首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 755 毫秒
1.
V. P. Singh 《水文研究》1997,11(12):1649-1669
The shape, timing and peak flow of a stream flow hydrograph are significantly influenced by spatial and temporal variability in rainfall and watershed characteristics. Depending upon the size and shape of a watershed, its hydrological response is closely linked with storm dynamics. On an urban watershed a rain storm moving in the direction of flow produces a higher peak than it would if it were moving in the opposite direction. The effect of storm speed on peak discharge is much less for rapidly moving storms than for storms moving at about the same speed as the flow velocity. In a relatively homogeneous watershed the most important effect of spatial variability of rainfall occurs in the timing and shape of the runoff hydrograph. Temporally variable rainfall leads to higher peak flow than does constant rainfall. Significant errors in the prediction of runoff occur when an equivalent uniform hillslope is used to represent a heterogeneous hillslope. When average soil properties are used instead of spatially variable properties, significant differences are observed in infiltration. Spatially variable roughness alters the flow dynamics significantly. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
A continuous Soil Conservation Service (SCS) curve number (CN) method that considers time‐varied SCS CN values was developed based on the original SCS CN method with a revised soil moisture accounting approach to estimate run‐off depth for long‐term discontinuous storm events. The method was applied to spatially distributed long‐term hydrologic simulation of rainfall‐run‐off flow with an underlying assumption for its spatial variability using a geographic information systems‐based spatially distributed Clark's unit hydrograph method (Distributed‐Clark; hybrid hydrologic model), which is a simple few parameter run‐off routing method for input of spatiotemporally varied run‐off depth, incorporating conditional unit hydrograph adoption for different run‐off precipitation depth‐based direct run‐off flow convolution. Case studies of spatially distributed long‐term (total of 6 years) hydrologic simulation for four river basins using daily NEXRAD quantitative precipitation estimations demonstrate overall performances of Nash–Sutcliffe efficiency (ENS) 0.62, coefficient of determination (R2) 0.64, and percent bias 0.33% in direct run‐off and ENS 0.71, R2 0.72, and percent bias 0.15% in total streamflow for model result comparison against observed streamflow. These results show better fit (improvement in ENS of 42.0% and R2 of 33.3% for total streamflow) than the same model using spatially averaged gauged rainfall. Incorporation of logic for conditional initial abstraction in a continuous SCS CN method, which can accommodate initial run‐off loss amounts based on previous rainfall, slightly enhances model simulation performance; both ENS and R2 increased by 1.4% for total streamflow in a 4‐year calibration period. A continuous SCS CN method‐based hybrid hydrologic model presented in this study is, therefore, potentially significant to improved implementation of long‐term hydrologic applications for spatially distributed rainfall‐run‐off generation and routing, as a relatively simple hydrologic modelling approach for the use of more reliable gridded types of quantitative precipitation estimations.  相似文献   

3.
Although rainfall is assumed spatially uniform in conventional hydrological modelling for rainfall–runoff simulations, moving storms have been shown to have substantial influence on flow hydrographs. In this study, criteria for attainment of the equilibrium discharge from watersheds subjected to moving storms were examined. Non-linear numerical kinematic-wave models were developed to simulate runoff from an overland plane and from a V-shaped catchment. Dimensional analysis was applied to obtain the independent variables to be used as control factors in performing a series of numerical tests. The results indicate that, for storms moving downstream, runoff can attain equilibrium discharge even though the storm length is shorter than the watershed length and the rainfall duration is less than the time to equilibrium of the watershed for stationary uniform storms. The phenomenon of attainment of equilibrium discharge from watersheds subjected to moving storms is contradictory to conventional hydrologic design, which assumes the storm duration must equal the time to equilibrium to attain the maximum discharge. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Vijay P. Singh 《水文研究》2002,16(17):3437-3466
Using kinematic wave equations, analytical solutions are derived for flow resulting from storms moving either up or down the plane and covering it fully or partially. By comparing the flow resulting from a moving storm with that from a stationary storm of the same duration and areal coverage, the influence of storm duration, direction and areal coverage is investigated. It is found that the direction, duration and areal coverage of storm movement have a pronounced effect on the discharge hydrograph. The runoff hydrographs resulting from storms moving downstream are quite different from those from storms moving upstream. Likewise, the areal coverage of the storm has a pronounced effect on the runoff hydrograph. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
