首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two-dimensional stationary magnetic reconnection models that include a thin Syrovatskii-type current sheet and four discontinuous magnetohydrodynamic flows of finite length attached to its endpoints are considered. The flow pattern is not specified but is determined from a self-consistent solution of the problem in the approximation of a strong magnetic field. Generalized analytical solutions that take into account the possibility of a current sheet discontinuity in the region of anomalous plasma resistivity have been found. The global structure of the magnetic field in the reconnection region and its local properties near the current sheet and attached discontinuities are studied. In the reconnection regime in which reverse currents are present in the current sheet, the attached discontinuities are trans-Alfvénic shock waves near the current sheet endpoints. Two types of transitions from nonevolutionary shocks to evolutionary ones along discontinuous flows are shown to be possible, depending on the geometrical model parameters. The relationship between the results obtained and numerical magnetic reconnection experiments is discussed.  相似文献   

2.
Litvinenko  Yuri E.  Craig  I.J.D. 《Solar physics》2003,218(1-2):173-181
Flux pile-up magnetic reconnection is traditionally considered only for incompressible plasmas. The question addressed in this paper is whether the pile-up scalings with resistivity are robust when plasma compressibility is taken into account. A simple analytical argument makes it possible to understand why the transition from a highly compressible limit to the incompressible one is difficult to discern in typical simulations spanning a few decades in resistivity. From a practical standpoint, however, flux pile-up reconnection in a compressible plasma can lead to anomalous electric resistivity in the current sheet and flare-like energy release of magnetic energy in the solar corona.  相似文献   

3.
吴宁  李燕  沈呈彩  林隽 《天文学进展》2012,30(2):125-158
从理论和观测两个方面来介绍和讨论出现在太阳爆发过程中的磁重联电流片及其物理本质和动力学特征。首先介绍在理论研究和理论模型中,磁重联电流片是如何在爆发磁结构当中形成并发展的,对观测研究有什么指导意义。然后介绍观测工作是从哪几个方面对理论模型预测的电流片进行证认和研究的。第三,将介绍观测研究给出了哪些过去所没有能够预期的结果,这些结果对深入研究耀斑一CME电流片以及其中的磁重联过程的理论工作有什么重要的、挑战性的意义。第四,讨论最新的与此有关的理论研究和数值实验。最后,对未来的研究方向和重要课题进行综述和展望。  相似文献   

4.
One of the most puzzling problems in astrophysics is to understand the anomalous resistivity in collisionless magnetic reconnection that is believed extensively to be responsible for the energy release in various eruptive phenomena. The magnetic null point in the reconnecting current sheet, acting as a scattering center, can lead to chaotic motions of particles in the current sheet, which is one of the possible mechanisms for anomalous resistivity and is called chaos-induced resistivity. In many interesting cases, however, instead of the magnetic null point, there is a nonzero magnetic field perpendicular to the merging field lines, usually called the guide field, whose effect on chaos-induced resistivity has been an open problem. By use of the test particle simulation method and statistical analysis, we investigate chaos-induced resistivity in the presence of a constant guide field. The characteristics of particle motion in the reconnecting region, in particular, the chaotic behavior of particle orbits and evolving statistical features, are analyzed. The results show that as the guide field increases, the radius of the chaos region increases and the Lyapunov index decreases. However, the effective collision frequency, and hence the chaos-induced resistivity, reach their peak values when the guide field approaches half of the characteristic strength of the reconnection magnetic field. The presence of a guide field can significantly influence the chaos of the particle orbits and hence the chaos-induced resistivity in the reconnection sheet, which decides the collisionless reconnection rate. The present result is helpful for us to understand the microphysics of anomalous resistivity in collisionless reconnection with a guide field.  相似文献   

5.
In this paper, spontaneous fast reconnection in a neutral current sheet, which is initially perturbed by a localized resistivity, is studied by the newly developed Space-Time Conservation Element and Solution Element (CESE) method. After the initial perturbation is switched off, an anomalous resistivity is allowed to occur if a threshold of the local electron-ion drift velocity is exceeded. For a given threshold value, the amount of the reconnected magnetic flux introduced by the initial perturbation is very crucial for the onset of the anomalous resistivity. The numerical results indicate that fast reconnection can develop self-consistently with slow shocks extending between the diffusion region and a large-scale plasmoid-like structure, which is pushed forward by the reconnection outflow. A Petschek-like configuration is then built up, but it can not be sustained as a quasi-steady state. In fact, during the reconnection evolution, the diffusion region undergoes an elongation process so that after the dynamic process is nonlinearly saturated secondary tearing is subject to occur at the center of the system. This leads to enhanced and time-dependent reconnection. The reconnection evolution is further studied in various physical situations, also confirming the bursty nature of the spontaneous fast reconnection mechanism.  相似文献   

