首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 We have studied the dislocation microstructures that develop in (Mg0.9Fe0.1)2SiO4 wadsleyite deformed by simple shear at high pressure. The experiments were performed in a multianvil apparatus with the shear assembly designed by Karato and Rubie (1997). The samples were synthesized in a separate experiment from high-purity oxides. The deformation experiments were carried out at 14 GPa and 1300 °C with time durations ranging from 1 to 8 h leading to plastic shear strains of 60 and 73%, respectively. The microstructures investigated by transmission electron microscopy (TEM) show that dislocation glide is activated under these conditions over the whole experimental time. The easy slip systems at 1300 °C involve 1/2<111> dislocations gliding in {101} as well as [100] dislocations gliding in (010) and {011}. Received: 15 July 2002 / Accepted: 14 February 2003 Acknowledgements High-pressure experiments were performed at the Bayerisches Geoinstitut under the EU IHP — Access to Research Infrastructures Programme (Contract no. HPRI-1999-CT-00004 to D.C. Rubie). The quality of the preparation of the TEM specimens by H. Schultze is greatly appreciated.  相似文献   

2.
Atransmission electron microscope (TEM) study of quartz-coesite inclusions in garnet in crustal rocks from the Western Alps is presented. Coesite shows a low dislocation density (<107 cm?2), and quartz a higher density of defects, Brasil twins (104 cm?1) and dislocations (108 cm?2). It is concluded that coesite has been not or only slightly plastically deformed and that the yield strength of coesite is higher than that of quartz. The large scale deformation implications are briefly discussed. TEM observations show no systematic topotactic relationship between the two polymorphs and their boundaries have a scalloped morphology which suggests that growth of quartz from coesite was controlled by a diffusion process.  相似文献   

3.
Optical, cathodoluminescence and transmission electron microscope (TEM) analyses were conducted on four groups of calcite fault rocks, a cataclastic limestone, cataclastic coarse-grained marbles from two fault zones, and a fractured mylonite. These fault rocks show similar microstructural characteristics and give clues to similar processes of rock deformation. They are characterized by the structural contrast between macroscopic cataclastic (brittle) and microscopic mylonitic (ductile) microstructures. Intragranular deformation microstructures (i.e. deformation twins, kink bands and microfractures) are well preserved in the deformed grains in clasts or in primary rocks. The matrix materials are of extremely fine grains with diffusive features. Dislocation microstructures for co-existing brittle deformation and crystalline plasticity were revealed using TEM. Tangled dislocations are often preserved at the cores of highly deformed clasts, while dislocation walls form in the transitions to the fine-grained  相似文献   

4.
 We have studied the plastic deformation of Mg2SiO4 wadsleyite polycrystals. Wadsleyite was synthesized from a forsterite powder in a multianvil apparatus. It was then recovered and placed in a second multianvil assembly designed to induce plastic deformation by compression between two hard alumina pistons. After the deformation experiment, the microstructures are characterized by transmission electron microscopy (TEM) and large-angle convergent beam electron diffraction (LACBED). Deformation experiments have been carried out at 15–19 GPa and at temperatures ranging from room temperature to 1800–2000 °C. Five different dislocation types have been identified by LACBED: [100], 1/2〈111〉, [010], 〈101〉 and [001]. The [001] dislocations result from dislocation reactions and not from activation of a slip system. The [010] dislocations are activated under high stresses at the beginning of the experiments and further relax by decomposition into 1/2〈111〉 dislocations or by dissociation into four 1/4[010] partial dislocations. The following slip systems have been identified: 1/2〈111〉{101}, [100](010), [100](001), [100]{011}, [100]{021}, [010](001), [010]{101} and 〈101〉(010). Received: 15 July 2002 / Accepted: 14 February 2003 Acknowledgements High-pressure experiments were performed at the Bayerisches Geoinstitut under the EU IHP – Access to Research Infrastructures Programme (Contract no. HPRI-1999-CT-00004 to D.C. Rubie). P.C. has benefited from a Congé thématique pour recherche from the University of Lille, and would like to thank warmly all the people in Bayreuth who contributed to this work by daily assistance and discussions: Nathalie Bolfan-Casanova, Daniel Frost, Jed L. Mosenfelder and Brent Poe. The quality of the preparation of the TEM specimens by H. Schultze is greatly appreciated.  相似文献   