The hypothesis that downstream moving storms with storm length less than watershed length(L_s/L< 1.0) magnify the peak discharges as indicated by kinematic-wave models in previous studies was evaluated in an analysis of the dimensionless peak discharge and dimensionless storm velocity.Previously unpublished experimental data collected for a V-shaped watershed in the Watershed Experimentation System(WES) at the University of Illinois at Urbana-Champaign,were used in comparison with the simulation results of a kinematic-wave model.It is found that downstream moving storms with L_s/L < 1.0 increase the peak discharges to a limited extent compared to stationary storms,and the kinematic-wave model overstates the increase in the peak flows resulting from downstream moving storms with L_s/L < 1.0.To evaluate the importance of the backwater effects in the experimental watershed,the accuracy of kinematic-wave and dynamic-wave models for the simulation of surface runoff resulting from upstream and downstream moving storms was evaluated utilizing the same experimental data.The kinematic-wave model simulates the upstream moving storms pretty well,i.e.Nash-Sutcliffe coefficient of model fit efficiency equal to 0.948 and 0.831 for storms lengths equal to and not equal to the watershed length,respectively.Whereas,the kinematic wave model substantially overestimates the peak discharge of downstream moving storms,and yields generally poorer fits than for upstream moving storm,i.e.NSE equal to 0.867 and 0.674 for storms with lengths equal to and not equal to the watershed length,respectively.The dynamic-wave model simulates the downstream moving storms pretty well,i.e.NSE equal to 0.843 and 0.879 for storms with lengths equal to and not equal to the watershed length,respectively,indicating backwater significantly affects runoff for even this simple experimental watershed.Considering that storm movement did not substantially magnify peak discharge,the assumption of stationary storms made in standard hydrologic design seems reasonable and adequate.  相似文献   

6.
Recent advances have been made to modernize estimates of probable precipitation scenarios; however, researchers and engineers often continue to assume that rainfall events can be described by a small set of event statistics, typically average intensity and event duration. Given the easy availability of precipitation data and advances in desk‐top computational tools, we suggest that it is time to rethink the ‘design storm’ concept. Design storms should include more holistic characteristics of flood‐inducing rain events, which, in addition to describing specific hydrologic responses, may also be watershed or regionally specific. We present a sensitivity analysis of nine precipitation event statistics from observed precipitation events within a 60‐year record for Tompkins County, NY, USA. We perform a two‐sample Kolmogorov–Smirnov (KS) test to objectively identify precipitation event statistics of importance for two related hydrologic responses: (1) peak outflow from the Six Mile Creek watershed and (2) peak depth within the reservoir behind the Six Mile Creek Dam. We identify the total precipitation depth, peak hourly intensity, average intensity, event duration, interevent duration, and several statistics defining the temporal distribution of precipitation events to be important rainfall statistics to consider for predicting the watershed flood responses. We found that the two hydrologic responses had different sets of statistically significant parameters. We demonstrate through a stochastic precipitation generation analysis the effects of starting from a constrained parameter set (intensity and duration) when predicting hydrologic responses as opposed to utilizing an expanded suite of rainfall statistics. In particular, we note that the reduced precipitation parameter set may underestimate the probability of high stream flows and therefore underestimate flood hazard. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Amount and composition of dissolved organic matter (DOM) were evaluated for multiple, nested stream locations in a forested watershed to investigate the role of hydrologic flow paths, wetlands and drainage scale. Sampling was performed over a 4‐year period (2008–2011) for five locations with drainage areas of 0.62, 3.5, 4.5, 12 and 79 ha. Hydrologic flow paths were characterized using an end‐member mixing model. DOM composition was determined using a suite of spectrofluorometric indices and a site‐specific parallel factor analysis model. Dissolved organic carbon (DOC), humic‐like DOM and fluorescence index were most sensitive to changes with drainage scale, whereas dissolved organic nitrogen, specific UV absorbance, Sr and protein‐like DOM were least sensitive. DOM concentrations and humic‐like DOM constituents were highest during both baseflow and stormflow for a 3.5‐ha catchment with a wetland near the catchment outlet. Whereas