首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Landscapes evolve in response to external forces, such as tectonics and climate, that influence surface processes of erosion and weathering. Internal feedbacks between erosion and weathering also play an integral role in regulating the landscapes response. Our understanding of these internal and external feedbacks is limited to a handful of field‐based studies, only a few of which have explicitly examined saprolite weathering. Here, we report rates of erosion and weathering in saprolite and soil to quantify how climate influences denudation, by focusing on an elevation transect in the western Sierra Nevada Mountains, California. We use an adapted mass balance approach and couple soil‐production rates from the cosmogenic radionuclide (CRN) 10Be with zirconium concentrations in rock, saprolite and soil. Our approach includes deep saprolite weathering and suggests that previous studies may have underestimated denudation rates across similar landscapes. Along the studied climate gradient, chemical weathering rates peak at middle elevations (1200–2000 m), averaging 112·3 ± 9·7 t km–2 y–1 compared to high and low elevation sites (46·8 ± 5·2 t km?2 y?1). Measured weathering rates follow similar patterns with climate as those of predicted silica fluxes, modeled using an Arrhenius temperature relationship and a linear relationship between flux and precipitation. Furthermore, chemical weathering and erosion are tightly correlated across our sites, and physical erosion rates increase with both saprolite weathering rates and intensity. Unexpectedly, saprolite and soil weathering intensities are inversely related, such that more weathered saprolites are overlain by weakly weathered soils. These data quantify exciting links between climate, weathering and erosion, and together suggest that climate controls chemical weathering via temperature and moisture control on chemical reaction rates. Our results also suggest that saprolite weathering reduces bedrock coherence, leading to faster rates of soil transport that, in turn, decrease material residence times in the soil column and limit soil weathering. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Investigations to understand linkages among climate, erosion and weathering are central to quantifying landscape evolution. We approach these linkages through synthesis of regolith data for granitic terrain compiled with respect to climate, geochemistry, and denudation rates for low sloping upland profiles. Focusing on Na as a proxy for plagioclase weathering, we quantified regolith Na depletion, Na mass loss, and the relative partitioning of denudation to physical and chemical contributions. The depth and magnitude of regolith Na depletion increased continuously with increasing water availability, except for locations with mean annual temperature < 5 °C that exhibited little Na depletion, and locations with physical erosion rates < 20 g m? 2 yr? 1 that exhibited deep and complete regolith Na depletion. Surface Na depletion also tended to decrease with increasing physical erosion. Depth-integrated Na mass loss and regolith depth were both three orders of magnitude greater in the fully depleted, low erosion rate sites relative to other locations. These locations exhibited strong erosion-limitation of Na chemical weathering rates based on correlation of Na chemical weathering rate to total Na denudation. Sodium weathering rates in cool locations with positive annual water balance were strongly correlated to total Na denudation and precipitation, and exhibited an average apparent activation energy (Ea) of 69 kJ mol? 1 Na. The remaining water-limited locations exhibited kinetic limitation of Na weathering rates with an Ea of 136 kJ mol? 1 Na, roughly equivalent to the sum of laboratory measures of Ea and dissolution reaction enthalpy for albite. Water availability is suggested as the dominant factor limiting rate kinetics in the water-limited systems. Together, these data demonstrate marked transitions and nonlinearity in how climate and tectonics correlate to plagioclase chemical weathering and Na mass loss.  相似文献   

