首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The likelihood that the carbon fluxes measured as part of the US-JGOFS field program in the equatorial Pacific ocean (EgPac) during 1992 yielded a balanced carbon budget for the surface ocean was determined. The major carbon fluxes incorporated into a surface carbon budget were: new production, particulate organic carbon (POC) and dissolved organic carbon (DOC) export, CaC03 export, C02 gas evasion, dissolved inorganic carbon (DIC) supply, and the time rate of charge. The ratio of the measured concentration gradients of DOC and DIC provided a constraint on the ratio of POC/DOC export. Uncertainties of ±30–50% for individual carbon flux measurements reduce the likelihood that a carbon balance can be measured during a JGOFS process-type study. As a benchmark, carbon fluxes were prescribed to yield a hypothetical surface carbon budget that was, on average, balanced. Given the typical errors in the individual carbon fluxes, however, there was only about a 30% chance that this hypothetical budget could be measured to be balanced to ±50%. Using this benchmark, it was determined that there was a 95 % chance that the carbon flux measurements yielded a surface DIC budget balanced (to ±50%) during El Nino conditions in boreal spring 1992, when the total organic carbon export rate was - 5 mmol C m-2 day- 1 and the POC export was 3 mmol C m−2 day−1. In boreal fall 1992, during cold period conditions, there was a 70% chance that the surface carbon DIC budget was balanced when the total organic carbon export rate was 20 mmol C m−2 day−1 and export was -13 mmol C m-2 day-'. The DOC to DIC concentration gradient ratio of - -0.15, measured in depth profiles down to 100m and in surface waters, was used as an important constraint that most (> 70%) of the organic carbon exported from the euphotic zone was POC rather than DOC. If a balanced surface DIC budget was used to test the compatibility of individual carbon fluxes measured during EgPac, then a three- to four-fold increase in total and particulate organic carbon export between spring and fall is indicated. This increase was not reflected in the POC loss rates measured by drifting sediment trap collections or estimated by234Th deficiencies coupled with the C/Th measured on suspended particles.  相似文献   

2.
Upper-ocean fluxes of particulate organic carbon (POC) and biogenic silica (bSi) are calculated from four US JGOFS cruises along 170°W using a thorium-234 based approach. Both POC and bSi fluxes exhibit large variability vs. latitude during the seasonal progression of diatom dominated blooms. POC fluxes at 100 m of up to 50 mmol C m−2 d−1 are found late in the bloom, and farthest south near the Ross Sea Gyre. Biogenic Si fluxes also peak late in the bloom as high as 15 mmol Si m−2 d−1, but this flux peak occurs at a different latitude, just south of the Antarctic Polar Front (APF), which is centered around 60°S along this cruise track. The ratios of both POC and bSi export relative to their production rates are large, suggesting an efficient biological pump at these latitudes. The highest relative bSi/POC flux ratios at 100 m are found just south of the APF, coincident with a bSi/POC flux peak seen in 1000 m traps during this same program by Deep-Sea Research II (Honjo et al., Deep-Sea Research II 47, 3521–3548). These data suggest that efficient export at these latitudes can support the high accumulation rates of bSi found in the sediments under and south of the APF, despite the generally low biomass and productivity levels in this region.  相似文献   

