首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study of the optical spectra of three Herbig Ae/Be stars is presented: MWC 361,MWC 614, AB Aur. Variations of the equivalent widths, radial velocities, and profiles of spectral lines formed in different regions of the circumstellar environments of these stars are analyzed. The most active spectral variations are observed in the Hα, Hβ, and He I 5876 lines. Other emission lines, such as Si II λλ6347, 6371 Åand [O I] λλ6300, 6363 Å, also display variations, but these are much smaller. Interstellar DIBs at λλ5780 and 5797 ?A were detected for the stars MWC 361 and MWC 614 for the first time. The active processes that are underway in the circumstellar environments of these systems can also reach more distant, outer parts of their circumstellar disks.  相似文献   

2.
High resolution observations in the region of the Hα, HeII λ 4686, and Hγ lines in the spectrum of the symbiotic binary Z And were performed during a small-amplitude flare at the end of 2002. The profiles of the hydrogen lines were double-peaked, and suggest that the lines may be emitted mainly by an optically thin accretion disk. Since the Hα line is strongly contaminated by emission from the envelope, the Hγ line is used to investigate the properties of the accretion disk. The Hα line has broad wings, believed to be determined mostly by radiation damping, although the high-velocity stellar wind from the compact object in the system may also contribute. The Hγ line has a broad emission component, assumed to be emitted mainly from the inner part of the accretion disk. The HeIIλ 4686 line also has a broad emission component, but is believed to arise in a region of high-velocity stellar wind. The outer radius of the accretion disk can be calculated from the shift between the peaks. Assuming that the orbital inclination can range from 47° to 76°, we estimate the outer radius to be 20–50 R. The behavior of the observed lines can be interpreted in the model proposed for the line spectrum during the first large 2000–2002 flare of this binary.  相似文献   

3.
The evolution of the components of the unique, massive, close binary system NGC 3603-A1, which consists of stars of spectral types WN6ha and WN6h, is analyzed. The component masses are estimated to be 116 and 89M , close to the highest measured stellar masses. Numerical modeling of the evolution of the components has been carried out, taking into account mass loss via the stellar winds of the two massive stars. It is shown that the maximum possible initial component masses are close to 140 and 125M . The components are currently slightly evolved main-sequence stars, with a comparative low degree of helium enrichment at their surfaces. Further evolution of the system will lead to filling of the Roche lobe of the primary and subsequent evolution in a common envelope. This may lead to the merger of the components, with the evolution of the system ending in the formation of a singlemassive black hole after the second supernova explosion. Otherwise, depending on the masses of the resulting black holes, either a binary system of two black holes or two unbound black holes may form, accompanied by gamma-ray bursts.  相似文献   

4.
We have classified and determined the parameters of the evolved close binary MT Ser. Our moderate-resolution spectra covering various phases of the orbital period were taken with the 6-m telescope of the Special Astrophysical Observatory. The spectra of MT Ser freed from the contribution of the surrounding nebula Abell 41 contained no emission lines due to the reflection effect. The radial velocities measured from lines of different elements showed them to be constant on a time scale corresponding to the orbital period. At the same time, we find effects of broadening for the HeII absorption lines, due to the orbital motion of two hot stars of similar types. As a result, we classify MT Ser as a system with two blue subdwarfs after the common-envelope stage. We estimate the component masses and the distance to the object from the Doppler broadening of the HeII lines. We demonstrate that the age of the ambient nebula, Abell 41, is about 35 000 years.  相似文献   