3.
A key issue in the study of the carbon cycle is constraining the stocks and fluxes in and between C‐reservoirs. Among these, the role and importance of fossil organic carbon (FOC) release by weathering of outcropping sedimentary rocks on continental surfaces is still debated and remains poorly constrained. Our work focuses on FOC fluxes due to chemical and mechanical weathering of marls in two experimental watersheds with typical badlands geomorphology (Draix watersheds, Laval and Moulin, Alpes de Haute Provence, France). Organic matter from bedrock, soil litter and riverine particles are characterized by Rock‐Eval 6 pyrolysis. FOC fluxes due to mechanical weathering are then estimated by monitoring the annual particulate solid exports at the outlets of the watersheds (1985–2005 period). FOC fluxes from chemical weathering were calculated using Ca2+ concentrations in dissolved loads (year 2002) to assess the amount of FOC released by the dissolution of the carbonate matrix. Results show that FOC delivery is mainly driven by mechanical weathering, with a yield ranging from 30 to 59 t km‐2 yr‐1 in the Moulin (0.08 km2) and Laval (0.86 km2) catchments, respectively, (1985–2005 average). The release of FOC attributed to chemical weathering was 2.2 to 4.2 t km‐2 for the year 2002. These high FOC fluxes from badlands are similar to those observed in tectonically active mountain catchments. At a regional scale, badland outcropping within the Durance watershed does not exceed 0.25% in area of the Rhône catchment, but could annually deliver 12 000 t yr‐1 of FOC. This flux could correspond to 27% of the total particulate organic carbon (POC) load exported by the Rhône River to the Mediterranean Sea. At a global scale, our findings suggest that erosion of badlands may contribute significantly to the transfer of FOC from continental surfaces to depositional environments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Dissolved major ions, Sr concentrations and 87Sr/86Sr ratios of 10 coastal lakes from the Larsemann Hills, East Antarctica have been studied to constrain their solute sources, transport and glacial weathering patterns in their catchments. In absence of perennial river/streams, lakes serve as only reliable archive to study land surface processes in these low-temperature regions. The lake water chemistry is mostly Na-Cl type and it does not show any significant depth variations. Sr isotope compositions of these lakes vary from 0.7110 to 0.7211 with an average value of 0.7145, which is higher than modern seawater value. In addition to oceanic sources, major ions and Sr isotopic data show appreciable amount of solute supply from chemical weathering of silicate rocks in lake catchments and dissolution of Ca-Mg rich salts produced during the freezing of seawaters. The role of sulphide oxidation and carbonate weathering are found to be minimal on lake hydro-chemistry in this part of Antarctica. Inverse model calculations using this chemical dataset provide first-order estimates of dissolved cations and Sr; they are mostly derived from oceanic (seawater + snow) sources (cations approximately 76%) and (Sr approximately 92%) with minimal supplies from weathering of silicates (cations approximately 15%); (Sr approximately 2%) and Ca-rich minerals (cations approximately 9%); (Sr approximately 7%). The silicate weathering rate and its corresponding atmospheric CO2 consumption rate estimates for Scandrett lake catchment (3.6 ± 0.3 tons/km2/year and 0.5 × 105 moles/km2/year), are lower than that of reported values for the average global river basins (5.4 tons/km2/year and 0.9 × 105 tons/km2/year) respectively. The present study provides a comprehensive report of chemical weathering intensity and its role in atmospheric CO2 consumption in low-temperature pristine environment of Antarctica. These estimates underscore the importance of Antarctica weathering on atmospheric CO2 budget, particularly during the past warmer periods when the large area was exposed and available for intense chemical weathering.  相似文献   

5.
This study involved a baseline evaluation of fluvial carbon export and degas rates in three nested rural catchments (1 to 80 km2) in Taboão, a representative experimental catchment of the Upper Uruguay River Basin. Analyses of the carbon content in stream waters and the catchment carbon yield were based on 4‐year monthly in situ data and statistical modeling using the United States Geological Survey load estimator model. We also estimated p CO2 and degas fluxes using carbonate equilibrium and gas‐exchange formulas. Our results indicated that the water was consistently p CO2 saturated (~90% of the cases) and that the steep terrain favors high gas evasion rates. The mean calculated fluvial export was 5.4 tC·km?2·year?1 with inorganic carbon dominating (dissolved inorganic carbon:dissolved organic carbon ratio >4), and degas rates (~40 tC km?2·year?1) were nearly sevenfold higher than the downstream export. The homogeneous land use in this nested catchment system results in similar water‐quality characteristics, and therefore, export rates are expected to be closely related to the rainfall–runoff relationships at each scale. Although the sampling campaigns did not fully reproduce storm‐event conditions and related effects such as flushing or dilution of in‐stream carbon, our results indicated a potential link between dissolved inorganic carbon and slower hydrological pathways related to subsurface water storage and movement.  相似文献   