3.
We examined the impact of a cyclonic eddy and mode-water eddy on particle flux in the Sargasso Sea. The primary method used to quantify flux was based on measurements of the natural radionuclide, 234Th, and these flux estimates were compared to results from sediment traps in both eddies, and a 210Po/210Pb flux method in the mode-water eddy. Particulate organic carbon (POC) fluxes at 150 m ranged 1–4 mmol C m−2 d−1 and were comparable between methods, especially considering differences in integration times scales of each approach. Our main conclusion is that relative to summer mean conditions at the Bermuda Atlantic Time-series Study (BATS) site, eddy-driven changes in biogeochemistry did not enhance local POC fluxes during this later, more mature stage of the eddy life cycle (>6 months old). The absence of an enhancement in POC flux puts a constraint on the timing of higher POC flux events, which are thought to have caused the local O2 minima below each eddy, and must have taken place >2 months prior to our arrival. The mode-water eddy did enhance preferentially diatom biomass in its center, where we estimated a factor of three times higher biogenic Si flux than the BATS summer average. An unexpected finding in the highly depth-resolved 234Th data sets is narrow layers of particle export and remineralization within the eddy. In particular, a strong excess 234Th signal is seen below the deep chlorophyll maxima, which we attribute to remineralization of 234Th-bearing particles. At this depth below the euphotic zone, de novo particle production in the euphotic zone has stopped, yet particle remineralization continues via consumption of labile sinking material by bacteria and/or zooplankton. These data suggest that further study of processes in ocean layers is warranted not only within, but below the euphotic zone.  相似文献   

4.
The Ross Sea, a region of high seasonal production in the Southern Ocean, is characterized by blooms of the haptophyte Phaeocystis antarctica and of diatoms. The different morphology, structural composition and consumption of these two phytoplankton by grazing zooplankton may result in different carbon cycling dynamics and carbon flux from the euphotic zone. We sampled short-term (2 days) particle flux at 5 sites from 177.6°W to 165°E along a transect at 76.5°S with traps placed below the euphotic zone at 200 m during December 1995–January 1996. We estimated carbon flux of as many eucaryotic organisms and fecal pellets as possible using microscopy for counts and measurements and applying volume:carbon conversions from the literature. Eucaryotic organisms contributed about 20–40% of the total organic carbon flux in both the central Ross Sea polynya and in the western polynya, and groups of organisms differed in contribution to the carbon flux at the different sites. Algal carbon flux ranged from 4.5 to 21.1 mg C m−2 day−1 and consisted primarily of P. antarctica (cell plus mucus) and diatom carbon at all sites. Different diatom species dominated the diatom flux at different sites. Carbon fluxes of small pennate diatoms may have been enhanced by scavenging, by sinking senescent P. antarctica colonies. Heterotrophic carbon flux ranged from 9.2 to 37.6 mg C m−2 day−1 and was dominated by athecate heterotrophic dinoflagellate carbon in general and by carbon flux of a particular large athecate dinoflagellate at two sites. Fecal pellet carbon flux ranged from 4.6 to 54.5 mg C m−2 day−1 and was dominated by carbon from ovoid/angular pellets at most sites. Analysis of fecal pellet contents suggested that large protozoans identified by light microscopy contributed to ovoid/angular fecal pellet fluxes. Carbon flux as a percentage of daily primary production was lowest at sites where P. antarctica predominated in the water column and was highest at sites where fecal pellet flux was highest. This indicates the importance of grazers in carbon export.  相似文献   

5.
Using data collected during cruises of the JGOFS equatorial Pacific Study in March/April and October of 1992 at the equator (140°W), we examine the downward transport of carbon by three size classes of die] migrant mesozooplankton (200–500 gm, 500–1000 μm and 1000–2000 gm). In addition to respiratory carbon flux, we consider the flux due to mortality of migrators below the euphotic zone. Diel migrant mesozooplankton biomass was estimated from the difference between nighttime and daytime biomass within the euphotic zone. Except for a four-day period early in the March/April cruise, mesozooplankton nighttime biomass was significantly larger than daytime biomass within the euphotic zone during both cruises. We estimate that the downward flux of carbon from the euphotic zone due to mesozooplankton die] vertical migrators was an average of 0.6 mmol Cm−2 d−1 and 1.1 mmol C m−2 d−1 during the March/April and October cruises, respectively. Addition of this flux to the gravitational particle sinking flux estimated from234Th measurements during the same period results in a 31 % increase in the carbon export flux from the euphotic zone in the equatorial Pacific during the March/April cruise and a 44% increase in the October cruise. The migratory flux is strongly dependent on whether feeding takes place below the euphoric zone, the length of time migrators spend in the deep waters, and the mortality rate of migrators.  相似文献   