5.
The distribution of impurity atoms (At. No.> 11) in two naturally deformed quartzites has been determined by microchemical analyses in a scannling transmission electron microscope. The study reveals impurity segregations at sub-grain boundaries and dislocations. The importance of the presence and segregation of impurities other than OH to quartz deformation studies is discussed. It is suggested that the potential role of these impurities on the development and behaviour of deformation microstructures warrants the inclusion of this previously neglected topic into future quartz deformation studies.  相似文献   

6.
The research into the high- pressure(HP) and ultrahigh-pressure (UHP) metam orphism has remained on the cuttingedge as well as a hot issue in the contemporary geosciencessince the coesite and diamond were discovered in the metamor-phic rocks.The jadeite quartzite from Anhui Province occur-ring as lenses within gneisses contains a m ineral assem blage ofjadeite,garnet and quartz.The discovery of coesite and itspseudomorphs in jadeite and garnet proves that the jadeitequartzite is an im portan…  相似文献   

7.
Microstructural and petrological analysis of samples with increasing strain in high‐pressure (HP) shear zones from the Haram garnet corona gabbro give insights into the deformation mechanisms of minerals, rheological properties of the shear zone and the role of deformation in enhancing metamorphic reactions. Scanning electron microscopy with electron backscattering diffraction (SEM–EBSD), compositional mapping and petrographic analysis were used to evaluate the nature of deformation in both reactants and products associated with eclogitization. Plagioclase with a shape‐preferred orientation that occurs in the interior part of layers in the mylonitic sample deformed by intracrystalline glide on the (0 0 1)[1 0 0] slip system. In omphacite, crystallographic preferred orientations indicate slip on (1 0 0)[0 0 1] and (1 1 0)[0 0 1] during deformation. Fine‐grained garnet deformed by diffusion creep and grain‐boundary sliding. Ilmenite deformed by dislocation glide on the basal and, at higher strains, prism planes in the a direction. Relationships among the minerals present and petrological analysis indicate that deformation and metamorphism in the shear zones began at 500–650 °C and 0.5–1.4 GPa and continued during prograde metamorphism to ultra‐high‐pressure (UHP) conditions. Both products and reactants show evidence of syn‐ and post‐kinematic growth indicating that prograde reactions continued after strain was partitioned away. The restriction of post‐kinematic growth to narrow regions at the interface of garnet and plagioclase and preservation of earlier syn‐kinematic microstructures in older parts layers that were involved in reactions during deformation show that diffusion distances were significantly shortened when strain was partitioned away, demonstrating that deformation played an important role in enhancing metamorphic reactions. Two important consequences of deformation observed in these shear zones are: (i) the homogenization of chemical composition gradients occurred by mixing and grain‐boundary migration and (ii) composition changes in zoned metamorphic garnet by lengthening diffusion distances. The application of experimental flow laws to the main phases present in nearly monomineralic layers yield upper limits for stresses of 100–150 MPa and lower limits for strain rates of 10?12 to 10?13 s?1 as deformation conditions for the shear zones in the Haram gabbro that were produced during subduction of the Baltica craton and resulted in the production of HP and UHP metamorphic rocks.  相似文献   

8.
Optical and transmission electron microscopy have been used to study the microstructures in a series of plagioclase feldspars which had been experimentally deformed in compression. The observations show that deformation takes place by three mechanisms: (1) brittle fracture, (2) twinning and (3) slip due to the generation and motion of dislocations. Optical “deformation lamellae” are shown to be due to bunches of microfractures and to walls of tangled dislocations. Twins and fractures are often intimately associated and dislocations are often generated at fracture steps or voids. Moving dislocations apparently always generate a strip of fault in the slip plane. This, together with structural considerations as well as the visibility of dislocations (under various diffracting conditions) and the orientation of the applied stress, has made it possible to determine the slip systems which have operated in the deformed specimens.  相似文献   

