首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The main objective of this study was to apply a statistical (information value) model using geographic information system (GIS) to the Chencang District of Baoji, China. Landslide locations within the study area were identified using reports and aerial photographs, and a field survey. A total of 120 landslides were mapped, of which 84 (70 %) were randomly selected for building the landslide susceptibility model. The remaining 36 (30 %) were used for model validation. We considered a total of 10 potential factors that predispose an area to a landslide for the landslide susceptibility mapping. These included slope degree, altitude, slope aspect, plan curvature, geomorphology, distance from faults, lithology, land use, mean annual rainfall, and peak ground acceleration. Following an analysis of these factors, a landslide susceptibility map was produced using the information value model with GIS. The resulting landslide susceptibility index was divided into five classes (very high, high, moderate, low, and very low) using the natural breaks method. The corresponding distribution area percentages were 29.22, 25.14, 15.66, 15.60, and 14.38 %, respectively. Finally, landslide locations were used to validate the results of the landslide susceptibility map using areas under the curve (AUC). The AUC plot showed that the susceptibility map had a success rate of 81.79 % and a prediction accuracy of 82.95 %. Based on the results of the AUC evaluation, the landslide susceptibility map produced using the information value model exhibited good performance.  相似文献   

2.
The main goal of this paper is to generate a landslide susceptibility map through evidential belief function (EBF) model by using Geographic Information System (GIS) for Qianyang County, Shaanxi Province, China. At first, a detailed landslide inventory map was prepared, and the following ten landslide-conditioning factors were collected: slope angle, slope aspect, curvature, plan curvature, profile curvature, altitude, distance to rivers, geomorphology, lithology, and rainfall. The landslides were detected from the interpretation of aerial photographs and supported by field surveys. A total of 81 landslides were randomly split into the following two parts: the training dataset 70 % (56 landslides) were used for establishing the model and the remaining 30 % (25 landslides) were used for the model validation. The ArcGIS was used to analyze landslide-conditioning factors and evaluate landslide susceptibility; as a result, a landslide susceptibility map was generated by using EBF and ArcGIS 10.0, thus divided into the following five susceptibility classes: very low, low, moderate, high, and very high. Finally, when we validated the accuracy of the landslide susceptibility map, both the success-rate and prediction-rate curve methods were applied. The results reveal that a final susceptibility map has the success rate of 83.31 % and the prediction rate of 79.41 %.  相似文献   

3.
Geometric parameters are useful for characterizing earthquake-triggered landslides. This paper presents a detailed statistical analysis on this issue using the landslide inventory of the 2013, Minxian, China Mw 5.9 earthquake. Based on GIS software and a 5-m resolution DEM, geometric parameters of 635 coseismic landslides (with areas larger than 500 m2) were obtained, including height, length, width, reach angle (arc tangent of the height-length ratio), and aspect ratio (length-width ratio). The fitting relationship of height and length from these data is H = 0.6164L + 0.4589, with an average reach angle of 31.65°. The landslide aspect ratios concentrate in the range of 1.4~2.6, with an average of 2.11. According to the plane geometric shapes and aspect ratios, the landslides are classified into four categories: transverse landslide (LA1, L/W ≤ 0.8), isometric landslide (LA2, 0.8 < L/W ≤ 1.2), longitudinal landslide (LA3, 1.2 < L/W ≤ 3), and elongated landslide (LA4, L/W > 3). Statistics of these four types of landslides versus ten classified control factors (elevation, slope angle, slope aspect, curvature, slope position, distance to drainages, lithology, seismic intensity, peak ground acceleration, and distance to seismogenic fault) are used to examine their possible correlations and the landslide-prone areas, which would be helpful to the landslide disaster mitigation in the affected area.  相似文献   