6.
Repeated measurements of depth profiles of 234Th (dissolved, 1–70 and >70 μm particulate) at three stations (Orca, Minke, Sei) in the Ross Sea have been used to estimate the export of Th and particulate organic carbon (POC) from the euphotic zone. Sampling was carried out on three JGOFS cruises covering the period from October 1996 (austral early spring) to April 1997 (austral fall). Deficiencies of 234Th relative to its parent 238U in the upper 100 m are small during the early spring cruise, increase to maximum values during the summer, and decrease over the course of the fall. Application of a non-steady-state model to the 234Th data shows that the flux of Th from the euphotic zone occurs principally during the summer cruise and in the interval between summer and fall. Station Minke in the southwestern Ross Sea appears to sustain significant 234Th removal for a longer period than is evident at Orca or Sei. Particulate 234Th activities and POC are greater in the 1–70 μm size fraction, except late in the summer cruise, when the >70 μm POC fraction exceeds that of the 1–70 μm fraction. The POC/234Th ratio in the >70 μm fraction exceeds that in the 1–70 μm fraction, likely due in part to the greater availability of surface sites for Th adsorption in the latter. Particulate 234Th fluxes are converted to POC fluxes by multiplying by the POC/234Th ratio of the >70 μm fraction (assumed to be representative of sinking particles). POC fluxes calculated from a steady-state Th scavenging model range from 7 to 91 mmol C m−2 d−1 during late January–early February, with the greatest flux observed at station Minke late in the cruise. Fluxes estimated with a non-steady-state Th model are 85 mmol C m−2 d−1 at Minke (1/13–2/1/97) and 50 mmol C m−2 d−1 at Orca (1/19–2/1/97). The decline in POC inventories (0–100 m) is most rapid in the southern Ross Sea during the austral summer cruise (Smith et al., 2000. The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep-Sea Research II 47, 3119–3140. Gardner et al., 2000. Seasonal patterns of water column particulate organic carbon and fluxes in the Ross Sea, Antarctica. Deep-Sea Research II 47, 3423–3449), and the 234Th-derived POC fluxes indicate that the sinking flux of POC is 30–50% of the POC decrease, depending on whether steady-state or non-steady-state Th fluxes are used. Rate constants for particle POC aggregation and disaggregation rates are calculated at station Orca by coupling particulate 234Th data with 228Th data on the same samples. Late in the early spring cruise, as well as during the summer cruise, POC aggregation rates are highest in near-surface waters and decrease with depth. POC disaggregation rates during the same time generally increase to a maximum and are low at depth (>200 m). Subsurface aggregation rates increase to high values late in the summer, while disaggregation rates decrease. This trend helps explain higher values of POC in the >70 m fraction relative to the 1–70 m fraction late in the summer cruise. Increases in disaggregation rate below 100 m transfer POC from the large to small size fraction and may attenuate the flux of POC sinking out of the euphotic zone.  相似文献   

7.
We utilized 234Th, a naturally occurring radionuclide, to quantify the particulate organic carbon (POC) export rates in the northern South China Sea (SCS) based on data collected in July 2000 (summer), May 2001 (spring) and November 2002 (autumn). Th-234 deficit was enhanced with depth in the euphotic zone, reaching a subsurface maximum at the Chl-a maximum in most cases, as commonly observed in many oceanic regimes. Th-234 was in general in equilibrium with 238U at a depth of ∼100 m, the bottom of the euphotic zone. In this study the 234Th deficit appeared to be less significant in November than in July and May. A surface excess of 234Th relative to 238U was found in the summer over the shelf of the northern SCS, most likely due to the accumulation of suspended particles entrapped by a salinity front. Comparison of the 234Th fluxes from the upper 10 m water column between 2-D and traditional 1-D models revealed agreement within the errors of estimation, suggesting the applicability of the 1-D model to this particular shelf region. 1-D model-based 234Th fluxes were converted to POC export rates using the ratios of bottle POC to 234Th. The values ranged from 5.3 to 26.6 mmol C m−2d−1 and were slightly higher than those in the southern SCS and other oligotrophic areas. POC export overall showed larger values in spring and summer than in autumn, the seasonality of which was, however, not significant. The highest POC export rate (26.6 mmol C m−2d−1) appeared at the shelf break in spring (May), when Chl-a increased and the community structure changed from pico-phytoplankton (<2 μm) dominated to nano-phytoplankton (2–20 μm) and micro-phytoplankton (20–200 μm) dominated.  相似文献   