9.
基性麻粒岩产于大陆地壳深部,它的研究可以为大陆岩石圈的性质、组成、演化和深部动力学过程提供重要信息。南天山库米什榆树沟地区发育总厚达1000多米的基性麻粒岩构造岩片,走向南东,朝北东推覆。剖面上和石炭纪蛇绿混杂岩共存,并发生了石榴子石的旋转变形和强烈的石英-长石矿物相韧性变形。然而它们的变形条件至今尚未被研究。本文运用透射电镜(TEM)超微组构技术对榆树沟基性麻粒岩中石英和石榴子石进行了详细研究,结果表明,石英中存在着丰富的超显微变形构造,自由位错、亚颗粒和位错网非常发育,这表明研究区基性麻粒岩在折返抬升过程中曾遭受过较强的石英-长石相韧性变形作用;石榴子石中的超微变形构造则极为少见,只在其中发现几根自由位错,并在其颗粒边缘发现少量亚颗粒构造,说明该矿物主体属于脆性变形。这两种矿物变形性质的差异,反映了石榴子石的晶体结构在该条件下比石英更稳定,而且说明石榴子石的变质温度没有超过900℃,也就是说,本区麻粒岩的变质作用并非发生在极高温度的条件下。  相似文献   

10.
Transmission electron microscopy (TEM) has been used to investigate deformation microstructures of synthetic stishovite specimens deformed at 14 GPa, 1,300°C. Geometrical characteristics of numerous dislocations have been characterized by dislocation contrast and stereographic analyses in order to identify the easy slip systems of stishovite. TEM data allowed us to characterize the following slip systems: 〈100〉{001}, 〈100〉{010}, 〈100〉{021}, [001]{100}, [001]{110}, [001]{210} and Observation of sub-grain boundaries and scalloped edge dislocations suggest that climb has been activated in the specimens.  相似文献   

11.
At moderate temperature (T≈1/3 T Melt) recovery processes become very active in wet quartz and many subgrain boundaries (sgb's) are formed which still contain interesting information on the deformation mechanisms. In particular, the geometrical characteristics of a sgb (normal, rotation axis) depend upon the glide systems which have been activated. Possible sgb's in quartz are studied from a theoretical point of view with the help of the Frank formula. The predictions are compared with observations by optical microscopy and by transmission electron microscopy (TEM) on naturally deformed quartz samples. Most of the predicted sgb's are effectively observed and there is an excellent agreement between theory and observation. This allows a rapid characterization of sgb's in tem to be performed by standard stereographic methods: only the directions of the dislocations and the plane of the sgb are determined; they are compared to a table deduced from geometrical considerations and the glide systems which have been activated during the deformation (at least the last stage of deformation) can be deduced. This method is very important for the case of quartz because the rapid irradiation of this material under the electron beam renders very difficult the characterization of the Burgers vectors of free dislocations. A similar method can be developed for observations in optical microscopy when the crystallographic orientation of the studied thin sections can be determined.  相似文献   

12.
As uniaxial compression tests of α spodumene LiAlSi2O6 at various temperatures and strain rates systematically led to brittle fracture, room-temperature microindentations have been performed with a view to characterizing the glide systems. Transmission electron microscopy (TEM) investigations show that only the [010] (100) glide system is activated. The resulting dislocations are widely dissociated (up to 3,000 Å) following the reaction [010]→[0 1/2 1/6]+[0 1/2 \(\bar 1\) /6]. In contrast, in naturally deformed spodumene the activated glide systems found in TEM studies are [001] {110} and 1/2〈110〉{1 \(\bar 1\) 0} and the corresponding dislocations are not dissociated. Such a difference in mechanical behaviour is interpreted in considering the necessary impingement of the oxygen atoms during dislocation glide. It is shown that only the dissociated b dislocations can glide with a moderate lattice friction at room temperature. The proposed model is supported by the first exploratory deformation runs performed under confining pressure.  相似文献   

