首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Crystalline continental rocks and associated crust‐contaminated basaltic rocks were unexpectedly dredged on the crest and at seamounts of the Rio Grande Rise, South Atlantic. Zircon U–Pb ages of one gabbro (ca. 2,200 Ma) and four granitoids (between ca. 1,430–480 Ma) indicate that the breakup of SW Gondwana left behind continental fragments of dominantly African age. These rocks may have been incorporated into the oceanic lithosphere by complex processes including rifting and interaction of the Tristan‐Gough mantle plume with hyperextended continental margins. Until ca. 80–70 Ma, the Rio Grande Rise and an old portion of the Walvis Ridge formed a conjugate pair of aseismic ridges, and the Tristan‐Gough plume was positioned at the Mid‐Atlantic Ridge. The finding of continental rock fragments in one of these conjugate pairs opens new perspectives on the mechanisms of continental break‐up, the nature of this conjugate pair, and the geodynamic evolution of rifted Gondwana margins in the South Atlantic.  相似文献   

2.
On the basis of the author’s data on the composition of sediments and seismic cross sections, together with literature data, the bottom topography was described and the main structural features of the top 10–100 m thick sedimentary sequence in the Southwestern Atlantic (Brazil Basin) were identified. The presence of a heavy northward flow of Antarctic bottom water (AABW) and its active erosive activity were confirmed. The AABW caused the erosion or redeposition of red pelagic clays and hemipelagic clays, which accumulated in the Brazil Basin in the Holocene and Pleistocene; the clays contain abundant redeposited Pleistocene diatoms and Neogene and Paleogene discoasters. In most of the sediment cores of the Brazil Basin, the red pelagic clays are of Pleistocene age. Contourites and sandy microlayers have been found in the sediments at the foot of the continental slope of South America; this is the effect of the Deep Western Boundary Current on the ocean floor. The AABW transfers Antarctic diatom species along the continental slope of South America to 10°-5° S. The presence of the Equatorial Midocean Channel with a relative depth of 149 m in the western pelagic equatorial part of the Atlantic was confirmed, and new channels, such as Vavilov and Akademik Ioffe, have been found. The AABW flows northward along the Equatorial Mid-Ocean Channel. Apparently, the Akademik Ioffe Channel is not a proper midocean channel. At 20° S (at a depth of 5000 m), Pleistocene diatomic (Ethmodiscus rex) ooze containing up to 74% amorphous SiO2 was detected. On the Amazon-Mid-Atlantic Ridge profile, the AABW flows into the Guyana Basin through only one valley of the Nara Plain, with a depth of 4620 m. Near the Ceara Rise and on the Amazon Fan, no geologic traces of the AABW flow into the Guyana Basin were found. Near the Rio Grande Rise, the AABW might have appeared in the Eocene. The formation of the Vema Channel, which separates the Rio Grande Rise from South America, also began at that time. The AABW flows were the heaviest before the largest glaciations (particularly at isotopic stages 7/6 and 3/2).  相似文献   

3.
川西北若尔盖一带三叠系层序及沉积环境分析   总被引:2,自引:0,他引:2  
川西北地区三叠系广泛发育,其地层层序及岩性特征与相邻的西秦岭南部一带十分相似。根据若尔盖—南坪实测地层剖面资料的对比研究,将该区三叠系划分为:中三叠统光盖山组和上三叠统咀朗组、纳鲁组、卡车组4个岩石地层单位。通过沉积相标志的综合分析,该区中—晚三叠世时期主要有以下几种沉积类型:碳酸盐岩碎屑流沉积,等深流沉积,陆源碎屑浊流沉积,非重力流正常深海盆碳酸盐岩及碎屑岩沉积。表明该区为大陆斜坡至深海盆地环境  相似文献   

4.
Doklady Earth Sciences - Several features probably formed by contour bottom currents were recognized on the Rio Grande Rise by high-resolution seismic survey in the transatlantic profiles of the...  相似文献   

5.
等深流作用机制和沉积的研究进展   总被引:1,自引:0,他引:1  
等深流是大洋环境非常重要的动力学机制,其沉积蕴含了重要的古海洋学和古气候信息,对其进行解析是近些年国际海洋学、气候学的研究热点。等深流是顺陆坡走向流动的牵引流,其侵蚀—沉积效应取决于陆坡地貌、气候旋回等多种因素,认识等深流侵蚀—沉积的动力学规律是学术界关注的焦点之一,也具有重要的油气经济意义。探究等深流沉积的新类型、等深流沉积的形态和叠加—迁移型式,以及它们发育的背景和控制因素,也是近些年学术界和工业界关注的热点。确定等深流作用机制及其沉积响应的研究脉络,对凝聚研究方向和确定科研目标至关重要。  相似文献   