6.
Pudovkin  M.I.  Runov  A.V.  Zaitseva  S.A.  Besser  B.P.  Meiser  C.-V. 《Solar physics》1999,184(1):173-186
Numerical simulation of magnetic field reconnection at IMF sector boundaries shows that the reconnection line may be carried by the solar wind out of the region of the anomalous resistivity. This makes it possible to observe magnetic loops at the Earth's orbit open to the Sun as well as from it. Besides, it is shown that the current sheet in the vicinity of the reconnection line has to split into two currents.Experimental data on the structure of the sector boundaries are analyzed, and it is shown that the currents at sector boundaries are indeed often splitted.The thickness of the splitted boundaries may amount to 18×106 km; taking into account this value, the heliocentric distance of the region of anomalous resistivity in the interplanetary current sheet is estimated as 0.4–0.5 AU.The probability of observing magnetic loops open towards the Sun seems to be greater than that of loops open from the Sun, which suggests an essential asymmetry of the field reversal regions.  相似文献   

7.
The physical conditions in a stationary flow of the Petchek type, allowing reconnection between flux emerging from below the solar photosphere and a preexisting magnetic field, are discussed. It is shown that, when rising in the solar atmosphere, the reconnection region has at first a rather low temperature as compared with its environment. Above a certain critical height, however, this low temperature thermal equilibrium often ceases to be possible, and the sheet rapidly heats, seeking a new thermal equilibrium. During this dynamical process, current-driven microinstabilities may be triggered in the current sheet, giving rise to an enhanced resistivity. High energy particles might be produced by the induced electric field developed during the rapid readjustment of MHD flows that results from this change in the transport properties of the plasma.  相似文献   

8.
9.
王桢  陈玲  吴德金 《天文学报》2023,64(3):37-260
无碰撞磁场重联作为一种将磁能有效转化为等离子体动能和热能的机制,已经被广泛应用于解释太阳耀斑、地球磁暴等各类等离子体的爆发活动.然而,在无碰撞重联区中反常电阻的微观物理机制仍然是尚未解决的基本问题.在众多反常电阻的形成机制中,基于磁零点附近粒子轨道混沌性产生的混沌感应电阻,虽然不是最普遍流行的形成机制,但它的微观物理图像却是最为清晰的.回顾了无碰撞重联区中混沌感应电阻的早期研究和基本理论模型,介绍了关于混沌感应电阻研究的新进展并阐述了混沌感应电阻未来的研究方向.  相似文献   

10.
The aim of the present paper is to explore the mechanism of fast Sweet–Parker’s magnetic reconnection with the Cowling’s conductivity. Cowling derived the resistivity of plasma with three components: electrons, ions and neutral particles in magnetic field theoretically after Spitzer. The resistivity is much larger than the Spitzer’s. According to the idea of partially ionized plasmas ejected into the corona as the trigger of flares, we adopt Cowling’s Conductivity to Sweet–Parker’s reconnection model in this paper. The result shows that the reconnection rate can be improved a lot in solar corona and approaches the timescale of solar flare in the absence of anomalous resistivity.  相似文献   

11.
本文研究了磁流体力学与高频等离子体波( 包括纵横模式) 之间的精巧的相互作用。研究表明,这些等离激元会在电流片内诱发一种阻抗不稳定,并最终导至磁重联,出现爆发性不稳定。在高涨的离声湍动情况下,高温电流片模型必须采用反常电导率,而非库仑电导率。理论估算的结果与观测相一致。因此这种计及等离激元有质动力作用的新磁重联理论,基本上能解释耀斑现象。  相似文献   