6.
Understanding the extent to which local factors, including bedrock and structure, govern catchment denudation in mountainous environments as opposed to broader climate or tectonic patterns provides insight into how landscapes evolve as sediment is generated and transported through them, and whether they have approached steady-state equilibrium. We measured beryllium-10 (10Be) concentrations in 21 sediment samples from glaciated footwall and hanging wall catchments, including a set of nested catchments, and 12 bedrock samples in the Puga and Tso Morari half-grabens located in the high-elevation, arid Zanskar region of northern India. In the Puga half-graben where catchments are underlain by quartzo-feldspathic gneissic bedrock, bedrock along catchment divides is eroding very slowly, about 5 m/Ma, due to extreme aridity and 10Be concentrations in catchment sediments are the highest (~60–90 × 105 atoms/g SiO2) as colluvium accumulates on hillslopes, decoupled from their ephemeral streams. At Puga, 10Be concentrations and the average erosion rates of a set of six nested catchments demonstrate that catchment denudation is transport-limited as sediment stagnates on lower slopes before reaching the catchment outlet. In the Tso Morari half-graben, gneissic bedrock is also eroding very slowly but 10Be concentrations in sediments in catchments underlain by low grade meta-sedimentary rocks, are significantly lower (~10–35 × 105 atoms/g SiO2). In these arid, high-elevation environments, 10Be concentrations in catchment sediments have more to do with bedrock weathering and transport times than steady-state denudation rates. © 2020 John Wiley & Sons, Ltd.  相似文献   

7.
Jun Xiao  Fei Zhang  Zhangdong Jin 《水文研究》2016,30(25):4855-4869
Hydrochemistry methods were used to decipher the weathering and geochemical processes controlling solute acquisition of river waters in the dry season in the middle Loess Plateau (MLP), one of the most severely eroded areas and turbid riverine systems in the world. River waters were neutral to slightly alkaline with pH varying from 7.6 to 9.6. The total dissolved solids decreased from northwest to southeast with a mean value of 804 mg/l, much higher than the global average and other large rivers in China. Ternary diagram showed that river waters were dominated by Na+, HCO3?, and Cl? with the main water‐type of HCO3?–Cl?–Na+. Saturation index values, Mg2+, Ca2+, and HCO3? analyses indicated the preferential Ca2+ removal by calcite precipitation. Gibbs plots and stoichiometry plots indicated that the dissolved solutes were mainly derived from rock weathering with minor anthropogenic and atmospheric inputs. Samples in the northwestern basin are also influenced by evaporation. A forward model of mass budget calculation showed that, owing to high soluble characteristics, evaporite dissolution was a major feature of river waters and contributed 41% to the total dissolved cations on average, while carbonate and silicate weathering contributed 28%,and 25% on average, respectively. Besides evaporite dissolution, cation exchange is also responsible for the high concentrations of Na+ in river water. Spatial variations showed that evaporite dissolution and silicate weathering were higher in the northern basin, whereas carbonate weathering was higher in the southern basin. Different from most rivers in the world, the physical erosion rates (varying from 117.7 to 4116.6 t/km2y) are much higher than the chemical weathering rates (varying from 3.54 to 6.76 t/km2y) in the MLP because of the loose structure of loess and poor vegetation in the basin. In the future, studies on comparison of water geochemistry in different seasons and on influence of different types of land use and soil salinization on water geochemistry, denudation rates, and water quality should be strengthened in the MLP. These results shed some lights on processes responsible for modern loess weathering and also indicate the importance of time‐series sampling strategy for river water chemistry. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Climate factors play critical roles in controlling chemical weathering, while chemically weathered surface material can regulate climate change. To estimate global chemical weathering fluxes and CO2 balance, it is important to identify the characteristics and driving factors of chemical weathering and CO2 consumption on the Tibetan Plateau, especially in glaciated catchments. The analysis of the hydro-geochemical data indicated that silicate weathering in this area was inhibited by low temperatures, while carbonate weathering was promoted by the abundant clastic rocks with fresh surfaces produced by glacial action. Carbonate weathering dominated the riverine solute generation (with a contribution of 58%, 51%, and 43% at the QiangYong Glacier (QYG), the WengGuo Hydrological Station (WGHS), and the lake estuary (LE), respectively). The oxidation of pyrite contributed to 35%, 42%, and 30% of the riverine solutes, while silicate weathering contributed to 5%, 6%, and 26% of the riverine solutes at the QYG, WGHS, and LE, respectively. The alluvial deposit of easily weathering fine silicate minerals, the higher air temperature, plant density, and soil thickness at the downstream LE in comparison to upstream and midstream may lead to longer contact time between pore water and mineral materials, thus enhancing the silicate weathering. Because of the involvement of sulfuric acid produced by the oxidation of pyrite, carbonate weathering in the upstream and midstream did not consume atmospheric CO2, resulting in the high rate of carbonate weathering (73.9 and 75.6 t km−2 yr−1, respectively, in maximum) and potential net release of CO2 (with an upper constraint of 35.6 and 35.2 t km−2 yr−1, respectively) at the QYG and WGHS. The above results indicate the potential of the glaciated area of the Tibetan Plateau with pyrite deposits being a substantial natural carbon source, which deserves further investigation.  相似文献   