6.
7.
The Pliocene-early Pleistocene history of the ancestral Rio Grande and Quaternary history of the Rio Mimbres in the southern Rio Grande rift, New Mexico, illustrate how axial rivers may alternately spill into and subsequently abandon extensional basins. Three types of spillover basins are recognized, based on the angle at which the axial river enters the basin and whether it descends the hanging wall dip slope or footwall scarp to reach the basin floor. In the Mimbres basin type, the axial river enters and flows through the spillover basin nearly parallel to the footwall scarp, resulting in a narrow belt of basin-axis-parallel channel sand bodies located near the footwall scarp. In contrast, an axial river may enter a spillover basin at a high angle to its axis, either descending the hanging wall dip slope (Columbus basin type) or footwall scarp (Tularosa basin type), and construct a fluvial fan, consisting of radiating distributary channels orientated nearly perpendicular to the basin axis. Faulting exerts significant control on river spillover by creating the topographic gaps through which the axial river moves and by terminating spillover by subsequently uplifting or tilting the gap. Spillover may also be autocyclic in origin as a result of aggradation to the level of a pre-existing gap, headward erosion creating and/or intersecting a gap, or simple river avulsion upstream of a gap. Predicting facies architecture in the three types of spillover basins is critical to successful subsurface exploration for hydrocarbon reservoirs, groundwater aquifers or placer mineral deposits.  相似文献   

8.
Neodymium isotopic compositions (εNd) have been largely used for the last fifty years as a tracer of past ocean circulation, and more intensively during the last decade to investigate ocean circulation during the Cretaceous period. Despite a growing set of data, circulation patterns still remain unclear during this period. In particular, the identification of the deep-water masses and their spatial extension within the different oceanic basins are poorly constrained. In this study we present new deep-water εNd data inferred from the Nd isotope composition of fish remains and Fe–Mn oxyhydroxide coatings on foraminifera tests, along with new εNd data of residual (partly detrital) fraction recovered from DSDP Sites 152 (Nicaraguan Rise), 258 (Naturaliste Plateau), 323 (Bellinghausen Abyssal Plain), and ODP Sites 690 (Maud Rise) and 700 (East Georgia Basin, South Atlantic). The presence of abundant authigenic minerals in the sediments at Sites 152 and 690 detected by XRD analyses may explain both middle rare earth element enrichments in the spectra of the residual fraction and the evolution of residual fraction εNd that mirror that of the bottom waters at the two sites. The results point towards a close correspondence between the bottom water εNd values of Sites 258 and 700 from the late Turonian to the Santonian. Since the deep-water Nd isotope values at these two sites are also similar to those at other proto-Indian sites, we propose the existence of a common intermediate to deep-water mass as early as the mid-Cretaceous. The water mass would have extended from the central part of the South Atlantic to the eastern part of proto-Indian ocean sites, beyond the Kerguelen Plateau. Furthermore, data from south and north of the Rio Grande Rise–Walvis Ridge complex (Sites 700 and 530) are indistinguishable from the Turonian to Campanian, suggesting a common water mass since the Turonian at least. This view is supported by a reconstruction of the Rio Grande Rise–Walvis Ridge complex during the Turonian, highlighting the likely existence of a deep breach between the Rio Grande Rise and the proto-Walvis Ridge at that time. Thus deep-water circulation may have been possible between the different austral basins as early as the Turonian, despite the presence of potential oceanic barriers. Comparison of new seawater and residue εNd data on Nicaraguan Rise suggests a westward circulation of intermediate waters through the Caribbean Seaway during the Maastrichtian and Palaeocene from the North Atlantic to the Pacific. This westward circulation reduced the Pacific water influence in the Atlantic, and was likely responsible for more uniform, less radiogenic εNd values in the North Atlantic after 80 Ma. Additionally, our data document an increasing trend observed in several oceanic basins during the Maastrichtian and the Palaeocene, which is more pronounced in the North Pacific. Although the origin of this increase still remains unclear, it might be explained by an increase in the contribution of radiogenic material to upper ocean waters in the northern Pacific. By sinking to depth, these waters may have redistributed to some extent more radiogenic signatures to other ocean basins through deep-water exchanges.  相似文献   