12.
Reconnection involves singular lines called X-lines on the day and night sides of the magnetosphere, and the reconnection rate is proportional to the component of the electric field along the X-line. Although there is some indirect support for this model, nevertheless direct support is totally lacking. However, there are two distinct pieces of clearly contradictory observational evidence on the dayside. First is the failure to account for the implied energy dissipation by the magnetopause current, over 1011 W, which should be easily observable as heating or enhanced flow of the plasma near the magnetopause. In marked contrast to this prediction, HEOS-2 satellite data reveal a plasma with decreased energy density and reduced flow. Second, the boundary of closed magnetic field lines is in the wrong location. In the reconnection process the plasma outflow would cut across open field lines toward higher latitudes; there should be a band of open field lines equatorward of the cleft. Observations of trapped energetic particles indicate closed field lines within the entry layer and cleft. Either one of these pieces of evidence is sufficient by itself to require drastic revision, even rejection, of the reconnection model. There is also contradictory evidence on the night side. The last closed field line capable of trapping energetic particles is poleward of auroral arcs. The implication is that the X-line is at the distant magnetopause, and not in the plasma sheet. Consequently, even if the reconnection process were operative at the nightside X-line, it would be isolated from steady state plasma sheet and auroral processes. On the other hand, substorm phenomena, in which stored magnetic energy is converted into particle kinetic energy, necessarily involve an induced electric field; that is excluded in theories of the reconnection process in which it is assumed that curl E = 0. Nevertheless, the observed easy access of energetic solar flare particles to the polar caps, and especially the preservation of interplanetary anisotropies as differences between the two polar caps, argues strongly for an open magnetosphere, with interconnection between geomagnetic and inter-planetary magnetic field lines. It is suggested that the resolution of this apparent paradox involves electric fields parallel to the magnetic field lines somewhere on the dawn and dusk sides of the magnetosphere, with an equipotential dayside magnetopause.  相似文献   

13.
14.
Litvinenko  Yuri E. 《Solar physics》2003,216(1-2):189-203
Traditional models for particle acceleration by magnetic reconnection in solar flares assumed a constant electric field in a steady reconnecting magnetic field. Although this assumption may be justified during the gradual phase of flares, the situation is different during the impulsive phase. Observed rapid variations in flare emissions imply that reconnection is non-steady and a time-varying electric field is present in a reconnecting current sheet. This paper describes exploratory calculations of charged particle orbits in an oscillating electric field present either at a neutral plane or a neutral line of two-dimensional magnetic field. A simple analytical model makes it possible to explain the effects of particle trapping and resonant acceleration previously noted by Petkaki and MacKinnon in a numerical simulation. As an application, electron acceleration to X-ray generating energies in impulsive solar flares is discussed within the context of the model.  相似文献   

15.
We present a study on the polarized electric field during the collisionless magnetic reconnection of antiparallel fields using two dimensional particle-in-cell simulations. The simulations demonstrate clearly that electron holes and electric field with bipolar structure are produced during magnetic reconnection without a guide field. The electric field with bipolar structure can be found near the X-line and on the separatrix and the plasma sheet boundary layer, which is consistent with the observations. These structures will elongate electron’s time staying in the diffusion region. In addition, the electric fields with tripolar structures are also found in our simulation.  相似文献   

16.
The configuration of the magnetotail magnetic field has been calculated for a situation where a disruption of a portion of the tail current system develops. The decrease of the current in a localized region of the magnetotail leads to a collapse of the magnetic field in that vicinity. The calculated configuration of the field resembles what is predicted by reconnection models with the field lines moving toward the neutral sheet and then connecting and either moving toward or away from the earth. Associated with this changing magnetic field there is an induced electric field which will then influence the motion of the plasma in the magnetotail via E × B drifts.When the current from Xsm = ?20 to ?40 RE in the tail is decreasing with a tune-constant of 0.5 h the electric field produced, which is primarily westward, has a maximum value of 0.83 mV m?1 and produces plasma sheet thinning velocities of 0.3 km s?1. Higher velocities result for more rapid rates of current decrease, and they agree well with experimental observations. The plasma flows in the sunward direction are, however, much smaller than what has been observed. This is due in part to the inability of the magnetic field model to adequately represent the magnetic field in the immediate vicinity of the neutral sheet. Use of an improved model would give better agreement with the observations.The calculations show that the induced electric field of a time-dependent magnetic field is able to explain certain observed features of the plasma sheet motions. Also, this agreement suggests that the assumption that there is no charge separation contribution to the electric field may be reasonable during situations of large scale and rapid current disruptions in the magnetotail.  相似文献   

17.
The behaviour of a multi-component anisotropic plasma in a magnetic flux tube is studied in the presence of current-driven electrostatic ion-cyclotron turbulence. The plasma transport is considered in both parallel and perpendicular directions with respect to the given tube. As one of the sources of the parallel electric field, the anomalous resistivityof the plasma caused by the turbulence is taken into account. The acceleration and heating processes of the plasma are simulated numerically. It is found that at the upper boundary of the nightside auroral ionosphere, the resonant wave-particle interactions are most effective in the case of upward field-aligned currents with densities of a few 10—6 A/m2. The occurring anomalous resistivity maycause differences of the electric potential along the magnetic field lines of some kV. Further it is shown that the thickness of the magnetic flux tube and the intensity of the convection strongly influence the turbulent plasma heating.  相似文献   