8.
对厦门湾塔角附近海域某站位叶绿素 a、POC、初级生产力、234Th/238U不平衡进行的周日变化研究表明,POC含量介于14.4~34.6 mmol/m3之间,其中碎屑有机碳与活体有机碳所占份额分别为74%~92%和8%~26%.POC垂直分布呈现由表及底降低的趋势,且白昼期间POC含量高于晚间,说明研究海域POC含量与生物过程具有密切联系.初级生产力水平在1d之中变化达5倍,垂直分布亦随深度增加而降低,与叶绿素a的变化相对应.短时间(2h)培养获得的初级生产力水平明显高于长时间培养(24 h)的结果,证实部分新固定的碳被优先呼吸排出.结合234Th/238U不平衡法获得的颗粒态234Th输出通量及输出界面颗粒物中的POC/PTh比值,可计算出真光层 POC的垂向输出通量为16.0mmol/(m2·d),其中碎屑有机碳与活体有机碳贡献的数量分别为13.3和2.7mmol/(m2·d).POC输出通量与初级生产力的比值(ThE比值)平均为0.31,真光层POC停留时间平均为11d.上述结果与Aksnes和Wassmann[1]的模型计算结果相吻合,但与其他大多数模型的结果仍存在一定的差异.  相似文献   

9.
在加强海洋强国建设、实现我国碳达峰和碳中和愿景目标背景下准确掌握南海碳通量时空变化格局具有重要的现实意义.根据2009—2018年10 a有机碳通量月度数据集,分析了南海真光层底颗粒有机碳通量变化特征.结果表明:(1)南海区域多年真光层底有机碳输出通量年平均值为55.40 mgC·m-2·d-1;其值大小在空间上的分布...  相似文献   

10.
Biogenic barium, mostly in the barite (BaSO4) form, has been proposed as a tracer for export production in the ocean. Here we report on biogenic barium (Baxs) and particulate organic carbon (POC) fluxes from sediment traps deployed at the DYFAMED site in the Northwestern Mediterranean Sea. Baxs fluxes display average values of 37 ± 45 and 50 ± 58 μg/m2/d at 200 and 1000 m respectively, and are linearly correlated to POC fluxes (mean values of 7.9 ± 9.3 and 6.8 ± 6.8 mg C/m2/d at 200 and 1000 m). Export production estimates, calculated using published Baxs- or POC-based algorithms, all fall below or close to the lower limit of potential export values proposed in the literature. This work clearly demonstrates the usefulness of Baxs as a tracer of oceanic export production in the Northwestern Mediterranean Sea. However, development of a quantitative export production proxy requires a clear understanding of the underlying cause(s) for the observed spatial variations in the relationship between Baxs and POC fluxes. The present study confirms that the processes leading to barite formation differ between margin and open-ocean sites and probably account for much of the regional variability in the POC/Baxs ratio.  相似文献   

11.
234 Th was utilized as a tracer of particulate organic carbon (POC) export in the northwestern South China Sea (SCS) on the basis of the data collected at four stations during a spring cruise.Depth profiles of dissolved and particulate 234 Th activities were measured in the upper 60 m,showing a significant deficit relative to 238 U over the investigated stations.A stratified structure of 234 Th-238 U disequilibrium was in general observed in the upper 60 m water column,indicating that the euphotic zone of t...  相似文献   

