首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
Gene expression programing (GEP) is used to estimate the suspended sediment yield (SSY) in Euphrates River. SSY is considered to be a function of (i) discharge and (ii) time‐lagged discharge and SSY. The proposed models were trained to extrapolate natural stream data collected from five stations in Middle Euphrates Basin. A detailed sensitivity analysis is done to select the time‐lagged discharge and sediment yield variables. GEP implicitly evaluates the contribution of each independent variable on the fitness of candidate solution and eliminates the variable having no contribution. In this study, all input variables are observed to be included in the proposed GEP models, which prove the significance of each variable. Also, standard and modified sediment rating curves and regression‐based formulae are developed for the five stations. In verification, the estimations of GEP formulae agree well with the measured ones. The GEP models are evaluated by the results of the rating curves and regression formulae. In general, the GEP formulae give better results compared to the rating curves and regression‐based formulae.  相似文献   

2.
This study reports results from an analysis of the relationship between atmospheric forcing and model‐simulated water and energy fluxes for the North American Land Data Assimilation System Project Phase 2 (NLDAS‐2). The relationships between mean monthly precipitation and total runoff are stronger in the Sacramento (SAC) and variable infiltration capacity (VIC) models, which grew out of the hydrological community, than in the Noah and Mosaic models, which grew out of the soil‐vegetation‐atmosphere transfer (SVAT) community. The reverse is true for the relationship between mean monthly precipitation and evapotranspiration. In addition, surface energy fluxes in VIC are less sensitive to model forcing (except for air temperature) than those in the Noah and Mosaic model. Notwithstanding these general conclusions, the relationships between forcings and model‐simulated water and energy fluxes for all models vary for different seasons, variables, and regions. These findings will ultimately inspire a combination of SVAT‐type model energy components with hydrological model water components to develop a SVAT‐hydrology model to improve both evapotranspiration and total runoff simulations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Soil moisture has a pronounced effect on earth surface processes. Global soil moisture is strongly driven by climate, whereas at finer scales, the role of non‐climatic drivers becomes more important. We provide insights into the significance of soil and land surface properties in landscape‐scale soil moisture variation by utilizing high‐resolution light detection and ranging (LiDAR) data and extensive field investigations. The data consist of 1200 study plots located in a high‐latitude landscape of mountain tundra in north‐western Finland. We measured the plots three times during growing season 2016 with a hand‐held time‐domain reflectometry sensor. To model soil moisture and its temporal variation, we used four statistical modelling methods: generalized linear models, generalized additive models, boosted regression trees, and random forests. The model fit of the soil moisture models were R2 = 0.60 and root mean square error (RMSE) 8.04 VWC% on average, while the temporal variation models showed a lower fit of R2 = 0.25 and RMSE 13.11 CV%. The predictive performances for the former were R2 = 0.47 and RMSE 9.34 VWC%, and for the latter R2 = 0.01 and RMSE 15.29 CV%. Results were similar across the modelling methods, demonstrating a consistent pattern. Soil moisture and its temporal variation showed strong heterogeneity over short distances; therefore, soil moisture modelling benefits from high‐resolution predictors, such as LiDAR based variables. In the soil moisture models, the strongest predictor was SAGA (System for Automated Geoscientific Analyses) wetness index (SWI), based on a 1 m2 digital terrain model derived from LiDAR data, which outperformed soil predictors. Thus, our study supports the use of LiDAR based SWI in explaining fine‐scale soil moisture variation. In the temporal variation models, the strongest predictor was the field‐quantified organic layer depth variable. Our results show that spatial soil moisture predictions can be based on soil and land surface properties, yet the temporal models require further investigation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
For given climatic rates of precipitation and potential evaporation, the land surface hydrology parameterizations of atmospheric general circulation models will maintain soil-water storage conditions that balance the moisture input and output. The surface relative soil saturation for such climatic conditions serves as a measure of the land surface parameterization state under a given forcing. The equilibrium value of this variable for alternate parameterizations of land surface hydrology are determined as a function of climate and the sensitivity of the surface to shifts and changes in climatic forcing are estimated.  相似文献   

5.
Land surface processes and their initialisation are of crucial importance for Numerical Weather Prediction (NWP). Current land data assimilation systems used to initialise NWP models include snow depth analysis, soil moisture analysis, soil temperature and snow temperature analysis. This paper gives a review of different approaches used in NWP to initialise land surface variables. It discusses the observation availability and quality, and it addresses the combined use of conventional observations and satellite data. Based on results from the European Centre for Medium-Range Weather Forecasts (ECMWF), results from different soil moisture and snow depth data assimilation schemes are shown. Both surface fields and low-level atmospheric variables are highly sensitive to the soil moisture and snow initialisation methods. Recent developments of ECMWF in soil moisture and snow data assimilation improved surface and atmospheric forecast performance.  相似文献   