storm‐event concentrations of DOC and humic DOM constituents declined, the mass exports of DOC increased with increasing catchment scale. A pronounced dilution in storm‐event DOC concentration was observed at peak stream discharge for the 12‐ha drainage location, which was not as apparent at the 79‐ha scale, suggesting key differences in supply and transport of DOM. Our observations indicate that hydrologic flow paths, especially during storms, and the location and extent of wetlands in the catchment are key determinants of DOM concentration and composition. This study furthers our understanding of changes in DOM with drainage scale and the controls on DOM in headwater, forested catchments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Qihua Ran  Feng Wang  Jihui Gao 《水文研究》2020,34(23):4526-4540
Rainfall characteristics are key factors influencing infiltration and runoff generation in catchment hydrology, particularly for arid and semiarid catchments. Although the effect of storm movement on rainfall-runoff processes has been evaluated and emphasized since the 1960s, the effect on the infiltration process has barely been considered. In this study, a physically based distributed hydrological model (InHM) was applied to a typical semi-arid catchment (Shejiagou, 4.26 km2) located in the Loess Plateau, China, to investigate the effect of storm movement on infiltration, runoff and soil erosion at the catchment scale. Simulations of 84 scenarios of storm movement were conducted, including storms moving across the catchment in both the upstream and downstream directions along the main channel, while in each direction considering four storm moving speeds, three rainfall depths and two storm ranges. The simulation results showed that, on both the hillslopes facing downstream (facing south) and in the main channel, the duration of the overland flow process under the upstream-moving storms was longer than that under the downstream-moving storms. Thus, the duration and volume of infiltration under upstream-moving storms were larger in these areas. For the Shejiagou catchment, as there are more hillslopes facing downstream, more infiltration occurred under the upstream-moving storms than the downstream-moving storms. Therefore, downstream-moving storms generated up to 69% larger total runoff and up to 351% more soil loss in the catchment than upstream-moving storms. The difference in infiltration between the storms moving upstream and downstream decreased as the storm moving speed increased. The relative difference in total runoff and sediment yield between the storms moving upstream and downstream decreased with increasing rainfall depth and storm speed. The results of this study revealed that the infiltration differences under moving storms largely influenced the total runoff and sediment yield at the catchment scale, which is of importance in runoff prediction and flood management. The infiltration differences may be a potential factor leading to different groundwater, vegetation cover and ecology conditions for the different sides of the hillslopes.  相似文献   

9.
V. P. Singh 《水文研究》1998,12(1):147-170
Using kinematic wave equations, analytical solutions are derived for flow owing to storms moving up and down a plane. By comparing the flow owing to a moving storm with that to an equivalent stationary storm, the influence of storm direction is investigated. The direction of storm movement exercises a significant influence on the peak flow and time to peak flow, as well as the shape of the overland flow hydrograph. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
The response time (lag time) between rainfall input and run‐off output in headwater catchments is a key parameter for flood prediction. Lag times are expected to be controlled by run‐off processes, both on hillslopes and in channels. To demonstrate these effects on peak lag times within a 4.5‐km2 catchment, we measured stream water levels at up to 16 channel locations at 1‐min intervals and compared the lag times with topographic indices describing the length and gradient of the hillslope and channel flow path. We captured storm events with a total precipitation of 38–198 mm and maximum hourly precipitation intensity of 9–90 mm/hr. There were positive relationships between lag time and flow path length as well as the ratio of the flow path length and the square root of the gradient of channels for the most intense storms, demonstrating that channel flow paths generally defined the variation in lag times. Topographic analysis showed that hillslope flow path lengths were similar among locations, whereas channel flow path length increased almost one order of magnitude with a 100‐fold increase in catchment area. Thus, the relative importance of hillslope flow path decreased with increasing catchment area. Our results indicate that the variation in lag times is small when hillslopes are sufficiently wet; thus, catchment‐scale variation in lag times can be explained almost entirely by channel processes. Detailed topographic channel information can improve prediction of flood peak timing, whereas hillslopes can be treated as homogeneous during large flood events.  相似文献   

11.