12.
Land/ocean boundaries constitute complex systems with active physical and biogeochemical processes that affect the global carbon cycle. An example of such a system is the mesotidal lagoon named Ria de Aveiro (Portugal, 40°38′N, 08°45′W), which is connected to the Atlantic Ocean by a single channel, 350 m wide. The objective of this study was to estimate the seasonal and inter-tidal variability of organic carbon fluxes between the coastal lagoon and the Ocean, and to assess the contribution of the organic carbon fractions (i.e. dissolved organic carbon (DOC) and particulate organic carbon (POC)) to the export of organic carbon to the Ria de Aveiro plume zone. The organic carbon fractions fluxes were estimated as the product of the appropriate fractional organic carbon concentrations and the water fluxes calculated by a two-dimensional vertically integrated hydrodynamic model (2DH). Results showed that the higher exchanges of DOC and POC fractions at the system cross-section occurred during spring tides but only resulted in a net export of organic carbon in winter, totalling 85 t per tidal cycle. Derived from the winter and summer campaigns, the annual carbon mass balance estimated corresponded to a net export of organic carbon (7957 = 6585 t yr−1 POC + 1372 t yr−1 DOC). On the basis of the spring tidal drainage area, it corresponds to an annual flux of 79 g m−2 of POC and 17 g m−2 of DOC out of the estuary.  相似文献   

13.
Export processes play a major role in regulating global marine primary production by reducing the efficiency of nutrient cycling and turnover in surface waters. Most studies of euphotic zone export focus on passive fluxes, that is, sinking particles. However, active transport, the vertical transfer of material by migrating zooplankton, can also be an important component of carbon (C) and nitrogen (N) removal from the surface ocean. Here we demonstrate that active transport is an especially important mechanism for phosphorus (P) removal from the euphotic zone at Station ALOHA (Hawaii Ocean Time-series program; 22°45′N, 158°W), a P-stressed site in the North Pacific Subtropical Gyre. Migrant excretions in this region are P-rich (C51:N12:P1) relative to sinking particles (C250:N31:P1), and migrant-mediated P fluxes are almost equal in magnitude (82%) to P fluxes from sediment traps. Migrant zooplankton biomass and therefore the importance of this P removal pathway relative to sinking fluxes has increased significantly over the past 12 years, suggesting that active transport may be a major driving force for enhanced P-limitation of biological production in the NPSG. We further assess the C:N:P composition of zooplankton size fractions at Station ALOHA (C88:N18:P1, on average) and discuss migrant-mediated P export in light of the balance between zooplankton and suspended particle stoichiometries. We conclude that, because active transport is such a large component of the total P flux and significantly impacts ecosystem stoichiometry, export processes involving migrant zooplankton must be included in large-scale efforts to understand biogeochemical cycles.  相似文献   

14.
利用234Th-238U不平衡研究南海东北部海域3个站位上层水体中的颗粒动力学性质,测定了水往中溶解态及颗粒态234Th的比活度,具体讨论各相中234Th/238U)AR(放射性活度比)比值的垂直分布情况及其与水化学要素间的关系。运用稿态箱式模型计算出各站位不同水层中溶解态234Th相对于清除至颗粒物的平均停留时间和颗粒态234Th相对于迁出作用的停留时间。由模型得出的参数表明3个站位的真光层具有两种不同的层化图像,这一情形与我们在南沙群岛海域得到的结果相一致。结合POC/PTh比值,估算出3个站位从真光层输出的颗粒有机碳(POC)通量分别为4.025.0和5.4mmolC·m-3-d-1。文中进一步讨论了234Th与POC两者停留时间的关系。  相似文献   