6.
This paper presented trend analysis of droughts in Kerala, Telangana, and Orissa meteorological subdivisions in India and proposed a framework for drought prediction by employing the Empirical Mode Decomposition (EMD)‐based prediction models. The study used 3‐month standardized precipitation index (SPI3) for drought analysis. The trend analysis of SPI3 series for the period 1871–2012 using Mann–Kendall method showed statistically significant increasing trend in Kerala and Telangana subdivisions and a decreasing trend in Orissa subdivision. In addition, the non‐linear trend component extracted from EMD showed statistically significant changes in all the three subdivisions. Then, the study proposed a hybrid approach for prediction of short‐term droughts by coupling multivariate extension of EMD (MEMD) with stepwise linear regression (SLR) and genetic programming (GP) methods. First, the multivariate dataset comprising the SPI3 series of current and lagged time steps are decomposed using the MEMD. Then, SLR/GP models are developed to predict each subseries of SPI3 of desired time step considering the subseries of predictor variables at the corresponding timescales as inputs. The resulting models at different timescales are recombined to obtain the SPI3 values of the desired time step. The method is applied for prediction of short‐term droughts in the three subdivisions. The results obtained by the hybrid models are compared with that obtained by conventional prediction models using M5 Model Trees and GP. The rigorous performance evaluation based on multiple statistical criteria clearly exhibited the superiority of the hybrid approaches (i.e., prediction models with MEMD‐based decomposition over models without decomposition) for prediction of SPI3 in three subdivisions. Further, the study found that MEMD‐GP model performs marginally better than the MEMD‐SLR model due to its efficacy in modelling high frequency modes.  相似文献   

7.
This study combines a variably-saturated groundwater flow model and a mesoscale atmospheric model to examine the effects of soil moisture heterogeneity on atmospheric boundary layer processes. This parallel, integrated model can simulate spatial variations in land-surface forcing driven by three-dimensional (3D) atmospheric and subsurface components. The development of atmospheric flow is studied in a series of idealized test cases with different initial soil moisture distributions generated by an offline spin-up procedure or interpolated from a coarse-resolution dataset. These test cases are performed with both the fully-coupled model (which includes 3D groundwater flow and surface water routing) and the uncoupled atmospheric model. The effects of the different soil moisture initializations and lateral subsurface and surface water flow are seen in the differences in atmospheric evolution over a 36-h period. The fully-coupled model maintains a realistic topographically-driven soil moisture distribution, while the uncoupled atmospheric model does not. Furthermore, the coupled model shows spatial and temporal correlations between surface and lower atmospheric variables and water table depth. These correlations are particularly strong during times when the land-surface temperatures trigger shifts in wind behavior, such as during early morning surface heating.  相似文献   

8.
Large-scale fields of soil moisture are forced by atmospheric precipitation and radiative forcing. When these forcing factors are themselves influenced by surface and soil moisture processes, the result is a nonlinear land-atmosphere system with inherent feedback mechanisms that may strongly modulate variability in climate. Given such feedbacks, simple randomness in the forcing factors may be manifested as a complex statistical signature in the surface hydrology. In this paper, we investigate the impacts of non-Gaussian and colored-noise on the probability distribution of soil moisture resulting from the statistical-dynamical land-atmosphere interaction model of Rodriguez-Iturbe et al. (1991). Persistence of hydroclimatologic anomalies as characterized by the correlation time scale of soil moisture is discussed.  相似文献   

9.
A numerical model of the Atlantic Ocean was used to study the low-frequency variability of meridional transports in the North Atlantic. The model shows a behaviour similar to those used in previous studies, and the temporal variability of certain variables compares favourably to observed time series. By changing the depth and width of the sills between the subpolar North Atlantic and the Nordic Seas, the mean horizontal and overturning circulation as well as some water mass properties are modified significantly. The reaction of meridional oceanic transports to atmospheric forcing fluctuations remains, however, unchanged. The critical role of the surface heat flux retroaction term for the meridional heat transport in stand-alone ocean models is discussed. The experiments underline the role of atmospheric variability for fluctuations of the large-scale ocean circulation on time scales from years to decades, and they support the hypothesis that the mean overturning strength is controlled by the model representation of the density of the overflow water masses.Responsible Editor: Dirk Olbers  相似文献   