9.
中国油气勘探的一个新领域——深水牵引流沉积   总被引:4,自引:0,他引:4  
深水牵引流沉积主要分为等深流沉积和内波内潮汐沉积两类。前者可形成巨大的堆积体——等深积岩丘,其规模可与海底扇相比拟。现代海洋大陆坡及陆隆地带等深积岩丘非常发育;古代地层记录中也有等深积岩丘,如已开采数十年的阿拉伯克拉通白垩系等深积岩丘油田。后者则不仅可形成分选极好的砂级沉积物,而且可形成规模巨大的“沉积物波”,并成群成带地出现。海洋中沉积物波的迁移可形成巨大的沉积体。在世界各大洋深盆海底,均有大范围分布的现代大型沉积物波。中国地层记录中的大型沉积物波,首先在塔里木盆地塔中地区中一上奥陶统中被识别出来,并有良好油气显示。认为中国的广大地区发育有多个时代的海相深水沉积,深水牵引流沉积储集层是中国21世纪油气勘探具巨大潜力和现实可行性的新领域。其油气勘探首选地区是塔里木盆地、扬子地台南缘和鄂尔多斯西缘。  相似文献   

10.
The well-known Pliocene to Quaternary Rio Grande rift of northern New Mexico and southern Colorado is distinctly different from the Miocene rift, especially in structural style. Prior to approximately 21 Ma, there was little extension or rift-basin development. Uppermost Oligocene and Lower Miocene strata were deposited as broad volcaniclastic aprons, with no significant evidence of syn-depositional faulting, in contrast to younger deposits. The only documented areas of extensional faulting and stratal rotation older than 21 Ma occur within or close to magmatic centers. Early rift basins (21-10 Ma) developed as half grabens progressively tilted in hanging walls of normal faults that primarily reactivated Laramide (Eocene) reverse faults: (1) the San Luis basin tilted eastward as the Sangre de Cristo normal fault reactivated westward-dipping Laramide reverse faults; (2) the Tesuque basin tilted westward as normal faults reactivated eastward-dipping Laramide reverse faults of Sierra Nacimiento and related features; and (3) the Belen basin experienced complex tilting as diverse normal faults reactivated variably dipping Laramide reverse faults. Some of these early-rift faults remain active, whereas others became inactive starting near 10 Ma, as new faults broke across Laramide and early-rift features. The Embudo transfer zone linked normal faults along the east side of the San Luis basin to the Pajarito, La Bajada, San Francisco, and Rincon fault zones at this time. Normal faults along the northwest side of the Miocene Tesuque basin became inactive at the same time that rapid uplift of the Sandia Mountains as a footwall block began at about 10 Ma. This shifting of normal-fault activity resulted in reversal of tilt direction from westward for the Miocene Tesuque basin to eastward for the modern Albuquerque basin. Uplift and erosion of early-rift deposits along the northwest side of the Albuquerque basin have resulted.

This two-stage model for evolution of the Rio Grande rift in north-central New Mexico and southern Colorado is fundamentally different from previous two-stage models, which described Oligo-Miocene volcaniclastic aprons as “early rift deposits,” and related them to extensional structures. Rather, development of half grabens began around 21 Ma, with dominance of negative inversion of Laramide reverse and thrust faults. Regional change in extension direction led to the abandonment of some faults and the initiation of new faults at 10-8 Ma in the Rio Grande rift. The biggest change occurred in the Tesuque basin, as the western boundary fault became inactive during growth of the Jemez volcanic field, and the Sandia Mountains began their rapid rise as the northern Albuquerque basin tilted to the east. Continued regional uplift, and integration and incision of the Rio Grande and tributaries, have occurred during the last 5 million years, with the course of the river tending to follow the downdropped side of each modern half graben.  相似文献   