Statistical self-similarity in the spatial and temporal variability of rainfall, river networks, and runoff processes has been observed in many empirical studies. To theoretically investigate the relationships between the various time and space scales of variability in rainfall and runoff process we propose a simplified, yet physically based model of a catchment–rainfall interaction. The channel network is presented as a random binary tree, having topological and hydraulic geometry properties typically observed in real river networks. The continuous rainfall model consists of individual storms separated by dry periods. Each given storm is disaggregated in space and time using the random cascade model. The flow routing is modelled by the network of topologically connected nonlinear reservoirs, each representing a link in the channel network. Running the model for many years of synthetic rainfall time series and a continuous water balance model we generate an output, in the form of continuous time series of water discharge in all links in the channel network. The main subject of study is the annual peak flow as a function of catchment area and various characteristics of rainfall. The model enables us to identify different physical processes responsible for the empirically observed scaling properties of peak flows.  相似文献   

12.
Agricultural zones are significant sediment sources, but it is crucial to identify critical source areas (CSAs) of sediment yield within these zones where best management practices (BMPs) can be applied to the best effect in reducing sediment delivery to receiving water bodies rather than the economically nonviable alternative of randomly or sweepingly implementing BMPs. A storm event of a specific magnitude and hyetograph profile may, at different times, generate a greater or lesser sediment yield. The widely used agricultural nonpoint source (AGNPS) model was used to identify CSAs for sediment losses in Southwestern Ontario's agriculture‐dominated 374‐ha Holtby watershed. A storm threshold approach was adopted to identify critical periods for higher sediment losses. An AGNPS model for the Holtby watershed was set up, calibrated, and validated for run‐off volume, peak flow rate, and sediment yield for several storms. The calibrated and validated model was run for storms of increasing return periods to identify threshold storm events that would generate sediment yield greater than an acceptable value for early and late spring, summer, and fall seasons. Finally, to evaluate the potential impacts of climate change, we shifted shorter duration summer storms into spring conditions and quantified the changes in sediment yield dynamics. A 6‐hr, 7.5‐year early spring storm would generate sediment losses exceeding the acceptable limit of 0.34 t ha?1 for the season. However, summer storms (2 hr, up to 100 years) tended to generate sediment yields below those of an identifiable threshold storm. If such shorter duration summer storms occurred in spring, the sediment yield would increase by more than fivefold. A 5‐year future storm would generate an equivalent effect of a 100‐year current spring event. The high sediment delivery to be expected will have significant implications regarding the future management of water quality of receiving waters. Appropriate placement of BMPs at CSAs will thus be needed to reduce such high sediment delivery to receiving waters.  相似文献   

13.
The principal challenge in the parameterization of storm flow models for agricultural catchments with an artificial drainage network and fields with different degrees of tillage lies in the parsimonious definition of distributed model parameters in a way that reduces the number of calibration parameters to a justifiable minimum. This paper presents a comprehensive case study for the parameter estimation of a distributed storm flow model applied to an agricultural catchment (0.91 km2) in the Mediterranean region. Model parameterization was combined with procedures for multi‐criteria, multi‐storm calibration, where we automatically calibrated three parameters related to flow velocity and infiltration, and compared single and multi‐storm criteria that are based on discharge volume, peak flow, and the Nash–Sutcliffe coefficient. Multi‐storm calibration yielded a set of parameter values for the simulation batch with best multi‐storm overall performance, which are close to the median values in the pre‐calibration of individual storms. Our results suggest that flow velocities and proportionality of the channel infiltration rate do not vary significantly over the course of 11 years. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
V. P. Singh 《水文研究》2005,19(4):969-992
Using kinematic wave equations analytical solutions are derived for flow resulting from a storm moving either up or down an infiltrating plane but not fully covering it. By comparing the flow resulting from this storm with that from a stationary storm of the same duration the influence of storm duration, direction and velocity is investigated. It is found that the direction of storm movement, duration and velocity of storms, as well as basin infiltration, have a pronounced effect on the discharge hydrograph. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