10.
Large-scale fields of soil moisture are forced by atmospheric precipitation and radiative forcing. When these forcing factors are themselves influenced by surface and soil moisture processes, the result is a nonlinear land-atmosphere system with inherent feedback mechanisms that may strongly modulate variability in climate. Given such feedbacks, simple randomness in the forcing factors may be manifested as a complex statistical signature in the surface hydrology. In this paper, we investigate the impacts of non-Gaussian and colored-noise on the probability distribution of soil moisture resulting from the statistical-dynamical land-atmosphere interaction model of Rodriguez-Iturbe et al. (1991). Persistence of hydroclimatologic anomalies as characterized by the correlation time scale of soil moisture is discussed.  相似文献   

11.
Data assimilation as a method to predict variables, reduce uncertainties and explicitly handle various sources of uncertainties has recently received widespread attention and has been utilized to combine in situ and remotely sensed measurements with hydrological models. However, factors that significantly influence the capability of data assimilation still need testing and verifying. In this paper, synthetic surface soil moisture data are assimilated into the Soil and Water Assessment Tool (SWAT) model to evaluate their impact on other hydrological variables via the ensemble Kalman smoother (EnKS), using data from the Heihe River Basin, northwest China. The results show that the assimilation of surface soil moisture can moderately improve estimates of deep layer soil moisture, surface runoff and lateral flow, which reduces the negative influences of erroneous forcing and inaccurate parameters. The effects of the spatially heterogeneous input data (land cover and soil type) on the performance of the data assimilation technique are noteworthy. Moreover, the approaches including inflation and localization are specifically diagnosed to further extend the capability of the EnKS.  相似文献   

12.
The first step towards developing a reliable seasonal runoff forecast is identifying the key predictors that drive rainfall and runoff. This paper investigates the lag relationships between rainfall across Australia and runoff across southeast Australia versus 12 atmospheric‐oceanic predictors, and how the relationships change over time. The analysis of rainfall data indicates that the relationship is greatest in spring and summer in northeast Australia and in spring in southeast Australia. The best predictors for spring rainfall in eastern Australia are NINO4 [sea surface temperature (SST) in western Pacific] and thermocline (20 °C isotherm of the Pacific) and those for summer rainfall in northeast Australia are NINO4 and Southern Oscillation Index (SOI) (pressure difference between Tahiti and Darwin). The relationship in northern Australia is greatest in spring and autumn with NINO4 being the best predictor. In western Australia, the relationship is significant in summer, where SST2 (SST over the Indian Ocean) and II (SST over the Indonesian region) is the best predictor in the southwest and northwest, respectively. The analysis of runoff across southeast Australia indicates that the runoff predictability in the southern parts is greatest in winter and spring, with antecedent runoff being the best predictor. The relationship between spring runoff and NINO4, thermocline and SOI is also relatively high and can be used together with antecedent runoff to forecast spring runoff. In the northern parts of southeast Australia, the atmospheric‐oceanic variables are better predictors of runoff than antecedent runoff, and have significant correlation with winter, spring and summer runoff. For longer lead times, the runoff serial correlation is reduced, especially over the northern parts, and the atmospheric‐oceanic variables are likely to be better predictors for forecasting runoff. The correlations between runoff versus the predictors vary with time, and this has implications for the development of forecast relationship that assumes stationarity in the historical data. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Successful applications of stochastic models for simulating and predicting daily stream temperature have been reported in the literature. These stochastic models have been generally tested on small rivers and have used only air temperature as an exogenous variable. This study investigates the stochastic modelling of daily mean stream water temperatures on the Moisie River, a relatively large unregulated river located in Québec, Canada. The objective of the study is to compare different stochastic approaches previously used on small streams to relate mean daily water temperatures to air temperatures and streamflow indices. Various stochastic approaches are used to model the water temperature residuals, representing short‐term variations, which were obtained by subtracting the seasonal components from water temperature time‐series. The first three models, a multiple regression, a second‐order autoregressive model, and a Box and Jenkins model, used only lagged air temperature residuals as exogenous variables. The root‐mean‐square error (RMSE) for these models varied between 0·53 and 1·70 °C and the second‐order autoregressive model provided the best results. A statistical methodology using best subsets regression is proposed to model the combined effect of discharge and air temperature on stream temperatures. Various streamflow indices were considered as additional independent variables, and models with different number of variables were tested. The results indicated that the best model included relative change in flow as the most important streamflow index. The RMSE for this model was of the order of 0·51 °C, which shows a small improvement over the first three models that did not include streamflow indices. The ridge regression was applied to this model to alleviate the potential statistical inadequacies associated with multicollinearity. The amplitude and sign of the ridge regression coefficients seem to be more in agreement with prior expectations (e.g. positive correlation between water temperature residuals of different lags) and make more physical sense. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Recent studies have found insignificant or decreasing trends in time‐series dissolved organic carbon (DOC) datasets, questioning the assumption that long‐term DOC concentrations in surface waters are increasing in response to anthropogenic forcing, including climate change, land use, and atmospheric acid deposition. We used the weighted regressions on time, discharge, and season (WRTDS) model to estimate annual flow‐normalized concentrations and fluxes to determine if changes in DOC quantity and quality signal anthropogenic forcing at 10 locations in the Mississippi River Basin. Despite increases in agriculture and urban development throughout the basin, net increases in DOC concentration and flux were significant at only 3 of 10 sites from 1997 to 2013 and ranged between ?3.5% to +18% and ?0.1 to 19%, respectively. Positive shifts in DOC quality, characterized by increasing specific ultraviolet absorbance at 254 nm, ranged between +8% and +45%, but only occurred at one of the sites with significant DOC quantity increases. Basinwide reductions in atmospheric sulfate deposition did not result in large increases in DOC either, likely because of the high buffering capacity of the soil. Hydroclimatic factors including annual discharge, precipitation, and temperature did not significantly change during the 17‐year timespan of this study, which contrasts with results from previous studies showing significant increases in precipitation and discharge over a century time scale. Our study also contrasts with those from smaller catchments, which have shown stronger DOC responses to climate, land use, and acidic deposition. This temporal and spatial analysis indicated that there was a potential change in DOC sources in the Mississippi River Basin between 1997 and 2013. However, the overall magnitude of DOC trends was not large, and the pattern in quantity and quality increases for the 10 study sites was not consistent throughout the basin.  相似文献   