13.
Naturally deformed clinoamphiboles from the Selbu-Tydal and Forsbäck-Tärnaby areas of the Scandinavian Caledonides exhibit a well defined subgrain microstructure. From a transmission electron microscopy study (TEM), the subgrain boundaries are shown to consist of arrays of positive and negative screw dislocations with Burgers vector . Locally expanded loops are present having long screw segments. The subgrain boundaries are parallel to rational crystallographic planes of the type (hk0). The density of isolated dislocations within the subgrains is low. In addition planar defect structures parallel to (010) and bounded by screw dislocations with are observed. Based on metamorphic criteria the PT values at the time of the amphibole growth have been estimated at 450°–600°C and 4–6 kbar, and these represent maximum conditions for the deformation. The present results indicate that slip on (hk0) [001] is an operative deformation mechanism in naturally deformed clinoamphiboles.  相似文献   

14.
To understand the preservation of coesite inclusions in ultrahigh‐pressure (UHP) metamorphic rocks, an integrated petrological, Raman spectroscopic and focussed ion beam (FIB) system–transmission electron microscope (TEM) study was performed on a UHP kyanite eclogite from the Sulu belt in eastern China. Coesite grains have been observed only as rare inclusions in kyanite from the outer segment of garnet and in the matrix. Raman mapping analysis shows that a coesite inclusion in kyanite from the garnet rim records an anisotropic residual stress and retains a maximum residual pressure of ~0.35 GPa. TEM observations show quartz is absent from the coesite inclusion–host kyanite grain boundaries. Numerous dislocations and sub‐grain boundaries are present in the kyanite, but dislocations are not confirmed in the coesite. In particular, dislocations concentrate in the kyanite adjacent to the boundary with the coesite inclusion, and they form a dislocation concentration zone with a dislocation density of ~109 cm?2. A high‐resolution TEM image and a fast Fourier transform‐filtered image reveal that a tiny dislocation in the dislocation concentration zone is composed of multiple edge dislocations. The estimated dislocation density in most of the kyanite away from the coesite inclusion–host kyanite grain boundaries is ~108 cm?2, being lower than that in kyanite adjacent to the coesite. In the case of a coesite inclusion in a matrix kyanite, using Raman and TEM analyses, we could not identify any quartz at the grain boundaries. Dislocations are not observed in the coesite, but numerous dislocations and stacking faults are developed in the kyanite. The estimated overall dislocation density in the coesite‐bearing matrix kyanite is ~108 cm?2, but a high dislocation density region of ~109 cm?2 is also present near the coesite inclusion–host kyanite grain boundaries. Inclusion and matrix kyanite grains with no coesite have dislocation densities of ≤108 cm?2. Dislocation density is generally reduced during an annealing process, but our results show that not all dislocations in the kyanite have recovered uniformly during exhumation of the UHP rocks. Hence, one of the key factors acting as a buffer to inhibit the coesite to quartz transformation is the mechanical interaction between the host and the inclusion that lead to the formation of dislocations in the kyanite. The kyanite acts as an excellent pressure container that can preserve coesite during the decompression of rocks from UHP conditions. The search for and study of inclusions in kyanite may be a more suitable approach for tracing the spatial distribution of UHP metamorphic rocks.  相似文献   