11.
《Ore Geology Reviews》2008,33(3-4):471-499
The Rio das Velhas greenstone belt is located in the Quadrilátero Ferrífero region, in the southern extremity of the São Francisco Craton, central-southern part of the State of Minas Gerais, SE Brazil. The metavolcano–sedimentary rocks of the Rio das Velhas Supergroup in this region are subdivided into the Nova Lima and Maquiné Groups. The former occurs at the base of the sequence, and contains the major Au deposits of the region. New geochronological data, along with a review of geochemical data for volcanic and sedimentary rocks, suggest at least two generations of greenstone belts, dated at 2900 and 2780 Ma. Seven lithofacies associations are identified, from bottom to top, encompassing (1) mafic–ultramafic volcanic; (2) volcano–chemical–sedimentary; (3) clastic–chemical–sedimentary, (4) volcaniclastic association with four lithofacies: monomictic and polymictic breccias, conglomerate–graywacke, graywacke–sandstone, graywacke–argillite; (5) resedimented association, including three sequences of graywacke–argillite, in the north and eastern, at greenschist facies and in the south, at amphibolite metamorphic facies; (6) coastal association with four lithofacies: sandstone with medium- to large-scale cross-bedding, sandstone with ripple marks, sandstone with herringbone cross-bedding, sandstone–siltstone; (7) non-marine association with the lithofacies: conglomerate–sandstone, coarse-grained sandstone, fine- to medium-grained sandstone. Four generations of structures are recognized: the first and second are Archean and compressional, driven from NNE to SSW; the third is extensional and attributed to the Paleoproterozoic Transamazonian Orogenic Cycle; and the fourth is compressional, driven from E to W, is related to the Neoproterozoic Brasiliano Orogenic Cycle. Gold deposits in the Rio das Velhas greenstone belt are structurally controlled and occur associated with hydrothermal alterations along Archean thrust shear zones of the second generation of structures.Sedimentation occurred during four episodes. Cycle 1 is interpreted to have occurred between 2800 and 2780 Ma, based on the ages of the mafic and felsic volcanism, and comprises predominantly chemical sedimentary rocks intercalated with mafic–ultramafic volcanic flows. It includes the volcano–chemical–sedimentary lithofacies association and part of the mafic–ultramafic volcanic association. The cycle is related to the initial extensional stage of the greenstone belt formation, with the deposition of sediments contemporaneous with volcanic flows that formed the submarine mafic plains. Cycle 2 encompasses the clastic–chemical–sedimentary association and distal turbidites of the resedimented association, in the eastern sector of the Quadrilátero Ferrífero. It was deposited in the initial stages of the felsic volcanism. Cycle 2 includes the coastal and resedimented associations in the southern sector, in advanced stages of subduction. In this southern sedimentary cycle it is also possible to recognize a stable shelf environment. Following the felsic volcanism, Cycle 3 comprises sedimentary rocks of the volcaniclastic and resedimented lithofacies associations, largely in the northern sector of the area. The characteristics of both associations indicate a submarine fan environment transitional to non-marine successions related to felsic volcanic edifices and related to the formation of island arcs. Cycle 4 is made up of clastic sedimentary rocks belonging to the non-marine lithofacies association. They are interpreted as braided plain and alluvial fan deposits in a retroarc foreland basin with the supply of debris from the previous cycles.  相似文献   

12.
Upper mantle xenoliths from the southern Rio Grande rift axis (Potrillo and Elephant Butte) and flank (Adam’s Diggings) have been investigated to determine chemical depletion and enrichment processes. The variation of modal, whole rock, and mineral compositions reflect melt extraction. Fractional melting is the likely process. Fractional melting calculations show that most spinel peridotites from rift axis locations have undergone <5% melting versus 7–14% melting for xenoliths from the rift shoulder, although the total range of fractional melting overlaps at all three locations. In the rift axis, deformed (equigranular and porphyroclastic texture) spinel peridotites are generally characterized by significantly less fractional melting (2–5%) than undeformed (protogranular) xenoliths (up to 16%). This difference may reflect undeformed xenoliths being derived from greater depths and higher temperatures than deformed rocks. Spinel peridotites from the axis and shoulder of the Rio Grande rift have undergone mantle metasomatism subsequent to melt extraction. Under the rift shoulder spinel peridotites have undergone both cryptic and patent (modal) metasomatism, possibly during separate events, whereas the upper mantle under the rift axis has undergone only cryptic metasomatism by alkali basaltic magma.  相似文献   