9.
Snowmelt‐fed springs and small (0.5 km2) upland catchments in alpine areas of the western United States contribute significantly to the quantity and inorganic chemistry of water delivered to downstream basins but have not been studied extensively. Mineral weathering, transit time, and hydrologic mixing control the solute chemistry of waters that drain the upland zone of Niwot Ridge, Colorado Front Range, and adjacent areas in the granitic core of the Southern Rocky Mountains. Water in 37 springs sampled in this study flows in generally short steep paths (~0.3 km) through shallow regolith with mean transit times (MTT) of weeks to months, producing solutions dominated by Si, Ca2+, Na+, and HCO3?, locally SO42?. Rock type is a significant control on spring, surface, and shallow groundwater chemistry, and plagioclase (oligoclase) is the major source of dissolved Na+ and Si. Concentrations of Ca2+ exceed stoichiometric predictions of oligoclase weathering by ~3.5×; excess Ca2+ likely represents weathering of aeolian material, vein calcite, or trace minerals. Concentrations of base cations and Si increase slowly with estimated MTT of 0.2 years for Niwot Ridge spring waters, and several years for shallow groundwater sampled by wells. Chemical weathering of silicate minerals is slow with estimated rates of ~2.0 and 0.2 pmol·m?2·s?1 for oligoclase and microcline, respectively; the most mineralized spring waters are saturated only with respect to kaolinite and montmorillonite. More than 50% of the dissolved base cations + Si measured in Boulder Creek at Orodell (~25 km downstream) accumulate before water emerges from alpine springs on Niwot Ridge. Warming global temperatures are shifting more high‐elevation precipitation to rain, potentially changing run‐off patterns, transit time, and solute loads. Acquisition of solutes by alpine waters thus has implications far beyond small upland catchments.  相似文献   