15.
16.
Understanding the role of clouds in climate change remains a considerable challenge. Traditionally, this challenge has been framed in terms of understanding cloud feedback. However, recent work suggests that under increasing levels of atmospheric carbon dioxide, clouds not only amplify or dampen climate change through global feedback processes, but also through rapid (days to weeks) tropospheric temperature and land surface adjustments. In this article, we use the Met Office Hadley Centre climate model HadGSM1 to review these recent developments and assess their impact on radiative forcing and equilibrium climate sensitivity. We estimate that cloud adjustment contributes ~0.8?K to the 4.4?K equilibrium climate sensitivity of this particular model. We discuss the methods used to evaluate cloud adjustments, highlight the mechanisms and processes involved and identify low level cloudiness as a key cloud type. Looking forward, we discuss the outstanding issues, such as the application to transient forcing scenarios. We suggest that the upcoming CMIP5 multi-model database will allow a comprehensive assessment of the significance of cloud adjustments in fully coupled atmosphere–ocean-general-circulation models for the first time, and that future research should exploit this opportunity to understand cloud adjustments/feedbacks in non-idealised transient climate change scenarios.  相似文献   

17.
In a water‐stressed region, such as the western United States, it is essential to have long lead times for streamflow forecasts used in reservoir operations and water resources management. Current water supply forecasts provide a 3‐month to 6‐month lead time, depending on the time of year. However, there is a growing demand from stakeholders to have forecasts that run lead times of 1 year or more. In this study, a data‐driven model, the support vector machine (SVM) based on the statistical learning theory, was used to predict annual streamflow volume with a 1‐year lead time. Annual average oceanic–atmospheric indices consisting of the Pacific decadal oscillation, North Atlantic oscillation (NAO), Atlantic multidecadal oscillation, El Niño southern oscillation (ENSO), and a new sea surface temperature (SST) data set for the ‘Hondo’ region for the period of 1906–2006 were used to generate annual streamflow volumes for multiple sites in the Gunnison River Basin and San Juan River Basin, both located in the Upper Colorado River Basin. Based on the performance measures, the model showed very good forecasts, and the forecasts were in good agreement with measured streamflow volumes. Inclusion of SST information from the Hondo region improved the model's forecasting ability; in addition, the combination of NAO and Hondo region SST data resulted in the best streamflow forecasts for a 1‐year lead time. The results of the SVM model were found to be better than the feed‐forward, back propagation artificial neural network and multiple linear regression. The results from this study have the potential of providing useful information for the planning and management of water resources within these basins. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Soil moisture is an integral quantity in hydrology that represents the average conditions in a finite volume of soil. In this paper, a novel regression technique called Support Vector Machine (SVM) is presented and applied to soil moisture estimation using remote sensing data. SVM is based on statistical learning theory that uses a hypothesis space of linear functions based on Kernel approach. SVM has been used to predict a quantity forward in time based on training from past data. The strength of SVM lies in minimizing the empirical classification error and maximizing the geometric margin by solving inverse problem. SVM model is applied to 10 sites for soil moisture estimation in the Lower Colorado River Basin (LCRB) in the western United States. The sites comprise low to dense vegetation. Remote sensing data that includes backscatter and incidence angle from Tropical Rainfall Measuring Mission (TRMM), and Normalized Difference Vegetation Index (NDVI) from Advanced Very High Resolution Radiometer (AVHRR) are used to estimate soil water content (SM). Simulated SM (%) time series for the study sites are available from the Variable Infiltration Capacity Three Layer (VIC) model for top 10 cm layer of soil for the years 1998–2005. SVM model is trained on 5 years of data, i.e. 1998–2002 and tested on 3 years of