13.
Spinel lherzolite and pyroxenite xenoliths from the Rio Puerco Volcanic Field, New Mexico, were analyzed for oxygen isotope ratios by laser fluorination. In lherzolites, olivine δ18O values are high (+5.5‰), whereas δ18O values for pyroxenes are low (cpx=+5.1‰; opx=+5.4‰) compared to average mantle values. Pyroxenite δ18O values (cpx=+5.0‰; opx=+5.3‰) are similar to those of the lherzolites and are also lower than typical mantle oxygen isotope compositions. Texturally and chemically primary calcite in pyroxenite xenoliths is far from isotopic equilibrium with other phases, with δ18O values of +21‰. The isotopic characteristics of the pyroxenite xenoliths are consistent with a petrogenetic origin from mixing of lherzolitic mantle with slab-derived silicate and carbonatite melts. The anomalously low δ18O in the pyroxenes reflects metasomatism by a silicate melt from subducted altered oceanic crust, and high δ18O calcite is interpreted to have crystallized from a high δ18O carbonatitic melt derived from subducted ophicarbonate. Similar isotopic signatures of metasomatism are seen throughout the Rio Puerco xenolith suite and at Kilbourne Hole in the southern Rio Grande rift. The discrete metasomatic components likely originated from the subducted Farallon slab but were not mobilized until heating associated with Rio Grande rifting occurred. Oxygen diffusion modeling requires that metasomatism leading to the isotopic disequilibrium between calcite and pyroxene in the pyroxenites occurred immediately prior to entrainment. Melt infiltration into spinel-facies mantle (xenoliths) prior to eruption was thus likely connected to garnet-facies melting that resulted in eruption of the host alkali basalt.  相似文献   

14.
The Rio das Velhas greenstone belt is located in the Quadrilátero Ferrífero region, in the southern extremity of the São Francisco Craton, central-southern part of the State of Minas Gerais, SE Brazil. The metavolcano–sedimentary rocks of the Rio das Velhas Supergroup in this region are subdivided into the Nova Lima and Maquiné Groups. The former occurs at the base of the sequence, and contains the major Au deposits of the region. New geochronological data, along with a review of geochemical data for volcanic and sedimentary rocks, suggest at least two generations of greenstone belts, dated at 2900 and 2780 Ma. Seven lithofacies associations are identified, from bottom to top, encompassing (1) mafic–ultramafic volcanic; (2) volcano–chemical–sedimentary; (3) clastic–chemical–sedimentary, (4) volcaniclastic association with four lithofacies: monomictic and polymictic breccias, conglomerate–graywacke, graywacke–sandstone, graywacke–argillite; (5) resedimented association, including three sequences of graywacke–argillite, in the north and eastern, at greenschist facies and in the south, at amphibolite metamorphic facies; (6) coastal association with four lithofacies: sandstone with medium- to large-scale cross-bedding, sandstone with ripple marks, sandstone with herringbone cross-bedding, sandstone–siltstone; (7) non-marine association with the lithofacies: conglomerate–sandstone, coarse-grained sandstone, fine- to medium-grained sandstone. Four generations of structures are recognized: the first and second are Archean and compressional, driven from NNE to SSW; the third is extensional and attributed to the Paleoproterozoic Transamazonian Orogenic Cycle; and the fourth is compressional, driven from E to W, is related to the Neoproterozoic Brasiliano Orogenic Cycle. Gold deposits in the Rio das Velhas greenstone belt are structurally controlled and occur associated with hydrothermal alterations along Archean thrust shear zones of the second generation of structures.Sedimentation occurred during four episodes. Cycle 1 is interpreted to have occurred between 2800 and 2780 Ma, based on the ages of the mafic and felsic volcanism, and comprises predominantly chemical sedimentary rocks intercalated with mafic–ultramafic volcanic flows. It includes the volcano–chemical–sedimentary lithofacies association and part of the mafic–ultramafic volcanic association. The cycle is related to the initial extensional stage of the greenstone belt formation, with the deposition of sediments contemporaneous with volcanic flows that formed the submarine mafic plains. Cycle 2 encompasses the clastic–chemical–sedimentary association and distal turbidites of the resedimented association, in the eastern sector of the Quadrilátero Ferrífero. It was deposited in the initial stages of the felsic volcanism. Cycle 2 includes the coastal and resedimented associations in the southern sector, in advanced stages of subduction. In this southern sedimentary cycle it is also possible to recognize a stable shelf environment. Following the felsic volcanism, Cycle 3 comprises sedimentary rocks of the volcaniclastic and resedimented lithofacies associations, largely in the northern sector of the area. The characteristics of both associations indicate a submarine fan environment transitional to non-marine successions related to felsic volcanic edifices and related to the formation of island arcs. Cycle 4 is made up of clastic sedimentary rocks belonging to the non-marine lithofacies association. They are interpreted as braided plain and alluvial fan deposits in a retroarc foreland basin with the supply of debris from the previous cycles.  相似文献   