10.
Catchments with minimal disturbance usually have low dissolved inorganic nitrogen (DIN) export, but disturbances and anthropogenic inputs result in elevated DIN concentration and export and eutrophication of downstream ecosystems. We studied streams in the southern Appalachian Mountains, USA, an area dominated by hardwood deciduous forest but with areas of valley agriculture and increasing residential development. We collected weekly grab samples and storm samples from nine small catchments and three river sites. Most discharge occurred at baseflow, with baseflow indices ranging from 69% to 95%. We identified three seasonal patterns of baseflow DIN concentration. Streams in mostly forested catchments had low DIN with bimodal peaks, and summer peaks were greater than winter peaks. Streams with more agriculture and development also had bimodal peaks; however, winter peaks were the highest. In streams draining catchments with more residential development, DIN concentration had a single peak, greatest in winter and lowest in summer. Three methods for estimating DIN export produced consistent results. Annual DIN export ranged from less than 200 g ha?1 year?1 for the less disturbed catchments to over 2,000 g ha?1 year?1 in the catchments with the least forest area. Land cover was a strong predictor of DIN concentration but less significant for predicting DIN export. The two forested reference catchments appeared supply limited, the most residential catchment appeared transport limited, and export for the other catchments was significantly related to discharge. In all streams, baseflow DIN export exceeded stormflow export. Morphological and climatological variation among watersheds created complexities unexplainable by land cover. Nevertheless, regression models developed using land cover data from the small catchments reasonably predicted concentration and export for receiving rivers. Our results illustrate the complexity of mechanisms involved in DIN export in a region with a mosaic of climate, geology, topography, soils, vegetation, and past and present land use.  相似文献   

11.
Differences in chemical weathering extent and character are expected to exist across topographic escarpments due to spatial gradients of climatic and/or tectonic forcing. The passive margin escarpment of south‐eastern Australia has a debated but generally accepted model of propagation in which it retreated (within 40 Ma) to near its current position following rifting between Australia and New Zealand 85–100 Ma before present. We focus on this escarpment to quantify chemical weathering rates and processes and how they may provide insight into scarp evolution and retreat. We compare chemical weathering extents and rates above and below the escarpment using a mass balance approach coupling major and trace element analyses with previous measurements of denudation rates using cosmogenic nuclides (10Be and 26Al). We find a slight gradient in saprolite chemical weathering rate as a percentage of total weathering rate across the escarpment. The lowlands area, encompassing the region extending from the base of the escarpment to the coast, experiences a greater extent of chemical weathering than the highland region above the escarpment. Percents of denudation attributable to saprolite weathering average 57 ± 6% and 47 ± 7% at low and high sites respectively. Furthermore, the chemical index of alteration (CIA), a ratio of immobile to mobile oxides in granitic material that increases with weathering extent, have corresponding average values of 73·7 ± 3·9 and 65·5 ± 3·4, indicating lower extents of weathering above the escarpment. Finally, we quantify variations in the rates and extent of chemical weathering at the hillslope scale across the escarpment to suggest new insight into how climate differences and hillslope topography help drive landscape evolution, potentially overprinting longer term tectonic forcing. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Erosion and the associated loss of carbon is a major environmental concern in many peatlands and remains difficult to accurately quantify beyond the plot scale. Erosion was measured in an upland blanket peatland catchment (0.017 km2) in northern England using structure-from-motion (SfM) photogrammetry, sediment traps and stream sediment sampling at different spatial scales. A net median topographic change of –27 mm yr–1 was recorded by SfM over the 12-month monitoring period for the entire surveyed area (598 m2). Within the entire surveyed area there were six nested catchments where both SfM and sediment traps were used to measure erosion. Substantial amounts of peat were captured in sediment traps during summer storm events after two months of dry weather where desiccation of the peat surface occurred. The magnitude of topographic change for the six nested catchments determined by SfM (mean value: 5.3 mm, standard deviation: 5.2 mm) was very different to the areal average derived from sediment traps (mean value: –0.3 mm, standard deviation: 0.1 mm). Thus, direct interpolation of peat erosion from local net topographic change into sediment yield at the catchment outlet appears problematic. Peat loss measured at the hillslope scale was not representative of that at the catchment scale. Stream sediment sampling at the outlet of the research catchment (0.017 km2) suggested that the yields of suspended sediment and particulate organic carbon were 926.3 t km–2 yr–1 and 340.9 t km–2 yr–1, respectively, with highest losses occurring during the autumn. Both freeze–thaw during winter and desiccation during long periods of dry weather in spring and summer were identified as important peat weathering processes during the study. Such weathering was a key enabler of subsequent fluvial peat loss from the catchment. © 2019 John Wiley & Sons, Ltd.  相似文献   