5.
Usingthe “Scenario Machine” (a specialized numerical code formodeling the evolution of large ensembles of binary systems), we have studied the physical properties of rapidly rotating main-sequence binary stars (Be stars) with white-dwarf companions and their abundance in the Galaxy. The calculations are the first to take into account the cooling of the compact object and the effect of synchronization of the rotation on the evolution of Be stars in close binaries. The synchronization time scale can be shorter than the main-sequence lifetime of a Be star formed during the first mass transfer. This strongly influences the distribution of orbital periods for binary Be stars. In particular, it can explain the observed deficit of short-period Be binaries. According to our computations, the number of binary systems in the Galaxy containing a Be star and white dwarf is large: 70–80% of all Be stars in binaries should have degenerate dwarf companions. Based on our calculations, we conclude that the compact components in these systems have high surface temperatures. Despite their high surface temperatures, the detection of white dwarfs in such systems is hampered by the fact that the entire orbit of the white dwarf is embedded in the dense circumstellar envelope of the primary, and all the extreme-UV and soft X-ray emission of the compact object is absorbed by the Be star’s envelope. It may be possible to detect the white dwarfs via observations of helium emission lines of Be stars of not very early spectral types. The ultraviolet continuum energies of these stars are not sufficient to produce helium line emission. We also discuss numerical results for Be stars with other evolved companions, such as helium stars and neutron stars, and suggest an explanation for the absence of Be-black-hole binaries.  相似文献   

6.
We list and analyze the main currently known mechanisms for accelerating the space motions of stars. A high space velocity of a star can be a consequence of its formation in the early stages of the evolution of a massive galaxy, when it was spheroidal and non-stationary, so that stars were born with velocities close to the escape velocity for the galaxy. Another possibility is that the star arrived from another galaxy with a velocity that is high for our Galaxy. The decay of unstable close multiple stars or supernova explosions in close binaries can also provide velocities of up to several hundreds of km/s to main-sequence stars and velocities of up to ∼1000 km/s to degenerate stars, neutron stars, and stellar-mass black holes. The merger of components of a binary system containing two neutron stars or a neutron star and a black hole due to gravitational-wave radiation can accelerate the nascent black hole to a velocity∼1000 km/s. Hypervelocity relativistic stars can be born due to asymmetric neutrino ejection during a supernova explosion. Stars can be efficiently accelerated by single and binary supermassive black holes (with masses from several millions to several billions of solar masses) in the nuclei of galaxies. Thanks to their gravitational field and fast orbital motion (in the case of binary objects), supermassive black holes are able to accelerate even main-sequence stars to relativistic velocities.  相似文献   

7.
A star located in the close vicinity of a supermassive black hole (SMBH) in a galactic nucleus or a globular-cluster core could form a close binary with the SMBH, with the star possibly filling its Roche lobe. The evolution of such binary systems is studied assuming that the SMBH mainly accretes matter from the companion star and that the presence of gas in the vicinity of the SMBH does not appreciably influence variations in the star’s orbit. The evolution of the star–SMBH system is mainly determined by the same processes as those determining the evolution of ordinary binaries. The main differences are that the star is subject to an incident flux of hard radiation arising during the accretion of matter by the SMBH, and, in detached systems, the SMBH captures virtually all the wind emitted by its stellar companion, which appreciably influences the evolution of the major axis of the orbit. Moreover, the exchange between the orbital angular momentum and the angular momentum of the overflowing matter may not be entirely standard in such systems. The computations assume that there will be no such exchange of angular momentum if the characteristic timescale for mass transfer is shorter than the thermal time scale of the star. The absorption of external radiation in the stellar envelope was computed using the same formalism applied when computing the opacity of the stellar matter. The numerical simulations show that, with the adopted assumptions, three types of evolution are possible for such a binary system, depending on the masses and the initial separation of the SMBH and star. Type I evolution leads to the complete destruction of the star. Only this type of evolution is realized for low-mass main-sequence (MS) stars, even those with large initial separations from their SMBHs. Massive MS stars will also be destroyed if the initial separation is sufficiently small. However, two other types of evolution are possible for massive stars, with a determining role in the time variations of the parameters of the star–SMBH system being played by the possible growth of the massive star into a red giant during the time it is located in the close vicinity of the SMBH. Type II evolution can be realized for massive MS stars that are initially farther from the SMBH than in the case of disruption. In this case, the massive star fills its Roche lobe during its expansion, but is not fully destroyed; the star retreats inside its Roche lobe after a period of intense mass loss. This type of evolution is characterized by an increase in the orbital period of the system with time. As a result, the remnant of the star (its former core) is preserved as a white dwarf, and can end up at a fairly large distance from the SMBH. Type III evolution can be realized formassiveMSstars that are initially located still farther from their SMBHs, and also for massive stars that are already evolved at the initial time. In these cases, the star moves away from the SMBH without filling its Roche lobe, due to its intense stellar wind. The remnants of such stars can also end up at a fairly large distances from their SMBHs.  相似文献   