15.
We report the field, petrographic and mineral chemical characteristics of relict super‐silicic (=majoritic) garnet microstructures from the Otrøy peridotites in the Western Gneiss Region, Norway. The evidence for the former existence of super‐silicic garnet consists of two‐pyroxene exsolution microstructures from garnet. Estimates of the initial composition of the super‐silicic garnet imply pressures of 6–6.5 GPa, indicating that the Otrøy garnet peridotites were derived from depths >185 km. The garnet peridotites consist of inter‐banded variable compositions with c. 50% garnet peridotite and 50% garnet‐free peridotite. Two distinct garnet types were identified: (a) normal matrix garnet, grain‐size ≤4 mm, and (b) large isolated single garnet crystals and/or (polycrystalline) garnet nodules up to 10 cm in size. Large garnet nodules occur only within limited bands within the garnet peridotites. The relicts of super‐silicic garnet were exclusively found in some (not all) of the larger garnet nodules. Petrographic observations revealed that the microstructure of nodular garnet consists of the following four characteristic elements. (1) Individual garnet nodules are polycrystalline, with grain sizes of 2–8 mm. Garnet grain boundaries are straight with well‐defined triple junctions. (2) Some garnet triple junctions and garnet grain boundaries are decorated by interstitial orthopyroxene. (3) Cores of larger polycrystalline garnet contain two‐pyroxene exsolution microstructures. (4) Precipitation‐free rims (2 mm thick) surround garnet cores containing the exsolved pyroxene microstructure. Pyroxene exsolution from super‐silicic garnet was subsequently followed by brittle–ductile deformation of garnet. Both exsolved pyroxene needles and laths become undulous or truncated by fractures. Simultaneous garnet plasticity is indicated by the occurrence of high densities of naturally decorated dislocations. Transmission electron microscopy observations indicate that decoration is due to Ti‐oxide precipitation. Estimates of the P–T conditions for mineral chemical equilibration were obtained from geothermobarometry. The mineral compositions equilibrated at mantle conditions around 805±40 °C and 3.2±0.2 GPa. These P–T estimates correspond to cold continental lithosphere conditions at depths of around 105 km. From a combination of both depth estimates it can be concluded that the microstructural memory of the rock extends backwards to twice as great a depth range as obtained by thermobarometric methods. Available geochronological and geochemical data of Norwegian garnet peridotites suggest a multi‐stage, multi‐orogenic exhumation history.  相似文献   

16.
Elongate and deformed garnets from Glenelg, NW Scotland, occurwithin a thin shear zone transecting an eclogite body that hasundergone partial retrogression to amphibolite facies at circa700°C. Optical microscopy, back-scattered electron imaging,electron probe microanalysis and electron back-scatter diffractionreveal garnet sub-structures that are developed as a functionof strain. Subgrains with low-angle misorientation boundariesoccur at low strain and garnet orientations are dispersed, aroundrational crystallographic axes, across these boundaries. Towardshigh-strain areas, boundary misorientations increase and thereis a loss of crystallographic control on misorientations, whichtend towards random. In high-strain areas, a polygonal garnetmicrostructure is developed. The garnet orientations are randomlydispersed around the original single-crystal orientation. Somegarnet grains are elongate and Ca-rich garnet occurs on thefaces of elongate grains oriented normal to the foliation. Commonly,the garnet grains are admixed with matrix minerals, and, wherein contact with other phases, garnet is well faceted. We suggestthat individual garnet porphyroclasts record an evolution fromlow-strain conditions, where dislocation creep and recoveryaccommodated deformation, through increasing strain, where dynamicrecrystallization occurred by subgrain rotation, to higheststrains, where recrystallized grains were able to deform bydiffusion creep assisted grain boundary sliding with associatedrotations. KEY WORDS: diffusion creep; EBSD; garnet; plastic deformation; recrystallization  相似文献   

17.
韦博  金振民  章军锋 《地球科学》2013,38(5):983-994
对超高压变质带中橄榄岩变形显微构造的研究, 有助于了解板块边界构造环境中地幔物质的流变性质和变形机制, 进而探讨其在深俯冲/折返过程中的地球动力学过程的作用.采用光学显微镜、电子探针、红外光谱、电子背散射衍射(EBSD)、位错氧化缀饰等多种方法系统研究了来自中国大别碧溪岭的石榴异剥橄榄岩中的变形显微构造.研究结果表明: (1)碧溪岭石榴异剥橄榄岩发育较好的形状优选方位, 但只有单斜辉石显示了强晶格优选方位, 而橄榄石晶格优选方位很弱, 与常见上地幔橄榄岩中单斜辉石组构弱而橄榄石组构强的特点差异显著, 反映了单斜辉石经历位错蠕变而橄榄石经历位错调节的颗粒边界滑移变形; (2)碧溪岭异剥橄榄岩中单斜辉石和橄榄石均含有一定量的结构水, 其中单斜辉石含水量124×10-6~274×10-6, 橄榄石含水量38×10-6~80×10-6, 高于常见造山带橄榄岩中各矿物的含水量, 可能反映了壳源物质混染引起的高含水量变形环境; (3)橄榄石中发育显著位错显微构造, 根据位错显微构造计算的变形差异应力为230~600 MPa, 高于正常上地幔稳态流变应力, 反映了俯冲带中的相对低温变形环境.综合分析研究表明, 超高压变质带中的高压、低温、高差异应力和高结构水含量是形成碧溪岭相对独特的橄榄石、单斜辉石变形显微构造的原因.   相似文献   