13.
Recent understanding of chemical weathering in glacierized catchments has been focused on mid-latitude, Alpine catchments; comparable studies from the high latitudes are currently lacking. This paper attempts to address this deficiency by examining solute provenance, transport and denudation in a glacierized catchment at 78°N in the Svalbard High Arctic archipelago. Representative samples of snow, glacier ice, winter proglacial icing and glacier meltwater were obtained from the catchment during spring and summer 1993 and analysed for major ion chemistry. Seasonal variations in the composition of glacier meltwater occur and are influenced by proglacial solute acquisition from the icing at the very start of the melt season, and subsequently by a period of discharge of concentrated snowmelt caused by snowpack elution; weathering within the ice-marginal channels that drain the glacier, particularly carbonation reactions, continues to furnish solute to meltwater when suspended sediment concentrations increase later in the melt season. Partitioning the solute flux into its various components (sea-salt, crustal, aerosol and atmospheric sources) shows that c. 25% of the total flux is sea salt derived, consistent with the maritime location of the glacier, and c. 71% is crustally derived. Estimated chemical denudation, 160 meq m−2 a−1 sea salt-corrected cation equivalent weathering rate, is somewhat low compared with other studied glacierized catchments (estimates in the range 450–1000 meq m−2 a−1), which is probably attributable to the relatively short melt season and low specific runoff in the High Arctic. A positive relationship was identified between discharge and CO2 drawdown owing to carbonation reactions in turbid meltwater. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
The majority of geomorphological papers about Dartmoor have been essentially speculative, particularly when discussing weathering processes and the evolution of the Dartmoor landscape. In contrast, this article presents a synthesis of several experimental investigations aimed at studying the chemical weathering of Dartmoor granite through the systematic analysis of soil and water samples. This involved the computation of a geochemical budget to determine the amount of erosion in the catchment, as well as more detailed mineralogical investigations within a soil profile. The annual output of solutes due to weathering was 116 kg ha?1 a?1 of which the majority was silica (93 kg ha?1 a?1). From an examination of the soil mineralogy, it was calculated that these solutes were derived from the dissolution of approximately 200 kg ha?1 a?1 plagioclase, 90 kg ha?1 a?1 biotite, and 40 kg ha?1 a?1 orthoclase. As well as the weathering of granite, there was also the production of kaolinite (150 kg ha?1 a?1) and gibbsite (0.02 kg ha?1 a?1). Analysis of the soil water chemistry confirmed that kaolinite was the stable mineral phase in the regolith, although in areas where interflow was the dominant mode of water movement, the solute composition was in equilibrium with both kaolinite and gibbsite. Examination of the clay mineralogy confirmed these results. The microtexture of quartz grains was examined by the scanning electron microscope as another means of investigating the hydrochemical environment in the soil. Silica was found precipitated on all the grains examined but the maximum amount occurred in the Bs horizon. This evidence showed that, firstly, the dissolution of aluminosilicate minerals is greater than that calculated by the chemical budget and, secondly, that models of granite weathering must take localized weathering in the soil profile into account. The final part of the paper highlights the limitations of calculating denudation rates for an entire catchment and stresses the need to consider weathering as a highly localized phenomenon, particularly where there are high volumes of interflow at hill crest sites. Observations on granite decomposition in the future should be quantitative in approach and be related to the local site conditions.  相似文献   

15.
A hydrochemical budget is used to quantify the rate of chemical weathering and solutional denudation on Old Red Sandstone in East Twin drainage basin (0.2 km2) on the Mendip Hills for the 1972–73 Water Year. Net nutrient uptake by the biomass and precipitation inputs are subtracted from stream solute outputs to give an estimate of the solutes released to the system by weathering. The mineralogies of the sandstone and the soil are compared to predict possible weathering reactions for the primary and secondary minerals. Tentative estimates of primary mineral alteration and secondary mineral formation are then made by substituting the hydrochemical balances into the formulated weathering reactions. Finally the rate of solutional denudation (0.8 tonnes/a or 1.6 mm/100 a) is compared with other estimates of solutional and mechanical denudation at East Twin and with similarly derived results for other lithologies.  相似文献   