This paper analyses the spatial and temporal variability of the hydrological response in a small Mediterranean catchment (Cal Rodó). The first part of the analysis focuses on the rainfall–runoff relationship at seasonal and monthly scale, using an 8‐year data set. Then, using storm‐flow volume and coefficient, the temporal variability of the rainfall–runoff relationship and its relationship with several hydrological variables are analysed at the event scale from hydrographs observed over a 3‐year period. Finally, the spatial non‐linearity of the hydrological response is examined by comparing the Cal Rodó hydrological response with the Can Vila sub‐catchment response at the event scale. Results show that, on a seasonal and monthly scale, there is no simple relationship between rainfall and runoff depths, and that evapotranspiration is a factor that introduced some non‐linearity in the rainfall–runoff relationship. The analysis of monthly values also reveals the existence of a threshold in the relationship between rainfall and runoff depths, denoting a more contrasted hydrological response than the one usually observed in humid catchments. At the event scale, the storm‐flow coefficient has a clear seasonal pattern with an alternance between a wet period, when the catchment is hydrologically responsive, and a dry summer period, when the catchment is much less reactive to any rainfall. The relationship between the storm‐flow coefficient and rainfall depth, rainfall maximum intensity and base‐flow shows that observed correlations are the same as those observed for humid conditions, even if correlation coefficients are notably lower. Comparison with the Can Vila sub‐catchment highlights the spatial heterogeneity of the rainfall‐runoff relationship at the small catchment scale. Although interpretation in terms of runoff processes remains delicate, heterogeneities between the two catchments seem to be related to changes in the ratio between infiltration excess and saturation processes in runoff formation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
This study delineated spatially and temporally variable runoff generation areas in the Sand Mountain region pasture of North Alabama under natural rainfall conditions, and demonstrated that hydrologic connectivity is important for generating hillslope response when infiltration‐excess (IE) runoff mechanism dominates. Data from six rainfall events (13·7–32·3 mm) on an intensively instrumented pasture hillslope (0·12 ha) were analysed. Analysis of data from surface runoff sensors, tipping bucket rain gauge and HS‐flume demonstrated spatial and temporal variability in runoff generation areas. Results showed that the maximum runoff generation area, which contributed to runoff at the outlet of the hillslope, varied between 67 and 100%. Furthermore, because IE was the main runoff generation mechanism on the hillslope, the data showed that as the rainfall intensity changed during a rainfall event, the runoff generation areas expanded or contracted. During rainfall events with high‐intensity short‐ to medium‐duration, 4–8% of total rainfall was converted to runoff at the outlet. Rainfall events with medium‐ to low‐intensity, medium‐duration were found less likely to generate runoff at the outlet. In situ soil hydraulic conductivity (k) was measured across the hillslope, which confirmed its effect on hydrologic connectivity of runoff generation areas. Combined surface runoff sensor and k‐interpolated data clearly showed that during a rainfall event, lower k areas generate runoff first, and then, depending on rainfall intensity, runoff at the outlet is generated by hydrologically connected areas. It was concluded that in IE‐runoff‐dominated areas, rainfall intensity and k can explain hydrologic response. The study demonstrated that only connected areas of low k values generate surface runoff during high‐intensity rainfall events. Identification of these areas would serve as an important foundation for controlling nonpoint source pollutant transport, especially phosphorus. The best management practices can be developed and implemented to reduce transport of phosphorus from these hydrologically connected areas. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The AD 1634 North Sea storm is one of the most catastrophic storms along the Wadden Sea coast of Denmark. In this study we show how pre‐1634 storm morphology exerted a strong control on the resulting post‐storm coastal morphology. Erosional responses associated with the storm were barrier breaching, dune scarping and shoreface erosion and accretionary responses were washover deposition, shoreface healing and barrier‐island formation. Local sediment sources appeared to have a particularly strong influence on post‐storm coastal evolution and allowed a very rapid formation of a barrier shoal which resulted in several kilometres of coastal progradation. Sediment budgets suggest that formation of the barrier shoal was possible, but the sediment transport rates in the decades after the 1634 storm, must have been two to three times higher than present‐day rates. The study demonstrates that catastrophic storms are capable of moving large amounts of sediments over relatively short time‐periods and can create barrier shoals, whereas moderate storms mostly rework the shoal or barrier and create more local erosion and/or landward migration. Catastrophic storms substantially influence long‐term and large‐scale coastal evolution, and storms may positively contribute to the sediment budget and promote coastal progradation in coastal areas with longshore sediment convergence. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