15.
The least known component of the “biological pump” is the active transport of carbon and nutrients by diel vertical migration of zooplankton. We measured CO2 respiration and dissolved organic carbon (DOC) excretion by individual species of common vertically migrating zooplankton at the US JGOFS Bermuda Atlantic Time-series Study (BATS) station. The inclusion of DOC excretion in this study builds on published research on active transport by respiration of inorganic carbon and allows a direct assessment of the role of zooplankton in the production of dissolved organic matter used in midwater microbial processes. On average, excretion of DOC makes up 24% (range=5–42%) of the total C metabolized (excreted+respired) and could represent a significant augmentation to the vertical flux that has already been documented for respiratory CO2 flux by migrant zooplankton. Migratory fluxes were compared to other transport processes at BATS. Estimates of combined active transport of CO2 and DOC by migrators at BATS averaged 7.8% and reached 38.6% of mean sinking POC flux at 150 m, and reached 71.4% of mean sinking POC flux at 300 m. DOC export by migrator excretion averaged 1.9% and reached 13.3% of annual DOC export by physical mixing at this site. During most of the year when deep mixing does not occur, diel migration by zooplankton could provide a supply of DOC to the deeper layers that is available for use by the microbial community. A carbon budget comparing migrant zooplankton transport to the balance of fluxes in the 300–600 m depth strata at BATS shows on average that the total migrant flux supplies 37% of the organic carbon remineralized in this layer, and that migrant DOC flux is more than 3 times the DOC flux gradient by diapycnal mixing. New estimates of active transport of both organic and inorganic carbon by migrants may help resolve observed imbalances in the C budget at BATS, but the magnitude is highly dependent on the biomass of the migrating community.  相似文献   

16.
The weekly mass flux of C and phytoplankton pigments at five depths in the main basin of Puget Sound, a deep (200 m) fjordlike estuary, was sampled for a year with moored sequentially-sampling sediment traps. Flux measurements were compared with weekly samples of suspended pigments in the euphotic zone and bi-monthly samples of total suspended matter and particulate C throughout the water column at the mooring site.Seasonal changes in the total mass flux at all depths were small; instead, physical (river runoff, bottom resuspension) and biological (phytoplankton blooms) events caused occasional sharp increases on a weekly scale. The dry weight concentration of pigments in the trap samples mirrored the concentration of pigments in the euphotic zone suspended matter, increasing from 0·01% in winter to a maximum of 0·65% in late summer. Bloom-induced changes in the pigment concentration were observed almost simultaneously in the euphotic zone and in the traps to a depth of 160 m, indicating a rapid vertical transfer of surface-originating particles by organic aggregates. In contrast to the strong seasonal signal in the pigment concentration, C concentration varied by only a factor of three during the year.The seasonal trend of C/pigment ratios in the C flux arises from at least two sources: (1) a balance between terrestrial sources of C during the high-runoff winter season and in-situ primary production in spring and summer, and (2) cycling of C through the zooplankton population. Budget calculations suggest that the loss of primary-produced C and pigment from the euphotic zone by settling is 5% regardless of season. On an annual basis, this C flux (16 g m−2) is sufficient to support previously measured values of benthic aerobic respiration at the mooring site. To account for other C sinks such as burial, predation and chemical oxidation, however, terrestrial C sources and alternate transport pathways, such as vertical advection and sediment movement down the steep basin walls, are necessary.  相似文献   