8.
The parameters of the quadruple system ADS 9626 (µ Boo) are analyzed. The system consists of two double stars: the Aa pair with an angular separation of ρ = 0.08″ and the BC pair with an angular separation of ρ = 2.2″, separated by ρ = 107″ and having the same parallaxes and proper motions. Position observations with the Pulkovo 26″ refractor have yielded from direct astrometric measurements the difference in the apparent magnitudes and the component-mass ratio for the BC subsystem: Δm = 0.59 ± 0.06, M(B)/M(C) = 1.18 ± 0.02. Spectroscopy with the Russian-Turkish 1.5-m telescope has yielded the radial velocities and physical parameters of the Aa, B, and C components. Speckle-interferometric observations with the 6-m telescope of the Special Astrophysical Observatory have provided the first measurements of the magnitude difference in the close Aa subsystem: Δm = 0.46 ± 0.03 (λ = 5500 Å) and Δm = 0.41 ± 0.03 (λ = 8000 Å). The new observations are consistent with the known orbits, which were used to find the radial velocities for the centers of mass of the inner subsystems. Themotion of the outer pair, Aa-BC, is studied using the apparent motion parameters (AMP) method. It is not possible to derive an elliptical orbit for this pair; the elements of a hyperbolic orbit have been estimated. The difference of the heavy-element abundances for the Aa and BC subsystems of 0.5 dex confirms that these pairs have a different origin. This suggests that we are observing here a close encounter of two binary stars.  相似文献   

9.
We have performed a detailed statistical-equilibrium analysis based on a 49-level model of the magnesium atom for the atmospheres of stars of various spectral types: T eff=4500–12000 K, logg=0.0–4.5, and [M/H]=0 to ?3. In the atmospheres of stars with T eff>5500 K, deviations from LTE for Mg I are due to photoionization by ultraviolet radiation from the 3p level; i.e., neutral magnesium is in a state of “superionization.” When T eff<5500 K, the populations of the Mg I levels differ from their LTE values due to radiative processes in bound-bound transitions. We analyzed Mg I lines in the solar spectrum in order to empirically refine certain atomic parameters (the van der Waals broadening constant C 6 and cross sections for photoionization and collisional interactions with hydrogen atoms) and the magnesium abundance in the solar atmosphere. We studied non-LTE effects for five Mg I lines for a wide range of stellar parameters. In the case of dwarfs and subdwarfs, the magnitude of non-LTE corrections to magnesium abundances does not exceed 0.1 dex for the λλ 4571, 4703, 5528, and 5711 Å lines but can be as large as ±0.2 dex for the λλ 3829–3838, 5172, and 5183 Å lines. The non-LTE corrections for giants and supergiants do not exceed 0.15 dex for the λλ 4571 and 5711 Å lines but can reach ±0.20 dex and even more for the λλ 4703, 5528, 3829–3838, 5172, and 5183 Å lines.  相似文献   