4.
On May 12, 2008, at 1428 hours (Beijing time), a catastrophic earthquake, with a magnitude of Ms 8.0, struck the Sichuan Province, China. About 200,000 landslides, as a secondary geological hazard associated with the earthquake, were triggered over a broad area. These landslides were of almost all types such as shallow, disrupted landslides, rock falls, deep-seated landslides, and rock avalanches. Some of these landslides damaged and destroyed large part of some towns, blocked roads, dammed rivers, and caused other serious damages. The purpose of this study is to detect correlations between landslide occurrence and the surface rupture plane, ground shaking conditions (measured by peak ground acceleration, PGA), lithology, slope gradient, slope aspect, topographic position, and distance from drainages by using two indices, landslide area percentage (LAP) and the landslide number density (LND), based on geographic information system (GIS) technology and statistical analysis method in a square region (study area) of Beichuan County, Sichuan Province, China. There were 5,096 landslides related with the earthquake which were delineated by visual interpretation and selected field checking throughout the study area. The total area (horizontal projection) of the 5,096 landslides is about 41.103 km2. The LAP, which is defined as the percentage of the plane area affected by landslides, was 10.276 %, and the LND, means the number of landslides per square kilometers, was 12.74 landslides/km2. Statistical analysis results show that both LAP and LND have a positive correlation with slope gradient and a negative correlation with distance from the surface rupture. However, the correlation between the occurrence of landslides with PGA, topographic position, and distance from drainages are uncertain, or has just a little positive correlation. The correlation between landslide and slope aspect also shows the effect of the directivity of the seismic wave. The Zbq formation had the most concentrated landslide activity with the LND value of 21.78 landslides/km , 2 and the ∈1 q Gr. geological units had the highest LAP value. Furthermore, weight index (W i) model is performed with a GIS platform to derive landslide hazard index map. The success rate of the model was 71.615 % and, thus, it was valid. In addition, comparison of five landslide controlling parameters’ influence on landslide occurrences was also carried out.  相似文献   

5.
This is the first landslide inventory map in the island of Lefkada integrating satellite imagery and reports from field surveys. In particular, satellite imagery acquired before and after the 2003 earthquake were collected and interpreted with the results of the field survey that took place 1 week after this strong (Mw?=?6.3) event. The developed inventory map indicates that the density of landslides decreases from west to east. Furthermore, the spatial distribution of landslides was statistically analyzed in relation to the geology and topography for investigating their influence to landsliding. This was accomplished by overlaying these causal factors as thematic layers with landslide distribution data. Afterwards, weight values of each factor were calculated using the landslide index method and a landslide susceptibility map was developed. The susceptibility map indicates that the highest susceptibility class accounts for 38 % of the total landslide activity, while the three highest classes that cover the 10 % of the surface area, accounting for almost the 85 % of the active landslides. Our model was validated by applying the approaches of success and prediction rate to the dataset of landslides that was previously divided into two groups based on temporal criteria, estimation and validation group. The outcome of the validation dataset was that the highest susceptibility class concentrates 18 % of the total landslide activity. However, taking into account the frequency of landslides within the three highest susceptibility classes, more than 85 %, the model is characterized as reliable for a regional assessment of earthquake-induced landslides hazard.  相似文献   

6.
Landslides constitute the most widespread and damaging natural hazards in the Constantine city. They represent a significant constraint to development and urban planning. In order to reduce the risk related to potential landslide, there is a need to develop a comprehensive landslide hazard map (LHM) of the area for an efficient disaster management and for planning development activities. The purpose of this research is to prepare and compare the LHMs of the Constantine city, by applying frequency ratio (FR), weighting factor (Wf), logistic regression (LR), weights of evidence (WOE), and analytical hierarchy process (AHP) methods used in a framework of the geographical information system (GIS). Firstly, a landslide inventory map has been prepared based on the interpretation of aerial photographs, high resolution satellite images, fieldwork, and available literature. Secondly, eight landslide-conditioning factors such as lithology, slope, exposure, rainfall, land use, distance to drainage, distance to road, and distance to fault have been considered to establish LHMs using the FR, Wf, LR, WOE, and AHP models in GIS. For verification, the obtained LHMs have been validated comparing the LHMs with the known landslide locations using the receiver operating characteristics curves (ROC). The validated results indicate that the FR method provides more accurate prediction (86.59 %) of LHMs than the WOE (82.38 %), AHP (77.86 %), Wf (77.58 %), and LR (70.45 %) models. On the other hand, the obtained results showed that all the used models in this study provided a good accuracy in predicting landslide hazard in Constantine city. The established maps can be used as useful tools for risk prevention and land use planning in the Constantine region.  相似文献   