16.
The long‐term and current volumes of sediment exported from stream banks were calculated as potential sources of sediment in a large pond located at the catchment outlet of a small agricultural lowland basin strongly affected by anthropogenic pressure in France. Bank erosion was measured over a short period using a network of erosion pins along a small stream (1400 m long) to quantify the material exported during a single winter (2012–2013). The material exported by this same stream over the last 69 years was quantified using an original approach involving the comparison of a compilation of three‐dimensional historical stream redesign plans that date back to 1944 with the state of the banks in 2013 (differential global positioning system and LiDAR data). The results suggest that a global trend of material loss along the stream banks monitored by erosion pins, with an average erosion rate of 17.7 mm year?1 and an average volume of exported material of 75 t km?1. Over 69 years, this same stream exported an average of 36 t km?1 year?1, and the average loss of material from the banks throughout the whole catchment was estimated to be 14 t km?1 year?1. The contribution of bank material to the filling of the pond over the last 10 years is between 46% and 52% based on an extrapolation of erosion pin dynamics or between 27% and 30% based on the comparison of LiDAR data to the average historical profile extrapolated for the catchment. These results suggest that bank erosion represents a major source of sediment in degraded waters in traditionally understudied agricultural lowland catchments, where anthropogenic pressures are high.  相似文献   

17.
The water balance is an essential tool for hydrologic studies and quantifying water-balance components is the focus of many research catchments. A fundamental question remains regarding the appropriateness of water-balance closure assumptions when not all components are available. In this study, we leverage in-situ measurements of water fluxes and storage from the Southern Sierra Critical Zone Observatory (SSCZO) and the Kings River Experimental Watersheds (KREW) to investigate annual water-balance closure errors across large (1016–5389 km2) river basins and small (0.5–5 km2) headwater-catchment scales in the southern Sierra Nevada. The results showed that while long-term water balance in river basins can be closed within 10% of precipitation, in the smaller headwater catchments as much as a quarter of precipitation remained unaccounted for. A detailed diagnosis of this water-balance closure error using distributed soil moisture measurements in the top 1 m suggests an unaccounted deeper storage and a net groundwater export from the headwater catchments. This imbalance was also found to be very sensitive to the timescales over which water-balance closures were attempted. While some of the closure errors in the simple water balance can be attributed to measurement uncertainties, we argue for a broader consideration of groundwater exchange when evaluating hydrological processes at headwater scales, as the assumption of negligible net groundwater exchange may lead to an overestimation of fluxes derived from the water balance method.  相似文献   

18.
Direct evidence of the feedback between climate and weathering   总被引:1,自引:0,他引:1  
Long-term climate moderation is commonly attributed to chemical weathering; the higher the temperature and precipitation the faster the weathering rate. Weathering releases divalent cations to the ocean via riverine transport where they promote the drawdown of CO2 from the atmosphere by the precipitation and subsequent burial of carbonate minerals. To test this widely-held hypothesis, we performed a field study determining the weathering rates of 8 nearly pristine north-eastern Iceland river catchments with varying glacial cover over 44 years. The mean annual temperature and annual precipitation of these catchments varied by 3.2 to 4.5 °C and 80 to 530%, respectively during the study period. Statistically significant linear positive correlations were found between mean annual temperature and chemical weathering in all 8 catchments and between mean annual temperature and both mechanical weathering and runoff in 7 of the 8 catchments. For each degree of temperature increase, the runoff, mechanical weathering flux, and chemical weathering fluxes in these catchments are found to increase from 6 to 16%, 8 to 30%, and 4 to 14% respectively, depending on the catchment. In contrast, annual precipitation is less related to the measured fluxes; statistically significant correlations between annual precipitation and runoff, mechanical weathering, and chemical weathering were found for 3 of the least glaciated catchments. Mechanical and chemical weathering increased with time in all catchments over the 44 year period. These correlations were statistically significant for only 2 of the 8 catchments due to scatter in corresponding annual runoff and average annual temperature versus time plots. Taken together, these results 1) demonstrate a significant feedback between climate and Earth surface weathering, and 2) suggest that weathering rates are currently increasing with time due to global warming.  相似文献   