10.
Mechanisms for the formation of the optical (λλ500–950 nm) spectra of L dwarfs—stars and sub-stellar objects with T eff<2200 K—are discussed. Their spectral energy distributions are determined primarily by the K I and Na I resonance-doublet absorption lines. The equivalent widths of these absorption lines formally computed using the dusty model atmospheres of Tsuji can reach several thousand angstroms. In this case, the extended wings of these lines form a pseudo-continuum for weaker absorption lines and even molecular bands. Mechanisms for the broadening of alkali-element lines in the atmospheres of late-type stars due to interactions between neutral atoms and hydrogen molecules are analyzed. The computed optical spectral energy distributions of several L dwarfs are compared with their observed spectra.  相似文献   

11.
Results of observations of circumstellar OH masers in lines with wavelengths near 18 cm are reported. The observations were carried out on the radio telescope of the Nan cay Radio Astronomy Observatory (France). In 2007–2009, 70 late-type stars were observed (including Mira and semi-regular variables). For 53 of these, emission was detected in at least one of three OH lines (1612, 1665, or 1667 MHz). Circular and linear polarization of the maser emission was measured, yielding all four Stokes parameters. Polarized emission features were detected in the OH line spectra of 41 stars. A summary of all the observations is given. The results obtained for T Lep, R LMi, and R Crt are discussed. Emission in the 1665 and 1667 MHz OH lines was detected in T Lep for the first time. Features probably due to Zeeman splitting were detected in the OH line profiles of all three stars. Estimates of the magnetic-field strengths in the maser sources were obtained (0.46–2.32 mG). Variability of the polarization characteristics of the maser emission of the stars on time intervals of several months was found.  相似文献   

12.
Modeling of hydrogen emission lines is a powerful tool to study physical processes in the nearest vicinity of young stars because spectral lines carry information on the kinematics and physical conditions of the gas. One of the lines that probe emitting regions closest to the star is the Br$$\gamma $$ line. We consider different types of hybrid models to reproduce both interferometric VLTI-AMBER observations and LBT-LUCIFER spectroscopic observations of the single-peak profile of the Br$$\gamma $$ line of the Herbig AeBe star (HAEBE) VV Ser, a member of the UX Ori type subclass. We computed models of a magneto-centrifugal disk wind, a magnetospheric accretion region (magnetosphere), Cranmer’s polar wind, and scattered light from circumstellar polar dust. Furthermore, we calculated hybrid two-component models consisting of a disk wind and one of the aforementioned models. We computed visibilities and line profiles for all types of models and compared them with the available interferometric observations to constrain model parameters. We conclude that for the inclinations reported for this star (60°–70°), the disk wind alone cannot explain the Br$$\gamma $$ line profile although it may be a dominant contributor to the hydrogen line radiation. However, magneto-centrifugal disk wind in combination with aforementioned emitting regions (magnetosphere, polar wind, or scattered light from polar dust) may be able to reproduce the observations.  相似文献   

13.
The motion of a rotating star in a close binary system with conservative mass exchange is considered. In contrast to the Paczyński-Huang model, the new model applied examines the relative motion of a star along an elliptical orbit in a close binary system, taking into account the mutual gravitation between the stars, reactive forces, the gravitation exered on the stars by the mass-transfer stream, and perturbations due to the rotation of the accreting star. The variations of the semi-major axis and eccentricity of the orbit and the orbital angular velocity of the accreting star as a function of the component-mass ratio q are determined. The results are applied to the BF Aurigae system.  相似文献   

14.
A new mechanism for the generation of X-ray emission in binary Be/X stars is proposed. It is shown that the mass-transfer rate through the point L1 in a model in which the optical component of a Be/X star has an expanding envelope is sufficient to generate the observed X-ray luminosities of such stars. The results of computations indicate a dependence between the orbital periods and X-ray fluxes of these systems. The relationship between the orbital perod and the mass-transfer rate during flares obtained from modeling corresponds to the observed dependence of the maximum X-ray flux on the orbital period.  相似文献   

