首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evaporation from mosses and lichens can form a major component of the water balance, especially in ecosystems where mosses and lichens often grow abundantly, such as tundra, deserts and bogs. To facilitate moss representation in hydrological models, we parameterized the unsaturated hydraulic properties of mosses and lichens such that the capillary water flow through moss and lichen material during evaporation could be assessed. We derived the Mualem‐van Genuchten parameters of the drying retention and the hydraulic conductivity functions of four xerophilous moss species and one lichen species. The shape parameters of the retention functions (2.17 < n < 2.35 and 0.08 < α < 0.13 cm?1) ranged between values that are typical for sandy loam and loamy sand. The shapes of the hydraulic conductivity functions of moss and lichen species diverged from those of mineral soils, because of strong negative pore‐connectivity parameters (?2.840 < l < ?2.175) and low hydraulic conductivities at slightly negative pressure heads (0.016 < K0 < 0.280 cm/d). These K0 values are surprisingly low, considering that mosses are very porous. However, during evaporation, large pores and voids were air filled and did not participate in capillary water flow. Small K0 values cause mosses and lichens to be conservative with water during wet conditions, thus tempering evaporation compared to mineral soils. On the other hand, under dry conditions, mosses and lichens are able to maintain a moisture supply from the soil, leading to a higher evaporation rate than mineral soils. Hence, the modulating effect of mosses on evaporation possibly differs between wet and dry climates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Soil hydraulic properties (SHPs) including the soil water retention curve and saturated soil hydraulic conductivity (Ks) are crucial input data for simulations of soil water and solute transport in the Earth's critical zone. However, obtaining direct measurements of SHPs at a wide range of scales is time consuming and expensive. Pedotransfer functions (PTFs) are employed as an alternative method for indirectly estimating these parameters based on readily measured soil properties. However, PTFs for SHPs for the deep soil layer in the Earth's critical zone are lacking. In this study, we developed new PTFs in the deep soil profile for Ks and soil water retention curve on the Loess Plateau, China, which were fitted with the van Genuchten equation. In total, 206 data sets comprising the hydraulic and basic soil properties were obtained from three typical sites. Samples were collected from the top of the soil profile to the bedrock by soil core drilling. PTFs were developed between the SHPs and basic soil properties using stepwise multiple linear regression. The PTFs obtained the best predictions for Ks (Radj2 = 0.561) and the worst for van Genuchten α (Radj2 = 0.474). The bulk density and sand content were important input variables for predicting Ks, α, and θs, and bulk density, clay content, and soil organic carbon were important for n. The PTFs developed in this study performed better than existing PTFs. This study contains the first set of PTFs of SHPs to be developed for the deep profile on the Loess Plateau, and they may be applicable to other regions.  相似文献   

3.
Estimates of soil hydraulic properties using pedotransfer functions (PTF) are useful in many studies such as hydrochemical modelling and soil mapping. The objective of this study was to calibrate and test parametric PTFs that predict soil water retention and unsaturated hydraulic conductivity parameters. The PTFs are based on neural networks and the Bootstrap method using different sets of predictors and predict the van Genuchten/Mualem parameters. A Danish soil data set (152 horizons) dominated by sandy and sandy loamy soils was used in the development of PTFs to predict the Mualem hydraulic conductivity parameters. A larger data set (1618 horizons) with a broader textural range was used in the development of PTFs to predict the van Genuchten parameters. The PTFs using either three or seven textural classes combined with soil organic mater and bulk density gave the most reliable predictions of the hydraulic properties of the studied soils. We found that introducing measured water content as a predictor generally gave lower errors for water retention predictions and higher errors for conductivity predictions. The best of the developed PTFs for predicting hydraulic conductivity was tested against PTFs from the literature using a subdata set of the data used in the calibration. The test showed that the developed PTFs gave better predictions (lower errors) than the PTFs from the literature. This is not surprising since the developed PTFs are based mainly on hydraulic conductivity data near saturation and sandier soils than the PTFs from the literature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
This article presents the results of a field investigation of saturated hydraulic conductivity Ksat and bulk density (ρbd) in an Atlantic blanket bog in the southwest of Ireland. Starting at a peatland stream and moving along an uphill transect toward the peatland interior, ρbd and Ksat were examined at regular intervals. Saturated horizontal hydraulic conductivity (Khsat) and vertical (Kvsat) was estimated at two depths: 10–20 and 30–40 cm below the peat surface, whereas ρbd was estimated for the full profile. We consider two separate zones, one a riparian zone extending 10 m from the stream and a second zone in the bog interior. We found that the Ksat was higher (~10–5 m s–1) in the bog interior than that in the riparian zone (~10–6 m s–1), whereas the converse applied to bulk density, with lowest density (~0.055 g cm–3) at the interior and highest (~0.11 g cm–3) at the riparian zone. In general, we found Khsat to be approximately twice the Kvsat. These results support the idea that the lower Ksat at the margins control the hydrology of blanket peatlands. It is therefore important that the spatial variation of these two key properties be accommodated in hydrological models if the correct rainfall runoff characteristics are to be correctly modelled. Stream flow analysis over 3 years at the peatland catchment outlet showed that the stream runoff was composed of 8% base flow and 92% flood flow, suggesting that this blanket peatland is a source rather than a sink for floodwaters. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A series of multi-step outflow experiments was carried out to identify the unsaturated hydraulic properties of two homogeneous coarse-textured porous media (glass beads and sand). Because of the measured sharp fronts of water content decrease during these experiments the hydraulic functions are assumed to be represented by the complete van Genuchten–Mualem closed-form expressions with variable coefficients α, n, m and θr. The values of θs and Ks were measured directly. A sensitivity analysis with respect to α, n, and m shows that conditions of local identifiability are satisfied if measurements of water content at some inner points inside the column are considered. The inverse modelling technique consists of two steps: first, computation of objective function values based on water content data responses to obtain initial parameter estimations, and second, a more detailed parameter determination using a Levenberg–Marquardt scheme. In both steps a numerical model incorporating the hydraulic functions is utilized to simulate theoretical pressure head and water content distributions along the column. For both porous media unique solutions of the inverse problem could be obtained, and afterwards, the corresponding hydraulic functions were verified from additional drainage experiments.©1998 Elsevier Science Limited. All rights reserved  相似文献   

6.
Peat soils are heterogeneous, anisotropic porous media. Compared to mineral soils, there is still limited understanding of physical and solute transport properties of fen peat soils. In this study, we aimed to explore the effect of soil anisotropy on solute transport in degraded fen peat. Undisturbed soil cores, taken in vertical and horizontal direction, were collected from one drained and one restored fen peatland both in a comparable state of soil degradation. Saturated hydraulic conductivity (K s) and chemical properties of peat were determined for all soil cores. Miscible displacement experiments were conducted under saturated steady state conditions using potassium bromide as a conservative tracer. The results showed that (1) the K s in vertical direction (K sv) was significantly higher than that in horizontal direction (Ksh), indicating that K s of degraded fen peat behaves anisotropically; (2) pronounced preferential flow occurred in vertical direction with a higher immobile water fraction and a higher pore water velocity; (3) the 5% arrival time (a proxy for the strength of preferential flow) was affected by soil anisotropy as well as study site. A strong correlation was found between 5% arrival time and dispersivity, K s and mobile water fraction; (4) phosphate release was observed from drained peat only. The impact of soil heterogeneity on phosphate leaching was more pronounced than soil anisotropy. The soil core with the strongest preferential flow released the highest amount of phosphate. We conclude that soil anisotropy is crucial in peatland hydrology but additional research is required to fully understand anisotropy effects on solute transport.  相似文献   

7.
The forest floor plays an important role in runoff rate, soil erosion and soil infiltration capacity by protecting mineral soils from the direct impact of falling raindrops. Forest floor consists of different kinds of litter with different hydraulic properties. In this study, the inverse method was used to estimate the hydraulic properties of three kinds of forest floor (broad‐leaved, needle‐leaved and mixed‐stand) at three replications in a completely random design. Forest floor samples were collected from the Gilan Province, Iran. The samples were piled up to make long columns 40.88 cm high with an inner diameter of 18.1 cm. Artificial rainfall experiments were conducted on top of the columns, and free drainage from the bottom of the columns was measured in the laboratory. Saturated hydraulic conductivity (Ks), saturated water content and water retention curve parameters (van Genuchten equation) were estimated by the inverse method. The results showed that the Ks of needle‐leaved samples differed significantly (p < 0.05) from those of broad‐leaved and mixed‐stand samples, whereas the latter two did not differ in this regard. No significant differences emerged in the water retention function parameters of van Genuchten (θr, β and α) in the three forest floor samples. The saturated water content of mixed‐stand samples was significantly different (p < 0.05) from that of broad‐leaved and needle‐leaved treatments with the latter two samples showing no significant difference. The good agreement between simulated and observed free drainage for all forest floor samples in the validation period indicates that the estimated hydraulic properties efficiently characterize the unsaturated water flow in the forest floor. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Determination of saturated hydraulic conductivity, Ks, and the van Genuchten water retention curve θ(h) parameters is crucial in evaluating unsaturated soil water flow. The aim of this work is to present a method to estimate Ks, α and n from numerical analysis of an upward infiltration process at saturation (Cap0), with (Cap0 + h) and without (Cap0) an overpressure step (h) at the end of the wetting phase, followed by an evaporation process (Evap). The HYDRUS model as well as a brute-force search method were used for theoretical loam soil parameter estimation. The uniqueness and the accuracy of solutions from the response surfaces, Ks–n, α–n and Ks–α, were evaluated for different scenarios. Numerical experiments showed that only the Cap0 + Evap and Cap0 + h + Evap scenarios were univocally able to estimate the hydraulic properties. The method gave reliable results in sand, loam and clay-loam soils.  相似文献   

9.