19.
《Journal of Hydrology》2006,316(1-4):213-232
The Magdalena River, a major fluvial system draining most of the Colombian Andes, has the highest sediment yield of any medium-sized or large river in South America. We examined sediment yield and its response to control variables in the Magdalena drainage basin based on a multi-year dataset of sediment loads from 32 tributary catchments. Various morphometric, hydrologic, and climatic variables were estimated in order to understand and predict the variation in sediment yield. Sediment yield varies from 128 to 2200 t km−2 yr−1 for catchments ranging from 320 to 59,600 km2. The mean sediment yield for 32 sub-basins within the Magdalena basin is ∼690 t km−2 yr−1. Mean annual runoff is the dominant control and explains 51% of the observed variance in sediment yield. A multiple regression model, including two control variables, runoff and maximum water discharge, explains 58% of the variance. This model is efficient (ME=0.89) and is a valuable tool for predicting total sediment yield from tributary catchments in the Magdalena basin. Multiple correlations for those basins corresponding to the upper Magdalena, middle basin, Eastern Cordillera, and catchment areas greater than 2000 km2, explain 75, 77, 89, and 78% of the variance in sediment yield, respectively. Although more variance is explained when dataset are grouped into categories, the models are less efficient (ME<0.72). Within the spatially distributed models, six catchment variables predict sediment yield, including runoff, precipitation, precipitation peakedness, mean elevation, mean water discharge, and relief. These estimators are related to the relative importance of climate and weathering, hillslope erosion, and fluvial transport processes. Time series analysis indicates that significant increases in sediment load have occurred over 68% of the catchment area, while 31% have experienced a decreasing trend in sediment load and thus yield. Land use analysis and increasing sediment load trends indicate that erosion within the catchment has increased over the last 10–20 years.  相似文献   

20.
《水文科学杂志》2013,58(4):619-635
Abstract

The drawdown of Crombie Reservoir in November 2001 afforded the opportunity to examine the exposed sediments trapped since impoundment in 1868. Direct measurements of infill depth enabled an isopachyte map to be produced. Gravimetric conversion using measured bulk densities and a trap efficiency term indicated a long-term catchment sediment yield of 59.1 t km?2 year?1. Core stratigraphy analysis indicated that sediments were dark brown/black cohesive silty-muds with multiple sandy sub-units, representing a combination of discrete flood events and previous drawdown surfaces. Dating, constrained by mineral magnetic and 137Cs analysis, indicated that sedimentation rates have varied from 0.2 to 0.8 g cm?2 year?1, corresponding to a four-fold variation in catchment sediment yield (approximately 20–93 t km?2 year?1), most likely controlled by extensive conversion of moorland to woodland, and post-World War II agricultural expansion. The Crombie investigation is combined with other reservoir sedimentation surveys within the Midland Valley of Scotland. Area-specific sediment yields (t km?2 year?1) evidence a weak, though statistically significant (p > 0.05), positive correlation with catchment area (km2). The increase in area-specific yield with catchment area contradicts the decline, which is generally expected, and is taken to reflect the significance of channel erosion within water supply basins featuring mainly natural and semi-natural vegetation cover and low-intensity land management practices. With stable slopes channel erosion dominates and area-specific sediment yield increases downstream due to greater entrainment and transport potential. The high degree of scatter in the Midland Valley database reflects significant variations in the extent of land-use change and the local importance of agricultural improvements and afforestation practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号