7.
At 6:10 p.m. on September 23, 1991, a catastrophic rock avalanche occurred in Zhaotong, Yunnan, southwestern China. Over 216 people were killed when the Touzhai village was overwhelmed directly in the path of the landslide. The landslide involved the failure of about 12 Mm3 of jointed basaltic rock mass from the source area. The displaced materials ran out a horizontal distance of 3650 m over a vertical distance of 960 m, equivalent to a Fahrböschung of 14.7°, and covered an area of 1.38 km2. To provide information for hazard zonation of similar type of potential landslides in the same area, we used a dynamic model (DAN-W) with three alternative rheological models to simulate the runout behaviour of the displaced landslide materials and found that a combination of the frictional model and Voellmy model could provide the best performance in simulating this landslide. The simulated results indicated that the duration of the movement is estimated at about 175 s for a mean velocity 21 m/s.  相似文献   

8.
This study proposed a hybrid modeling approach using two methods, support vector machines and random subspace, to create a novel model named random subspace-based support vector machines (RSSVM) for assessing landslide susceptibility. The newly developed model was then tested in the Wuning area, China, to produce a landslide susceptibility map. With the purpose of achieving the objective of the study, a spatial dataset was initially constructed that includes a landslide inventory map consisting of 445 landslide regions. Then, various landslide-influencing factors were defined, including slope angle, aspect, altitude, topographic wetness index, stream power index, sediment transport index, soil, lithology, normalized difference vegetation index, land use, rainfall, distance to roads, distance to rivers, and distance to faults. Next, the result of the RSSVM model was validated using statistical index-based evaluations and the receiver operating characteristic curve approach. Then, to evaluate the performance of the suggested RSSVM model, a comparison analysis was performed to other existing approaches such as artificial neural network, Naïve Bayes (NB) and support vector machine (SVM). In general, the performance of the RSSVM model was better than the other models for spatial prediction of landslide susceptibility. The AUC results of the applied models are as follows: RSSVM (AUC = 0.857), followed by MLP (AUC = 0.823), SVM (AUC = 0.814) and NB (AUC = 0.783). The present study indicates that RSSVM can be used for landslide susceptibility evaluation, and the results are very useful for local governments and people living in the Wuning area.  相似文献   

9.
许波  谢谟文  胡嫚 《岩土力学》2016,37(9):2696-2705
针对光滑粒子流体动力学方法(SPH)在滑坡模拟中建立粒子模型的难题,提出了基于地理信息系统(GIS)栅格数据的粒子排列与插入方法。根据该方法,建立了滑坡SPH粒子模型及相关粒子生成程序,进一步以结合摩尔-库仑破坏准则的SPH宾汉流体模型为核心,实现了运用SPH方法模拟滑坡破坏后三维运动的过程。该SPH模型在对唐家山滑坡的模拟中得到了验证,并预测了金坪子滑坡破坏后的影响范围。结果表明:基于GIS空间数据的滑坡SPH粒子模型具有可行性与良好的适用性。以GIS数据库为基础,开展滑坡灾害的模拟研究,将大大提高对滑坡等地质灾害的仿真分析,为滑坡灾害的预测与防治提供参考。  相似文献   

10.
空间三维滑坡敏感性分区工具及其应用   总被引:1,自引:0,他引:1  
对于滑坡敏感性分区目前有三种方法:定性法、统计法和基于岩土定量模型的确定性方法。定性法基于对滑坡敏感性或灾害评估的人为判断;统计法用一个来源于结合了权重因子的预测函数或指标;而确定性法,或者说是物理定量模型法以质量、能量和动量守恒定律为基础。二维确定性模型广泛用于土木工程设计,而无限边坡模型(一维)也用于滑坡灾害分区的确定性模型。文中提出了一个新的基于GIS(地理信息系统)的滑坡敏感性分区系统,这个系统可用于从复杂地形中确认可能的危险三维(3-D)滑坡体。所有与滑坡相关的空间数据(矢量或栅格数据)都被集成到这个系统中。通过把研究区域划分为边坡单元并假定初始滑动面是椭球的下半部分,并使用Monte Carlo随机搜索法,三维滑坡稳定性分析中的三维最危险滑面是三维安全系数最小的地方。使用近似方法假定有效凝聚力、有效摩擦角和三维安全系数服从正态分布,可以计算出滑坡失稳概率。3DSlopeGIS是一个计算机程序,它内嵌了GIS Developer kit(ArcObjects of ESRI)来实现GIS空间分析功能和有效的数据管理。应用此工具可以解决所有的三维边坡空间数据解问题。通过使用空间分析、数据管理和GIS的可视化功能来处理复杂的边坡数据,三维边坡稳定性问题很容易用一个友好的可视化图形界面来解决。将3DSlopeGIS系统应用到3个滑坡敏感性分区的实例中:第一个是一个城市规划项目,第二个是预测以往滑坡灾害对临近区域可能的影响,第三个则是沿着国家主干道的滑坡分区。基于足够次数的Monte Carlo模拟法,可以确认可能的最危险滑坡体。这在以往的传统边坡稳定性分析中是不可能的。  相似文献   