The parameter n in the well-known expression for hydraulic conductivity K=K0Sen (where K0 is its value at satiation and Se the effective saturation) is determined as a function of the exponent in the power form of the soil–water retention relationship. The result is validated with an extensive experimental database comprising some 43 soils, collected by Mualem.  相似文献   

10.
Predictions of post-wildfire flooding and debris flows are needed, typically with short lead times. Measurements of soil-hydraulic properties necessary for model parameterization are, however, seldom available. This study quantified soil-hydraulic properties, soil-water retention, and selected soil physical properties within the perimeter of the 2017 Thomas Fire in California. The Thomas Fire burn scar produced catastrophic debris flows in January 2018, highlighting the need for improved prediction capability. Soil-hydraulic properties were also indirectly estimated using relations tied to soil-water retention. These measurements and estimates are examined in the context of parameterizing post-wildfire hydrologic models. Tension infiltrometer measurements showed significant decreases (p < .05) in field-saturated hydraulic conductivity (Kfs) and sorptivity (S) in burned areas relative to unburned areas. Wildfire effects on soil water-retention were dominated by significant decreases in saturated soil-water content (θS). The van Genuchten parameters α, N, and residual water content did not show significant wildfire effects. The impacts of the wildfire on hydraulic and physical soil properties were greatest in the top 1 cm, emphasizing that measurements of post-fire soil properties should focus on the near-surface. Reductions in Kfs, θs, and soil-water retention in burned soils were attributed to fire-induced decreases in soil structure evidenced by increases in dry bulk density. Sorptivity reductions in burned soils were attributed to increases in soil-water repellency. Rapid post-fire assessments of flash flood and debris flow hazards using physically-based hydrologic models are facilitated by similarities between Kfs, S, and the Green–Ampt wetting front potential (ψf) with measurements at other southern CA burned sites. We suggest that ratios of burned to unburned Kfs (0.37), S (0.36), and ψf (0.66) could be used to scale unburned values for model parameterization. Alternatively, typical burned values (Kfs = 20 mm hr−1; S = 6 mm hr−0.5; ψf = 1.6 mm) could be used for model parameterization.  相似文献   

11.
Simulation of soil moisture content requires effective soil hydraulic parameters that are valid at the modelling scale. This study investigates how these parameters can be estimated by inverse modelling using soil moisture measurements at 25 locations at three different depths (at the surface, at 30 and 60 cm depth) on an 80 by 20 m hillslope. The study presents two global sensitivity analyses to investigate the sensitivity in simulated soil moisture content of the different hydraulic parameters used in a one‐dimensional unsaturated zone model based on Richards' equation. For estimation of the effective parameters the shuffled complex evolution algorithm is applied. These estimated parameters are compared to their measured laboratory and in situ equivalents. Soil hydraulic functions were estimated in the laboratory on 100 cm3 undisturbed soil cores collected at 115 locations situated in two horizons in three profile pits along the hillslope. Furthermore, in situ field saturated hydraulic conductivity was estimated at 120 locations using single‐ring pressure infiltrometer measurements. The sensitivity analysis of 13 soil physical parameters (saturated hydraulic conductivity (Ks), saturated moisture content (θs), residual moisture content (θr), inverse of the air‐entry value (α), van Genuchten shape parameter (n), Averjanov shape parameter (N) for both horizons, and depth (d) from surface to B horizon) in a two‐layer single column model showed that the parameter N is the least sensitive parameter. Ks of both horizons, θs of the A horizon and d were found to be the most sensitive parameters. Distributions over all locations of the effective parameters and the distributions of the estimated soil physical parameters from the undisturbed soil samples and the single‐ring pressure infiltrometer estimates were found significantly different at a 5% level for all parameters except for α of the A horizon and Ks and θs of the B horizon. Different reasons are discussed to explain these large differences. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Hydraulic thresholds for erosion of fourteen upland mineral and organic soils were determined in a hydraulic flume. These soils are from areas to be afforested in the United Kingdom. Some of the group are erosion resistant but others are susceptible to erosion once denuded of vegetation; for example, by preafforestation ploughing. These threshold data were required to calibrate a hydraulic model for effective design of preafforestation drainage networks on a variety of soils. However, simple field measures of soil properties indicative of erosion potential would be of value to the forestry industry for management purposes. Consequently, hydraulic threshold data were related by linear regression methods to basic soil properties, including organic content, grain size, bulk density, compression strength and penetration resistance. The