15.
Pakhomov  Yu. V.  Ryabchikova  T. A.  Piskunov  N. E. 《Astronomy Reports》2019,63(12):1010-1021

The Vienna Atomic Line Database (VALD) has been supplemented with new data and new functionality—the possibility of taking into account the effect of hyperfine splitting (HFS) of atomic levels in the analysis of line profiles. This has been done through the creation of an ancillary SQL database with the HFS constants for atomic levels of 58 isotopes of 30 neutral and singly-ionized atoms. The completeness of the collected data and new opportunities for studies of stars of various spectral types is analyzed. The database enables analysis of splitting of up to 60% of lines with measurable effects in the ultraviolet (λ ≳ 1000 Å ), and up to 100% of such lines in the optical and infrared ranges (λ ≲ 25 000 Å ) for A–M stars. In the spectra of hot O–B stars, it is necessary to use laboratory measurements for atoms in the second and higher stages of ionization.

  相似文献   

16.
We have undertaken a statistical study of the component mass ratios and the orbital eccentricities of WR + O close binary, detached main-sequence (DMS), contact early-type (CE), and semidetached (SD) systems. A comparison of the characteristics of WR + O systems and of DMS, CE, and SD systems has enabled us to draw certain conclusions about the evolutionary paths of WR + O binaries and to demonstrate that up to 90% of all known WR + O binaries formed as a result of mass transfer in massive close O + O binary systems. Since there is a clear correlation between the component masses in SD systems with subgiants, the absence of an anticorrelation between the masses of the WR stars and O stars in WR + O binaries cannot be considered evidence against the formation of WR + O binaries via mass transfer. The spectroscopic transitional orbital period P tr sp corresponding to the transition from nearly circular orbits (e sp<0.1) to elliptical orbits (e sp≥0.1) is ~14d for WR + O systems and ~2d–3d for OB + OB systems. The period range in which all WR + O orbits are circular \((1\mathop d\limits_. 6 \leqslant P \leqslant 14^d )\) is close to the range for SD systems with subgiants, \(0\mathop d\limits_. 7 \leqslant P \leqslant 15^d \). The large difference between the P tr sp values for WR + O and OB + OB systems suggests that a mechanism of orbit circularization additional to that for OB + OB systems at the DMS stage (tidal dissipation of the orbital energy due to radiative damping of the dynamical tides) acts in WR + O binaries. It is natural to suggest mass transfer in the parent O + O binaries as this supplementary orbit-circularization mechanism. Since the transitional period between circular and elliptical orbits for close binaries with convective envelopes and ages of 5×109 years is \(P_{tr} = 12\mathop d\limits_. 4\), the orbits of most known SD systems with subgiants had enough time to circularize during the DMS stage, prior to the mass transfer. Thus, for most SD systems, mass transfer plays a secondary role in circularization of their orbits.In many cases, the initial orbital eccentricities of the O + O binary progenitors of WR + O systems are preserved, due to the low viscosity of the O-star envelopes and the short timescale for their nuclear evolution until the primary O star fills its Roche lobe and the mass transfer begins. The mass transfer in the parent O + O systems is short-lived, and the number of orbital cycles during the early mass-transfer stage is relatively low (lower than for the progenitors of SD systems by three or four orders of magnitude). The continued transfer of mass from the less massive to the more massive star after the component masses have become equal leads to the formation of a WR + O system, and the orbit's residual eccentricity increases to the observed value. The increase of the orbital eccentricity is also facilitated by variable radial mass loss via the wind from the WR star in the WR + O system during its motion in the elliptical orbit. The result is that WR + O binaries can have considerable orbital eccentricities, despite their intense mass transfer. For this reason, the presence of appreciable eccentricities among WR + O binaries with large orbital periods cannot be considered firm evidence against mass transfer in the parent O + O binary systems. Only for the WR + O binaries with the longest orbital periods (4 of 35 known systems, or 11 %) can the evolution of the parent O + O binaries occur without filling of the Roche lobe by the primary O star, being governed by radial outflow in the form of the stellar wind and possibly by the LBV phenomenon, as in the case of HD 5980.  相似文献   