15.
The Guará and Botucatu formations comprise an 80 to 120 m thick continental succession that crops out on the western portion of the Rio Grande do Sul State (Southernmost Brazil). The Guará Formation (Upper Jurassic) displays a well-defined facies shift along its outcrop belt. On its northern portion it is characterised by coarse-grained to conglomeratic sandstones with trough and planar cross-bedding, as well as low-angle lamination, which are interpreted to represent braided river deposits. Southwards these fluvial facies thin out and interfinger with fine- to medium-grained sandstones with large-scale cross-stratification and horizontal lamination, interpreted as eolian dune and eolian sand sheets deposits, respectively. The Botucatu Formation is characterised by large-scale cross-strata formed by successive climbing of eolian dunes, without interdune and/or fluvial accumulation (dry eolian system). The contact between the Guará and the Botucatu formations is delineated by a basin-wide deflation surface (supersurface). The abrupt change in the depositional conditions that took place across this supersurface suggests a major climate change, from semi-arid (Upper Jurassic) to hyper-arid (Lower Cretaceous) conditions. A rearrangement of the Paraná Basin depocenters is contemporaneous to this climate change, which seems to have changed from a more restrict accumulation area in the Guará Formation to a wider sedimentary context in the Botucatu Formation.  相似文献   

16.
Tim Church 《Geoarchaeology》2000,15(7):649-678
The obsidian in the gravels deposited by the Rio Grande in New Mexico has interested archaeologists of the region, particularly the use of these gravels by prehistoric populations and the implications for obsidian sourcing studies. Previous investigations of Rio Grande gravel obsidian have focused on obsidian in the archaeological record. This study focuses on the natural occurrence and distribution of obsidian in the gravels and the implications for archaeological investigations. Spatial sampling of the gravels clearly indicate that obsidian, as well as other chipped stone material, is not uniformly distributed across the landscape. Geochemical analysis of the obsidian in the gravels establishes the true source constituents for the obsidian present in the gravels. The main source area for obsidian in the Rio Grande gravels is the Jemez Mountains, although some obsidian comes from Grant's Ridge, Polvadera, and No Aqua sources. Sources south of Mount Taylor, such as Red Hill and Mule Creek, do not occur in the Rio Grande gravels of southern New Mexico. © 2000 John Wiley & Sons, Inc.  相似文献   

17.
Gondwana coals of the Rio Bonito Formation (Paraná Basin) in Southern Brazil have generally large ash yields, so they could be better called coaly siltstones than coal. In addition, hummocky cross stratification (HCS) was found in several coal beds of the Rio Bonito Formation throughout the basin. In this formation, the frequent and close relationship between facies involving rocks generated by subaqueous gravity flows (diamictites) and coal itself provides an excellent depositional model based on resedimentary processes acting during deposition, as well as a stratigraphic rearrangement of the present units.In the State of Rio Grande do Sul (southern part of Paraná Basin), coals are actually prodelta deposits related to delta-front diamictite and conglomeratic sandstone with sigmoidal bedding. Coal-forming organic sediments would come from trees plucked by the floods, as indicated by the wood logs floating in the diamictite, and reworking of previous peat accumulations. Every coal layer is covered generally by paleosoil siltstones, which represent colonization at the top of the catastrophic flood deposit, ending a sedimentary cycle.In case of Brazilian coal settings, several authors recognized deltas (fan deltas or braid deltas). Here is particularly considered the general environment as a salted interior sea (lago mare, Hsü et al. sense).The present study will refer to three important lithostratigraphic units in the Carboniferous–Early Triassic cycle: the Itararé Group, the Rio Bonito Formation, and the Palermo Formation.Although the preferential mode of occurrence of HCS in shallow marine environments indicates a genesis attributed to storm action, other causes, such as catastrophic flooding, have been advanced. Mutti et al. [Mem. Sci. Geol. 48 (1996) 233] described flood-dominated deltaic systems with thick conglomerate, sandstone, and pelitic deposits, derived from small- to medium-scale fluvial systems and mountain-bordered drainage basins adjacent to the sea. In such settings, seaward sediment flow can increase dramatically when weather conditions can supply water in such amounts to produce catastrophic floods. Thick and laterally extensive sandstone lobes with HCS are the fundamental depositional elements of fan deltas and other river-dominated delta systems.Diamictites and coal together could be a result from Jökullhlaups—an Icelandic term for glacial outburst flood—in case of catastrophic floods coming from a melting mountain glacier, similar to the Columbia River Valley Scablands (15,000 BP) and in modern Iceland examples.  相似文献   

