,the temperatures at all isobaric surfaces rise up except for the 100 hPa level.The atmospheric temperatures below the 500 hPa level are directly influenced by the boundary aerosols,while the atmospheric temperatures above the 500 hPa level are influenced by the heating due to convective condensation and the changes in the vertical motion field.Cyclonic differential circulations appear over the desert areas at the low levels,and anticyclonic differential circulations exist at the upper levels in the horizontal flow fields.The vertical motions change in correspondence with the differential circulations.The changes in precipitation are directly related to that of vertical motions.The mechanisms of climate effects of the boundary aerosols are also discussed in this paper.  相似文献   

20.
The vertical transport of mass at the top of the boundary layer is considered as a link between theboundary layer and free atmosphere.The adjustment of the wind and pressure fields in the boundary layeris studied under the consideration of the interaction between the boundary layer and free atmosphere.Thevertical motion at the top of the boundary layer is evaluated.The results show that the distinguished differ-ences of the present results from classical Ekman layer do exist and they are discussed in the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号