11.
12.
In this study a Wenchuan earthquake-induced landslide susceptibility assessment was carried out in the Longnan area in northwestern China using a GIS-based logistic regression model. This region has frequently been affected by landslides in the past, and was intensively affected by the 5.12 Wenchuan earthquake which received considerable international attention. The data used for this study consist of the landslides triggered by the Wenchuan earthquake and a landslide pre-disposing factor database. Information regarding the landslide causative factors came from additional data sources, such as a digital elevation model (DEM) with a 30 × 30 m2 resolution, orthophotos, geological and land-use maps, precipitation records, and information on peak ground acceleration data from the 2008 earthquake. The statistical analysis of the relationship between the Wenchuan earthquake-triggered landslides and pre-disposing factors showed the great influence of lithological and topographical conditions on slope failures. The quality of susceptibility mapping was validated by splitting the study area into training and validation sections. The prediction capability analysis demonstrated that the landslide susceptibility map could be used for land planning as well as emergency planning by local authorities.  相似文献   

13.
Landslide susceptibility and hazard assessments are the most important steps in landslide risk mapping. The main objective of this study was to investigate and compare the results of two artificial neural network (ANN) algorithms, i.e., multilayer perceptron (MLP) and radial basic function (RBF) for spatial prediction of landslide susceptibility in Vaz Watershed, Iran. At first, landslide locations were identified by aerial photographs and field surveys, and a total of 136 landside locations were constructed from various sources. Then the landslide inventory map was randomly split into a training dataset 70 % (95 landslide locations) for training the ANN model and the remaining 30 % (41 landslides locations) was used for validation purpose. Nine landslide conditioning factors such as slope, slope aspect, altitude, land use, lithology, distance from rivers, distance from roads, distance from faults, and rainfall were constructed in geographical information system. In this study, both MLP and RBF algorithms were used in artificial neural network model. The results showed that MLP with Broyden–Fletcher–Goldfarb–Shanno learning algorithm is more efficient than RBF in landslide susceptibility mapping for the study area. Finally the landslide susceptibility maps were validated using the validation data (i.e., 30 % landslide location data that was not used during the model construction) using area under the curve (AUC) method. The success rate curve showed that the area under the curve for RBF and MLP was 0.9085 (90.85 %) and 0.9193 (91.93 %) accuracy, respectively. Similarly, the validation result showed that the area under the curve for MLP and RBF models were 0.881 (88.1 %) and 0.8724 (87.24 %), respectively. The results of this study showed that landslide susceptibility mapping in the Vaz Watershed of Iran using the ANN approach is viable and can be used for land use planning.  相似文献   

14.
The objective of this study was to produce and evaluate a landslide susceptibility map for weathered granite soils in Deokjeok-ri Creek, South Korea. The relative effect (RE) method was used to determine the relationship between landslide causative factors (CFs) and landslide occurrence. To determine the effect of CFs on landslides, data layers of aspect, elevation, slope, internal relief, curvature, distance to drainage, drainage density, stream power index, sediment transport index, topographic wetness index, soil drainage character, soil type, soil depth, forest type, timber age, and geology were analyzed in a geographical information system (GIS) environment. A GIS-based landslide inventory map of 748 landslide locations was prepared using data from previous reports, aerial photographic interpretation, and extensive field work. A RE model was generated from a training set consisting of 673 randomly selected landslides in the inventory map, with the remaining 75 landslides used for validation of the susceptibility map. The results of the analysis were verified using the landslide location data. According to the analysis, the RE model had a success rate of 86.3 % and a predictive accuracy of 88.6 %. The validation results showed satisfactory agreement between the susceptibility map and the existing data on landslide locations. The results of this study can therefore be used to mitigate landslide-induced hazards and to plan land use.  相似文献   