18.
通过野外剖面实测和详细描述,沅古坪地区下奥陶统盘家咀组为一套以灰色泥晶灰岩、砂屑灰岩和生物屑灰岩为主的深水碳酸盐岩沉积,主要发育垂向降落沉积、重力流沉积和等深流沉积3种沉积类型.根据岩性特征可将该等深流沉积划分为灰泥等深岩、砂屑等深岩和生物屑等深岩3种类型,其中灰泥等深岩尤为发育,砂屑等深岩、生物屑等深岩次之,并对其发育特征以及垂向层序进行了归纳总结.研究表明,研究区主要存在由单一灰泥等深岩、砂屑等深岩与灰泥等深岩、生物屑等深岩与灰泥等深岩组成的3种不完整等深岩层序.在剖面上,根据等深岩发育类型及程度,将盘家咀组划分为三部分,从第Ⅰ部分至第Ⅲ部分,等深岩沉积厚度所占比例呈增大趋势;结合区域沉积背景,认为该地区早奥陶世盘家咀组沉积期等深流活动的强度总体上呈由弱到强的变化规律,为此等深岩丘的成熟期,这对该等深岩丘的形成机理研究及其展布范围的界定具有重大意义.  相似文献   

19.
The Itajaí Basin located in the southern border of the Luís Alves Microplate is considered as a peripheral foreland basin related to the Dom Feliciano Belt. It presents an excellent record of the Ediacaran period, and its upper parts display the best Brazilian example of Precambrian turbiditic deposits. The basal succession of Itajaí Group is represented by sandstones and conglomerates (Baú Formation) deposited in alluvial and deltaic-fan systems. The marine upper sequences correspond to the Ribeir?o Carvalho (channelized and non-channelized proximal silty-argillaceous rhythmic turbidites), Ribeir?o Neisse (arkosic sandstones and siltites), and Ribeir?o do Bode (distal silty turbidites) formations. The Apiúna Formation felsic volcanic rocks crosscut the sedimentary succession. The Cambrian Subida leucosyenogranite represents the last felsic magmatic activity to affect the Itajaí Basin. The Brusque Group and the Florianópolis Batholith are proposed as source areas for the sediments of the upper sequence. For the lower continental units the source areas are the Santa Catarina, S?o Miguel and Camboriú complexes. The lack of any oceanic crust in the Itajaí Basin suggests that the marine units were deposited in a restricted, internal sea. The sedimentation started around 600?Ma and ended before 560?Ma as indicated by the emplacement of rhyolitic domes. The Itajaí Basin is temporally and tectonically correlated with the Camaqu? Basin in Rio Grande do Sul and the Arroyo del Soldado/Piriápolis Basin in Uruguay. It also has several tectono-sedimentary characteristics in common with the African-equivalent Nama Basin.  相似文献   

20.
Groundwater of the southern Jornada del Muerto Basin, an intermontane basin structure associated with the Rio Grande rift located in south-central New Mexico, USA, was analyzed chemically and microbially. A microbial phospholipid fatty acids (PLFA) analysis revealed a sparse microbial population consisting of relatively simple microorganisms with no major population changes along the flow system. A nucleic acid (DNA) analysis of the groundwater resulted in the identification of ten eubacterial and one archeal species. Chemical analyses revealed that sulfate along with calcium, magnesium, iron, and manganese is removed by about an order of magnitude in concentration from the recharge area to the discharge area. The removal of iron, manganese, magnesium, and to some extent calcium can be explained by oxidation reactions and the precipitation of dolomite. Sulfate and additional calcium are most likely removed by the precipitation of gypsum. Thiobacillus spp. are oxidizing metal sulfides that occur as subsurface sulfide mineral deposits to sulfuric acid, which subsequently reacts with calcium carbonate and water to precipitate gypsum. The presence of these sulfide deposits exposed to oxygenated water in the deep groundwater flow system significantly alters its chemical and bacteriological composition. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号