data, i.e. 2003–2005. Two models are developed to evaluate the strength of SVM modeling in estimating soil moisture. In model I, training and testing are done on six sites, this results in six separate SVM models – one for each site. Model II comprises of two subparts: (a) data from all six sites used in model I is combined and a single SVM model is developed and tested on same sites and (b) a single model is developed using data from six sites (same as model II-A) but this model is tested on four separate sites not used to train the model. Model I shows satisfactory results, and the SM estimates are in good agreement with the estimates from VIC model. The SM estimate correlation coefficients range from 0.34 to 0.77 with RMSE less than 2% at all the selected sites. A probabilistic absolute error between the VIC SM and modeled SM is computed for all models. For model I, the results indicate that 80% of the SM estimates have an absolute error of less than 5%, whereas for model II-A and II-B, 80% and 60% of the SM estimates have an error less than 10% and 15%, respectively. SVM model is also trained and tested for measured soil moisture in the LCRB. Results with RMSE, MAE and R of 2.01, 1.97, and 0.57, respectively show that the SVM model is able to capture the variability in measured soil moisture. Results from the SVM modeling are compared with the estimates obtained from feed forward-back propagation Artificial Neural Network model (ANN) and Multivariate Linear Regression model (MLR); and show that SVM model performs better for soil moisture estimation than ANN and MLR models.  相似文献   

19.
This paper proposes a simple class of threshold autoregressive model for purpose of forecasting daily maximum ozone concentrations in Southern California. Linear time series model has been widely considered in environmental modeling. However, this class of models fails to capture the nonlinearity in ozone process and the complexity of meteorological interactions with ozone. In this article, we used the threshold autoregressive models with two classes of regimes; periodic and meteorological regimes. Days in week were used for the periodic regimes and the regression tree method was used to define the regimes as a function of meteorological variables. As the reference model we used the autoregressive model with lagged ozone and various lagged meteorological variables as the covariates. The proposed models were applied to a 3-year dataset of daily maximum ozone concentrations obtained from five monitoring stations in San Bernardino County, CA and their forecast performances were evaluated using an independent year-long dataset from the same stations. The results showed that the threshold models well capture the nonlinearity in ozone process and remove the nonstationarity in model residuals. The threshold models outperformed the non-threshold autoregressive models in day-ahead forecasts. The tree-based model showed slightly better performance than the periodic threshold model.  相似文献   

20.
Rainfall runoff (RR) models are fundamental tools for reducing flood hazards. Although several studies have highlighted the potential of soil moisture (SM) observations to improve flood modelling, much research has still to be done for fully exploiting the evident connection between SM and runoff. As a way of example, improving the quality of forcing data, i.e. rainfall observations, may have a great benefit in flood simulation. Such data are the main hydrological forcing of classical RR models but may suffer from poor quality and record interruption issues. This study explores the potential of using SM observations to improve rainfall observations and set a reliable initial wetness condition of the catchment for improving the capability in flood modelling. In particular, a RR model, which incorporates SM for its initialization, and an algorithm for rainfall estimation from SM observations are coupled using a simple integration method. The study carried out at the Valescure experimental catchment (France) demonstrates the high information content retained by SM for RR transformation, thus giving new possibilities for improving hydrological applications. Results show that an appropriate configuration of the two models allows obtaining improvement in flood simulation up to 15% in mean and 34% in median Nash Sutcliffe performances as well as a reduction of the median error in volume and on peak discharge of about 30% and 15%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号