15.
This paper presents a new landslide-generated wave (LGW) model based on incompressible Euler equations with Savage-Hutter assumptions. A two-layer model is developed including a layer of granular-type flow beneath a layer of an inviscid fluid. Landslide is modeled as a two-phase Coulomb mixture. A well-balanced second-order finite volume formulation is applied to solve the model equations. Wet/dry transitions are treated properly using a modified non-linear method. The numerical model is validated using two sets of experimental data on subaerial and submarine LGWs. Impulsive wave characteristics and landslide deformations are estimated with a computational error less than 5 %. Then, the model is applied to investigate the effects of landslide deformations on water surface fluctuations in comparison with a simpler model considering a rigid landslide. The model results confirm the importance of both rheological behavior and two-phase nature of landslide in proper estimation of generated wave properties and formation patterns. Rigid slide modeling often overestimates the characteristics of induced waves. With a proper rheological model for landslide, the numerical prediction of LGWs gets more than 30 % closer to experimental measurements. Single-phase landslide results in relative errors up to about 30 % for maximum positive and about 70 % for maximum negative wave amplitudes. Two-phase constitutive structure of landslide has also strong effects on landslide deformations, velocities, elongations, and traveling distances. The complex behaviors of landslide and LGW of the experimental data are analyzed and described with the aid of the robust and accurate finite volume model. This can provide benchmark data for testing other numerical methods and models.  相似文献   

16.
The Yushu County, Qinghai Province, China, April 14, 2010, earthquake triggered thousands of landslides in a zone between 96°20′32.9″E and 97°10′8.9″E, and 32°52′6.7″N and 33°19′47.9″N. This study examines the use of geographic information system (GIS) technology and Bayesian statistics in creating a suitable landslide hazard-zone map of good predictive power. A total of 2,036 landslides were interpreted from high-resolution aerial photographs and multi-source satellite images pre- and post-earthquake, and verified by selected field checking before a final landslide-inventory map of the study area could be established using GIS software. The 2,036 landslides were randomly partitioned into two subsets: a training dataset, which contains 80 % (1,628 landslides), for training the model; and a testing dataset 20 % (408 landslides). Twelve earthquake triggered landslide associated controlling parameters, such as elevation, slope gradient, slope aspect, slope curvature, topographic position, distance from main surface ruptures, peak ground acceleration, distance from roads, normalized difference vegetation index, distance from drainages, lithology, and distance from all faults were obtained from variety of data sources. Landslide hazard indices were calculated using the weight of evidence model. The landslide hazard map was compared with training data and testing data to obtain the success rate and predictive rate of the model, respectively. The validation results showed satisfactory agreement between the hazard map and the existing landslide distribution data. The success rate is 80.607 %, and the predictive rate is 78.855 %. The resulting landslide hazard map showed five classes of landslide hazard, i.e., very high, high, moderate, low and very low. The landslide hazard evaluation map should be useful for environmental recovery planning and reconstruction work.  相似文献   

17.
The aim of this study is to produce landslide susceptibility mapping by probabilistic likelihood ratio (PLR) and spatial multi-criteria evaluation (SMCE) models based on geographic information system (GIS) in the north of Tehran metropolitan, Iran. The landslide locations in the study area were identified by interpretation of aerial photographs, satellite images, and field surveys. In order to generate the necessary factors for the SMCE approach, remote sensing and GIS integrated techniques were applied in the study area. Conditioning factors such as slope degree, slope aspect, altitude, plan curvature, profile curvature, surface area ratio, topographic position index, topographic wetness index, stream power index, slope length, lithology, land use, normalized difference vegetation index, distance from faults, distance from rivers, distance from roads, and drainage density are used for landslide susceptibility mapping. Of 528 landslide locations, 70 % were used in landslide susceptibility mapping, and the remaining 30 % were used for validation of the maps. Using the above conditioning factors, landslide susceptibility was calculated using SMCE and PLR models, and the results were plotted in ILWIS-GIS. Finally, the two landslide susceptibility maps were validated using receiver operating characteristic curves and seed cell area index methods. The validation results showed that area under the curve for SMCE and PLR models is 76.16 and 80.98 %, respectively. The results obtained in this study also showed that the probabilistic likelihood ratio model performed slightly better than the spatial multi-criteria evaluation. These landslide susceptibility maps can be used for preliminary land use planning and hazard mitigation purpose.  相似文献   