18.
The present review concerns the relevance of collisionless reconnection in the astrophysical context. Emphasis is put on recent developments in theory obtained from collisionless numerical simulations in two and three dimensions. It is stressed that magnetic reconnection is a universal process of particular importance under collisionless conditions, when both collisional and anomalous dissipation are irrelevant. While collisional (resistive) reconnection is a slow, diffusive process, collisionless reconnection is spontaneous. On any astrophysical time scale, it is explosive. It sets on when electric current widths become comparable to the leptonic inertial length in the so-called lepton (electron/positron) “diffusion region”, where leptons de-magnetise. Here, the magnetic field contacts its oppositely directed partner and annihilates. Spontaneous reconnection breaks the original magnetic symmetry, violently releases the stored free energy of the electric current, and causes plasma heating and particle acceleration. Ultimately, the released energy is provided by mechanical motion of either the two colliding magnetised plasmas that generate the current sheet or the internal turbulence cascading down to lepton-scale current filaments. Spontaneous reconnection in such extended current sheets that separate two colliding plasmas results in the generation of many reconnection sites (tearing modes) distributed over the current surface, each consisting of lepton exhausts and jets which are separated by plasmoids. Volume-filling factors of reconnection sites are estimated to be as large as \({<}10^{-5}\) per current sheet. Lepton currents inside exhausts may be strong enough to excite Buneman and, for large thermal pressure anisotropy, also Weibel instabilities. They bifurcate and break off into many small-scale current filaments and magnetic flux ropes exhibiting turbulent magnetic power spectra of very flat power-law shape \(W_b\propto k^{-\alpha }\) in wavenumber k with power becoming as low as \(\alpha \approx 2\). Spontaneous reconnection generates small-scale turbulence. Imposed external turbulence tends to temporarily increase the reconnection rate. Reconnecting ultra-relativistic current sheets decay into large numbers of magnetic flux ropes composed of chains of plasmoids and lepton exhausts. They form highly structured current surfaces, “current carpets”. By including synchrotron radiation losses, one favours tearing-mode reconnection over the drift-kink deformation of the current sheet. Lepton acceleration occurs in the reconnection-electric field in multiple encounters with the exhausts and plasmoids. This is a Fermi-like process. It results in power-law tails on the lepton energy distribution. This effect becomes pronounced in ultra-relativistic reconnection where it yields extremely hard lepton power-law energy spectra approaching \(F(\gamma )\propto \gamma ^{-1}\), with \(\gamma \) the lepton energy. The synchrotron radiation limit becomes substantially exceeded. Relativistic reconnection is a probable generator of current and magnetic turbulence, and a mechanism that produces high-energy radiation. It is also identified as the ultimate dissipation mechanism of the mechanical energy in collisionless magnetohydrodynamic turbulent cascades via lepton-inertial-scale turbulent current filaments. In this case, the volume-filling factor is large. Magnetic turbulence causes strong plasma heating of the entire turbulent volume and violent acceleration via spontaneous lepton-scale reconnection. This may lead to high-energy particle populations filling the whole volume. In this case, it causes non-thermal radiation spectra that span the entire interval from radio waves to gamma rays.  相似文献   

19.
Simple models for the MHD eruption of a solar prominence are presented, in which the prominence is treated as a twisted magnetic flux tube that is being repelled from the solar surface by magnetic pressure forces. The effects of different physical assumptions to deal with this magneto-hydrodynamically complex phenomenon are evaluated, such as holding constant the prominence current, radius, flux or twist or modelling the prominence as a current sheet. Including a background magnetic field allows the prominence to be in equilibrium initially with an Inverse Polarity and then to erupt due to magnetic non-equilibrium when the background magnetic field is too small or the prominence twist is too great. The electric field at the neutral point below the prominence rapidly increases to a maximum value and then declines. Including the effect of gravity also allows an equilibrium with Normal Polarity to exist. Finally, an ideal MHD solution is found which incorporates self-consistently a current sheet below the prominence and which implies that a prominence will still erupt and form a current sheet even if no reconnection occurs. When reconnection is allowed it is, therefore, driven by the eruption.  相似文献   

20.
The trajectories of plasma-sheet protons are computed numerically in magnetic-field models which simulate the neutral-sheet-type configuration observed in experiments. No electric field is included, in contrast with the reconnection theory. Entering the neutral sheet and then exiting from it, the particle performs an ordered displacement across the tail. A continuous interchange between the neutral and plasma sheets will give rise to an electric current which may be responsible for the observed magnetic-field configuration. An estimate of this current is made from the tension balance requirement, showing that a substantial anisotropy of the plasma-sheet pressure is necessary to maintain the steady state. It is shown that the neutral sheet itself can be a source of such an anisotropy, due to the non-adiabatic behaviour of protons. Other anisotropy origins are discussed briefly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号