18.
We combined microstructural observations and high-resolution crystallographic preferred orientation (CPO) mapping to unravel the active deformation mechanisms in garnet clinopyroxenites, garnet–spinel websterites, and spinel websterites from the Beni Bousera peridotite massif. All pyroxenites display microstructures recording plastic deformation by dislocation creep. Pyroxene CPOs are consistent with dominant slip on [001]{110} in clinopyroxene and on [001](100) or [001](010) in orthopyroxene. Garnet clinopyroxenites have however high recrystallized fractions and finer grain sizes than spinel websterites. Recrystallization mechanisms also differ: subgrain rotation dominates in garnet clinopyroxenites, whereas in spinel websterites nucleation and growth also contribute. Elongated shapes and strong intracrystalline misorientations suggest plastic deformation of garnet, but CPOs are weak. Clinopyroxene porphyroclasts in spinel websterites show deformation twins underlined by orthopyroxene exsolutions. Thermodynamic calculations indicate that garnet clinopyroxenites deformed at 2.0 GPa and 950–1000 °C and spinel pyroxenites at 1.8 GPa and 1100–1150 °C. The lower temperatures may explain the faster work rates implied by the finer grained microstructures in garnet clinopyroxenites. Greater stresses may have also reduced the competence contrast between garnet and pyroxene in the garnet pyroxenites and, at the outcrop scale, lowered the competence contrast between pyroxenites and peridotites, favoring mechanical dispersion of pyroxenites in the cooler lithospheric mantle.  相似文献   

19.
Mafic microgranular enclaves, composed of diopside and rare magnesium biotite phenocrysts in a groundmass of diopside, biotite, apatite, Fe-Ti-oxides, and alkali feldspar, are associated with Neoproterozoic Piquiri potassic syenite in southern Brazil. Co-genetic mica and clinopyroxene cumulates present inclusions of pyrope-rich garnet in diopside phenocrysts. Textural evidence, as well as the chemical and mineralogical composition, suggest that enclaves crystallized from a lamprophyric magma and co-mingled with the host syenitic magma. The contrasting temperature between both magmas and the consequent chilling was important for the preservation of some early-crystallized minerals in the mafic magma. Diopside groundmass grains contain micro-inclusions of K-rich augite and phlogopite, and some clinopyroxene phenocrysts and elongate groundmass crystals have potassium-rich cores. The pyrope-rich garnet have high #mg number (67–68), with appreciable amounts of Na2O and K2O comparable to pyrope synthesized at 5 GPa. The extremely high K2O contents of K-rich augite micro-inclusions suggest non-equilibrium with the parental magma, whereas the other K-rich clinopyroxenes are similar to K-clinopyroxenes produced at 5–6 GPa. K-clinopyroxene and garnet in mafic microgranular enclaves suggest that lamprophyric magma started its crystallization at upper mantle conditions, and chilled clinopyroxenes with measurable amounts of K2O are taken as evidence that co-mingling began still at mantle pressures.  相似文献   

20.
In order to better identify the mineral phase which controls the rheology of the transition zone (between 410 and 660 km depth) transmission electron microscopy observations were made on several coexisting spinel-garnet assemblies: alkremite xenolith; pyrope-rich – MgO:1.1Al2O3 spinel assembly deformed at 1173K, 800 MPa in a Griggs apparatus; (Mg,Fe)3(Al,Mg,Si)2Si3O12 majorite – (Mg,Fe)2SiO4 spinel assembly synthesized in a laser heated diamond anvil cell. It was found that garnet crystals systematically remain undeformed while spinel crystals are plastically deformed. These results are in accord with the assumption that the rheology of majorite is stronger than the rheology of spinel, in the conditions of the transition zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号