17.
Possible paths for the formation of Ap/Bp stars—massive main-sequence stars with strong magnetic fields—are analyzed based on modern theories for the evolution of single and binary stars. Assuming that the strong magnetic fields of these stars are the main reason for their comparatively slow axial rotation and the observed anomalies in the chemical compositions of their atmospheres, possible origins for these high magnetic fields are considered. Analysis of several possible scenarios for the formation of these stars leads to the conclusion that their surface magnetic fields are probably generated in the convective envelopes of the precursor stars. These precursors may be young, single stars with masses 1.5–3 M that formed at the peripheries of forming star clusters and ended their accretion at the Hayashi boundary, or alternatively close binaries whose components have convective envelopes, whose merger leads to the formation of an Ap/Bp star. Arguments are presented supporting the view that the merger of close binaries is the main channel for the formation of Ap/Bp stars, and a detailed analysis of this scenario is presented. The initial major axes of the merging binary systems must be in the range 6–12 R , and the masses of their components in the range 0.7–1.5 M . When the merging components possess developed convective envelopes and fairly strong initial magnetic fields, these can generate powerful magnetic fields “inherited” by the products of the merger—Ap/Bp stars. The reason the components of the close binaries merge is a loss of angular momentum via the magnetic stellar winds of the components.  相似文献   

18.
The results of many-year uniform spectroscopic observations of the Herbig Ae/Be star IL Cep A are presented. Its Hα line has either a single or a barely resolved two-component emission profile. The Hβ emission line is clearly divided into two components with a deep central absorption. Smooth variations of the observed parameters of individual spectral lines over nine years are observed. The He I λ5876 Å line has a complex absorption profile, probably with superposed emission components. The NaI D1, D2 doublet exhibits weak changes due to variations in the circumstellar envelope. The variations observed in the stellar spectrum can be explained by either binarity or variations of the magnetic field in the stellar disk. Difficulties associated with both these possibilities are discussed.  相似文献   

19.
The region of Orion’s Sword with coordinates α = 83.79°, δ = −5.20° and a size of 1.0° × 2.5° is analyzed. We compiled a master catalog of stars observed in the optical, containing positions, proper motions, and UBV photometry for 1634 stars. Using the nearest-neighbor-distance technique, we subdivided the region into stellar groups with different numbers of members. The positions of five groups coincide with known clusters, and two groups coincide with aggregates of stars with Hα emission. We have identified groups with low membership that are moving away from the system. We also considered the kinematic structure of the groups using the AD-diagram method we developed earlier. Most of the stellar clusters and groups display similar kinematics, with the exception of the group OMC-2, which is moving toward its own apex. We also confirmed the existence of the kinematic star group 189 discovered earlier; its position is close to the cluster NGC 1977, and it is probably a component of its corona.  相似文献   

20.
High-spectral-resolution observations with the Special Astrophysical Observatory 6-m telescope obtained in 2003–2011 are used to study features of the optical spectrum and the velocity field in the atmosphere of the semiregular variable LN Hya in detail. The weak, symmetric, photospheric absorption lines indicate radial-velocity variations from night to night (by as much as 3 km/s), resulting from small pulsations. Peculiarities and profile variations were found for strong lines of FeI, FeII, BaII, SiII, etc. The profiles of these lines were asymmetric: their short-wavelength wings were extended and their cores were either split or distorted by emission. During the 2010 observing season, the position and depth of the Hα absorption component, the intensities of the short- and long-wavelength emission components, and the intensity ratio of the latter components varied from spectrum to spectrum. Weak emission lines of neutral atoms (VI, MnI, CoI, NiI, FeI) appeared in the spectrum of June 1, 2010. These spectral peculiarities, recorded for the first time, suggest that we have detected rapid changes in the physical conditions in the upper atmospheric layers of LN Hya in 2010.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号