17.
Depth profiles of total 234Th (dissolved+particulate) were collected at Station ALOHA (22°45N, 158°00W) in the North Pacific Subtropical Gyre during 9 cruises from April 1999 to March 2000. Samples were collected and processed by a new 2 L technique that enables more detailed depth resolution then previous 234Th studies. Significant zones of particle export (234Th deficiency) and particle remineralization (234Th excess) were measured both temporally and with depth. 234Th derived particulate carbon (PC) and nitrogen (PN) fluxes were determined with steady-state and non-steady-state models and PC/234Th and PN/234Th ratios measured with both in situ pumps and free-drifting particle interceptor traps deployed at 150 m. 234Th based export estimates of 4.0±2.3 mmol C m−2 d−1 and 0.53±0.19 mmol N m−2 d−1, were approximately 60% higher than those measured in PIT style sediment traps from the same time period, 2.4±0.2 mmol C m−2 d−1 and 0.32±0.08 mmol N m−2 d−1. Most of this difference is attributable to two large export events that occurred during October and December 1999, when traps undercollected for 234Th by a factor of 2 to 4. 234Th export (ThE) ratios based on 234Th derived PC flux/14C based primary production ranged from 4% to 22% (average=8.8%). Our results confirm the recent estimates of C export by Emerson et al. (Nature 389 (1997) 951) and Sonnerup et al. (Deep-Sea Research I 46 (1999) 777) and indicate that C export from the oligotrophic ocean must be considered when discussing C sequestration in global climate change.  相似文献   

18.
We conducted a multi-year sediment-trap experiment in Saanich and Jervis Inlets, British Columbia, Canada. Moorings with traps positioned at three depths were placed near the mouth and toward the head of each fjord, and deployments were monthly. We present fluxes of total mass, biogenic silica (BSi), particulate organic carbon (POC) and aluminium (Al), as well as the δ13C signal of the POC, and we compare the sediment-trap fluxes to primary-production measurements made during the experiment.Diatomaceous silica and aluminosilicates were the primary components of the settling flux, while organic matter from marine (largely diatoms) and terrestrial sources was occasionally a significant portion of the sinking material. Fluxes of BSi and POC were highest in the spring and summer, tracing maxima in local primary production. These fluxes decreased, increased or remained constant with depth due to water-column remineralisation and variability in processes that cause fluxes to increase with depth. Al fluxes followed local precipitation and river runoff at the landward stations, and with remarkable faithfulness in Saanich Inlet. Near the mouths, there was little seasonality in Al flux, and the increases of flux with depth reveal sedimentary plumes at each fjord’s sill. Tidal and deepwater-renewal components of the plumes are evident, and the plume in Saanich Inlet was particularly intense. Fluxes of Al to deep sediment traps associated with renewal flows were also observed toward the head of each fjord.Marine δ13C endmembers are estimated from relationships between δ13C and BSi concentrations, and measures of soil δ13C from each fjord were available. These endmembers are used with the δ13C record to quantify marine and terrigenous contributions to the POC flux. Marine POC composed 54-72% of the total POC caught by shallow sediment traps in spring and summer, and 36-54% in fall and winter. Primary production and sediment-trap fluxes are used to estimate annually averaged export ratios (shallow-trap flux:autotrophic assimilation) for marine POC and Si. POC export ratios (0.092-0.14) were low for these productive waters, but they compare with other results based on sediment-trap fluxes from coastal waters where terrigenous OC has been subtracted. Export ratios of Si were calculated using an estimated Si:C assimilation ratio and, therefore, are susceptible to error, but the high results (>0.8) suggest that BSi was exported more efficiently than POC. The possibility that POC was preferentially lost after interception by sediment traps is also considered. Primary production and settling fluxes were higher in Saanich Inlet than in Jervis Inlet, while export ratios of OC and Si were similar in both fjords, away from the nepheloid layer near the sill of Saanich Inlet.  相似文献   