In this study, the Hillslope River Routing (HRR) model was modified for arctic river basin applications and used to route surface and subsurface run‐off from the Community Land Model (CLM) in the Mackenzie River Basin (MRB) for the period 2000–2004. The HRR modelling framework performs lateral surface and subsurface run‐off routing from hillslopes and channel/floodplain routing. The HRR model was modified here to include a variable subsurface active layer thickness (ALT; permafrost) to enable subsurface water to resurface, a distributed surface storage component to store and attenuate the rapid generation of snowmelt water, compound hillslopes to account for the low relief near rivers and floodplains, and reservoir routing to complete the total surface and subsurface water storage accounting. To illustrate the new HRR model components, a case study is presented for the MRB. The basin is discretized into 5077 sub‐basins based on a drainage network derived from the global digital elevation model (DEM) developed from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor on board NASA's Terra satellite and river widths extracted from LandSat images. The median hillslope land area is 68.5 km2 with a flow length of 2.8 km. Gridded CLM surface and subsurface run‐offs are remapped to the HRR model's irregular sub‐basins. The role of each new model component is quantified in terms of peak annual streamflow (magnitude and timing) at select locations and basin‐wide total water storage anomalies. The role of distributed surface storage is shown to attenuate the relatively rapid generation of snowmelt water, impact the annual peak hydrograph (reduced peaks by >30% and detailed peak by >20 days), and account for 20% of the monthly total water storage anomalies averaged over the year and ranging from 14 to 25% (?10 to 30 mm) throughout the year. Although additional research is needed to dynamically link spatially distributed ALT to HRR, the role of ALT is shown to be important. A basin‐wide, uniform 1 m ALT impacts the annual peak hydrograph (reduced peaks by 9% and detailed peak by 8 days) and trends in total water storage anomalies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Spatially distributed hydrologic models can be effectively utilized for flood event simulation over basins where a complex system of reservoirs affecting the natural flow regime is present. Flood peak attenuation through mountain reservoirs can, in fact, mitigate the impact of major floods in flood‐prone areas of the lower river valley. Assessment of this effect for a complex reservoir system is performed with a spatially distributed hydrologic model where the surface runoff formation and the hydraulic routing through each reservoir and the river system are performed at a fine spatial and time resolution. The Toce River basin is presented as a case study, because of the presence of 14 active hydroelectric dams that affect the natural flow regime. A recent extreme flood event is simulated using a multi‐realization kriging method for modelling the spatial distribution of rainfall. A sensitivity analysis of the key elements of the distributed hydrologic model is also performed. The flood hydrograph attenuation is assessed. Several possible reservoir storage conditions are used to characterize the initial condition of each reservoir. The results demonstrate how a distributed hydrologic model can contribute to defining strategies for reservoir management in flood mitigation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
High resolution radar rainfall fields and a distributed hydrologic model are used to evaluate the sensitivity of flood and flash flood simulations to spatial aggregation of rainfall and soil properties at catchment scales ranging from 75 to 983 km2. Hydrologic modeling is based on a Hortonian infiltration model and a network-based representation of hillslope and channel flow. The investigation focuses on three extreme flood and flash flood events occurred on the Sesia river basin, North Western Italy, which are analysed by using four aggregation lengths ranging from 1 to 16 km. The influence of rainfall spatial aggregation is examined by using the flow distance as a spatial coordinate, hence emphasising the role of river network in the averaging of space–time rainfall. The effects of reduced and distorted rainfall spatial variability on peak discharge have been found particularly severe for the flash flood events, with peak errors up to 35% for rainfall aggregation of 16 km and at 983 km2 catchment size. Effects are particularly remarkable when significant structured rainfall variability combines with relatively important infiltration volumes due to dry initial conditions, as this emphasises the non-linear character of the rainfall–runoff relationship. In general, these results confirm that the correct estimate of rainfall volume is not enough for the accurate reproduction of flash flood events characterised by large and structured rainfall spatial variability, even at catchment scales around 250 km2. However, accurate rainfall volume estimation may suffice for less spatially variable flood events. Increasing the soil properties aggregation length exerts similar effects on peak discharge errors as increasing the rainfall aggregation length, for the cases considered here and after rescaling to preserve the rainfall volume. Moreover, peak discharge errors are roughly proportional to runoff volume errors, which indicates that the shape of the flood wave is influenced in a limited way by modifying the detail of the soil property spatial representation. Conversely, rainfall aggregation may exert a pronounced influence on the discharge peak by reshaping the spatial organisation of the runoff volumes and without a comparable impact on the runoff volumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号