18.
This study presented herein compares the bivariate and multivariate landslide susceptibility mapping methods and presents the landslide susceptibility map of the territory of Western Carpathians in small scale. This study also describes pioneer work for the territory of Western Carpathians, overreaching state borders, using verified sophisticated statistical methods. In the susceptibility mapping, digital elevation model was first constructed using a GIS software, and parameter maps affecting the slope stability such as geology, seismicity, precipitation, topographical elevation, slope angle, slope aspect and land cover were considered. In the last stage of the analyses, landslide susceptibility maps were produced using bivariate and multivariate analyses, and they were then compared by means of their validations. The validation of the bivariate analysis data was performed using the results of bivariate analysis for landslide areas of Slovakia containing five classes of susceptibility in scale 1:500,000. The validation area is the area of Western Carpathians within Slovakia. Eighty-two per cent of area does not differ in more than one class. The validation of the multivariate analysis data was performed using the results from the Kysuce region in the northern part of Slovakia in scale 1:10,000. The raster calculator was used to express the difference between each pair of pixels within these two layers. Seventy-seven per cent of the pixels do not differ in more than 25 %, 94 % of the pixels do not differ in more than 50 %. The maximal possible difference is 100 % (one pixel with value 0 and other with value 1, or vice versa). Receiver operating characteristic analysis was also performed, the area under curve value for bivariate model was calculated to be 0.735, while it was 0.823 for multivariate. The results of the validation can be considered as satisfactory.  相似文献   

19.
This paper presents the integration of desktop grid infrastructure with GIS technologies, by proposing a parallel resolution method in a generic distributed environment. A case study focused on a discrete facility location problem, in the biomass area, exemplifies the high amount of computing resources (CPU, memory, HDD) required to solve the spatial problem. A comprehensive analysis is undertaken in order to analyse the behaviour of the grid-enabled GIS system. This analysis, consisting of a set of the experiments on the case study, concludes that the desktop grid infrastructure is able to use a commercial GIS system to solve the spatial problem achieving high speedup and computational resource utilization. Particularly, the results of the experiments showed an increase in speedup of fourteen times using sixteen computers and a computational efficiency greater than 87 % compared with the sequential procedure.  相似文献   

20.
Global climate change has increased the frequency of abnormally high rainfall; such high rainfall events in recent years have occurred in the mountainous areas of Taiwan. This study identifies historical earthquake- and typhoon-induced landslide dam formations in Taiwan along with the geomorphic characteristics of the landslides. Two separate groups of landslides are examined which are classified as those that were dammed by river water and those that were not. Our methodology applies spatial analysis using geographic information system (GIS) and models the geomorphic features with 20?×?20 m digital terrain mapping. The Spot 6 satellite images after Typhoon Morakot were used for an interpretation of the landslide areas. The multivariate statistical analysis is also used to find which major factors contribute to the formation of a landslide dam. The objective is to identify the possible locations of landslide dams by the geomorphic features of landslide-prone slopes. The selected nine geomorphic features include landslide area, slope, aspect, length, width, elevation change, runout distance, average landslide elevation, and river width. Our four geomorphic indexes include stream power, form factor, topographic wetness, and elevation–relief ratio. The features of the 28 river-damming landslides and of the 59 non-damming landslides are used for multivariate statistical analysis by Fisher discriminant analysis and logistic regression analysis. The principal component analysis screened out eleven major geomorphic features for landslide area, slope, aspect, elevation change, length, width, runout distance, average elevation, form factor, river width, stream power, and topography wetness. Results show that the correctness by Fisher discriminant analysis was 68.0 % and was 70.8 % by logistic regression analysis. This study suggests that using logistic regression analysis as the assessment model for identifying the potential location of a landslide dam is beneficial. Landslide threshold equations applying the geomorphic features of slope angle, angle of landslide elevation change, and river width (H L/W R) to identify the potential formation of natural dams are proposed for analysis. Disaster prevention and mitigation measures are enhanced when the locations of potential landslide dams are identified; further, in order to benefit such measures, dam volume estimates responsible for breaches are key.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号