19.
A carbon flux study was carried out off the coast of Morocco, at 31°N, in a region characterized by the presence of a persistent cyclonic eddy. Two short-term (4 and 3 day) deployments of free-floating sediment traps were combined with water column sampling and rate process measurements as the ship followed the traps. For a period of 36 h between trap deployments, a hydrographic section was run along 31°30'N as part of a larger scale survey being carried out simultaneously on the R.V. A. von Humboldt. The first trap deployment was near the eastern margin of the eddy and the traps moved to the north and west in a frontal jet associated with its northern boundary. After the second deployment, which was at the recovery point of the first, the traps moved to the west and then to the southwest. Throughout the study, chlorophyll concentrations varied between 27 and 125 mg m−2 (0–100 m), with highest concentrations in the upwelled water nearest the coast and in upwelled water generated within the cyclonic eddy. Particulate organic carbon (POC) and particulate organic nitrogen (PON) concentrations were relatively uniform (13.6±1.8 and 1.63±28 g m−2 with phytoplankton carbon accounting for 16–85% of total POC. Bacterial carbon was 5% of total POC and mesozooplankton carbon concentrations were equivalent to 9% of total POC. Microzooplankton biomass was not assessed but POC:PON ratios in the water column were often high, suggesting there was sometimes a large detrital component in the POC. Primary production rates varied between 1.0 and 2.5 g C m−2 day−1. Bacterial consumption accounted for 50% of primary production. Metabolic rates suggested that copepods were ingesting more than 0.4 g C m−2 day−1. while filtration rates suggested that ingestion of phytoplankton carbon was only 0.2 g C m−2day−1, even when phytoplankton constituted 85% of the POC. f-ratios (based on uptake rates for 15N-nitrate and ammonia) were between 0.1 and 0.4, and excretion by mesozooplankton could account for 40% of the daily ammonium uptake by phytoplankton. HPLC pigment analysis showed that when chlorophyll biomass was high, diatoms were dominant, whereas when it was low, small prymnesiophytes, chlorophytes and diatoms were all important. The composition of the fluoresecent pigments in material in the sediment traps indicated that intact phytoplankton and copepod faecal pellets were the main sources but the relative rates of sedimentation of pigment, POC and PON for the two trapping periods did not reflect differences that were observed in the overlying water column. This was likely to be the result of spatial heterogeneity and strong horizontal currents heterogeneity and strong horizontal currents within the euphotic zone. Thus, material collected at 100 m probably did not originate in the water column immediately overlying the traps and trapping efficiencies might also have been variable.  相似文献   

20.
《Marine Chemistry》2007,103(1-2):185-196
Large-volume sampling of 234Th and drifting sediment trap deployments were conducted as part of the 2004 Western Arctic Shelf–Basin Interactions (SBI) spring (May 15–June 23) and summer (July 17–August 26) process cruises in the Chukchi Sea. Measurements of 234Th and particulate organic carbon (POC) export fluxes were obtained at five stations during the spring cruise and four stations during the summer cruise along Barrow Canyon (BC) and along a parallel shelf-to-basin transect from East Hanna Shoal (EHS) to the Canada Basin. 234Th and POC fluxes obtained with in situ pumps and drifting sediment traps agreed to within a factor of 2 for 70% of the measurements. POC export fluxes measured with in situ pumps at 50 m along BC were similar in spring and summer (average = 14.0 ± 8.0 mmol C m 2 day 1 and 16.5 ± 6.5 mmol C m 2 day 1, respectively), but increased from spring to summer at the EHS transect (average = 1.9 ± 1.1 mmol C m 2 day 1 and 19.5 ± 3.3 mmol C m 2 day 1, respectively). POC fluxes measured with sediment traps at 50 m along BC were also similar in both seasons (31.3 ± 9.3 mmol C m 2 day 1 and 29.1 ± 14.2 mmol C m 2 day 1, respectively), but were approximately twice as high as POC fluxes measured with in situ pumps. Sediment trap POC fluxes measured along the EHS transect also increased from spring to summer (3.0 ± 1.9 mmol C m 2 day 1 and 13.0 ± 6.4 mmol C m 2 day 1, respectively), and these fluxes were similar to the POC fluxes obtained with in situ pumps. Discrepancies in POC export fluxes measured using in situ pumps and sediment traps may be reasonably explained by differences in the estimated POC/234Th ratios that arise from differences between the techniques, such as time-scale of measurement and size and composition of the collected particles. Despite this variability, in situ pump and sediment trap-derived POC fluxes were only significantly different at a highly productive station in BC during the spring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号