investigation concluded that four peat soils are not eroded by clear water velocities up to 5·7 m s−1, although a mineral bedload might induce erosion at lesser current speeds. Penetration resistance is a good field indicator of the degree of humification of the peat soils. Although selected physical parameters contribute resistance to water erosion, an increased organic content is pre-eminent in reducing erosion susceptibility in both organic and mineral soils. Although compressive strength was not indicative of soil erodibility, field measurements of penetration resistance on a variety of soils could be related to hydraulic thresholds of erosion; albeit through the construction of discriminant functions interpolated by eye. Consequently, organic content (laboratory) or penetration resistance (field) might form the basis of classifying upland soils in terms of erodibility. Mineral soils differ widely in terms of their erodibility, so that subject to further consideration, the use of ploughing for forestry cultivation might be appropriate in wider circumstances than presently recommended by the Forests and Water Guidelines. Ploughing should be acceptable on deep peat providing the underlying mineral soil is not exposed in the bottom of the furrow, and furrows are not led from mineral soils on to deep peat. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
A limitation of existing models of water and solute movement in fen peats is that they fail to represent processes in the unsaturated zone. This limitation is largely due to a lack of data on the hydraulic properties of unsaturated peat, in particular the relationship between hydraulic conductivity (K) and pressure head (ψ). A tension infiltrometer was used to measure K(ψ) of a fen peat in Somerset, England. It was found that macropores could be important in water and solute movement in this soil type. It was also found that (i) variability of K in this peat was less than that reported for other peats and mineral soils, and (ii) the K data were better described by a log-normal distribution than a normal distribution in accord with findings from other peat and mineral soils. Recommendations on improving the understanding of water and solute movement in the unsaturated zone of this soil type are made. © 1997 by John Wiley & Sons, Ltd.  相似文献   

14.
The distribution of soil hydraulic and physical properties strongly influences runoff processes in landscapes. Although much work has been done to quantify and predict the properties of hillslope soils, far less is known about the distribution of soil properties in valley floors. A technique that links the estimation and distribution of soil hydraulic properties in valleys, with easily identified geomorphic features, was developed along a 2 km length of a valley at Brooks Creek in New South Wales, Australia. Soil physical and hydraulic property data were collected across a set of floodplain and fan features within the valley and analysed statistically to determine if soil properties varied significantly between geomorphic features and stratigraphic layers. The results show that the depth‐averaged saturated hydraulic conductivity, Ks, of the soil varies significantly with landform: fan units have Kg values that are twice that of floodplains and colluvial toeslope deposits have Ks values four times higher than floodplains. Given the notorious variability of Ks values in space, the strong statistical separation of soil properties by landform, backed up by strong separation of soil particle size by landform, suggests a way forward in understanding the distribution of soil properties in valleys and their influence on catchment hydrology. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Testing infiltrometer techniques to determine soil hydraulic properties is necessary for specific soils. For a loam soil, the water retention and hydraulic conductivity predicted by the BEST (Beerkan Estimation of Soil Transfer parameters) procedure of soil hydraulic characterization was compared with data collected by more standard laboratory and field techniques. Six infiltrometer techniques were also compared in terms of saturated soil hydraulic conductivity, Ks. BEST yielded water retention values statistically similar to those obtained in the laboratory and Ks values practically coinciding with those determined in the field with the pressure infiltrometer (PI). The unsaturated soil hydraulic conductivity measured with the tension infiltrometer (TI) was reproduced satisfactorily by BEST only close to saturation. BEST, the PI, one‐potential experiments with both the TI and the mini disk infiltrometer (MDI), the simplified falling head (SFH) technique and the bottomless bucket (BB) method yielded statistically similar estimates of Ks, differing at the most by a factor of three. Smaller values were obtained with longer and more soil‐disturbing infiltration runs. Any of the tested infiltration techniques appears usable to obtain the order of magnitude of Ks at the field site, but the BEST, BB and PI data appear more appropriate to characterize the soil at some stage during a rainfall event. Additional investigations on both similar and different soils would allow development of more general procedures to apply infiltrometer techniques for soil hydraulic characterization. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A peatland complex disturbed by berm construction in the 1950s was used to examine the long‐term impact of water table (WT) manipulation on peatland hydraulic properties and moisture retention at three adjacent sites with increasing depth to WT (WET, INTermediate reference and DRY). Saturated hydraulic conductivity (Ks) was found to decrease with depth by several orders of magnitude over a depth of 1–1.5 m at all sites. The depth dependence of WT response to rainfall was similar across sites: WT response increased from 1 : 1 at the surface, to 5 : 1 at 50 cm depth. While surface specific yield (Sy) values were similar across all sites, it decreased with depth at a rate of 0.014 cm?1 in hollows and 0.007 cm?1 in hummocks. Bulk density (ρb) exhibited similar depth‐dependent trends as Sy and explains a high amount of variance (r2 > 0.69) in moisture retention across a range of pore water pressures (?15 to ?500 cm H2O). Because of higher ρb, hollow peat had greater moisture retention, where site effects were minimal. However, the estimated residual water content for surface Sphagnum samples, while on average lower in hummocks (0.082 m3 m?3) versus hollows (0.087 m3 m?3), increased from WET (0.058 m3 m?3) to INT (0.088 m3 m?3) to DRY (0.108 m3 m?3) which has important implications for moisture stress under conditions of persistent WT drawdown. Given the potential importance of microtopographic succession for altering peatland hydraulic structure, our findings point to the need for a better understanding of what controls the relative height and proportional coverage of hummocks in relation to long‐term disturbance‐response dynamics. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Field‐saturated soil hydraulic conductivity, Kfs, is highly variable. Therefore, interpreting and simulating hydrological processes, such as rainfall excess generation, need a large number of Kfs data even at the plot scale. Simple and reasonably rapid experiments should be carried out in the field. In this investigation, a simple infiltration experiment with a ring inserted shortly into the soil and the estimation of the so‐called α* parameter allowed to obtain an approximate measurement of Kfs. The theoretical approach was tested with reference to 149 sampling points established on Burundian soils. The estimated Kfs with the value of first approximation of α* for most agricultural field soils (α* = 0.012 mm?1) differed by a practically negligible maximum factor of two from the saturated conductivity obtained by the complete Beerkan Estimation of Soil Transfer parameters (BEST) procedure for soil hydraulic characterization. The measured infiltration curve contained the necessary information to obtain a site‐specific prediction of α*. The empirically derived α* relationship gave similar results for Kfs (mean = 0.085 mm s?1; coefficient of variation (CV) = 71%) to those obtained with BEST (mean = 0.086 mm s?1; CV = 67%), and it was also successfully tested with reference to a few Sicilian sampling points, since it yielded a mean and a CV of Kfs (0.0094 mm s?1 and 102%, respectively) close to the values obtained with BEST (mean = 0.0092 mm s?1; CV = 113%). The developed method appears attractive due to the extreme simplicity of the experiment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
We collected soil‐hydraulic property data from the literature for wildfire‐affected soils, ash, and unburned soils. These data were used to calculate metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and wetting front potential (Ψf) were significantly different (lower) in burned soils compared with unburned soils, whereas field‐saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity during infiltration was greatly reduced in burned soils, causing faster ponding times in response to rainfall. Ash had large values of S and Kfs but moderate values of Ψf, compared with unburned and burned soils, indicating ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant (~100 mm) for unburned soils but more variable in burned soils, suggesting that unburned soils have a balance between gravity and capillarity contributions to infiltration that may depend on soil organic matter, whereas in burned soils the gravity contribution to infiltration is greater. Changes in S and Kfs in burned soils act synergistically to reduce infiltration and accelerate and amplify surface runoff generation. Synthesis of these findings identifies three key areas for future research. First, short timescales of capillary influences on infiltration indicate the need for better measurements of infiltration at times less than 1 min to accurately characterize S in burned soils. Second, using parameter values, such as Ψf, from unburned areas could produce substantial errors in hydrologic modeling when used without adjustment for wildfire effects, causing parameter compensation and resulting underestimation of Kfs. Third, more thorough measurement campaigns that capture soil‐structural changes, organic matter impacts, quantitative water repellency trends, and soil‐water content along with soil‐hydraulic properties could drive the development of better techniques for numerically simulating infiltration in burned areas.  相似文献   

20.
Post‐wildfire runoff was investigated by combining field measurements and modelling of infiltration into fire‐affected soils to predict time‐to‐start of runoff and peak runoff rate at the plot scale (1 m2). Time series of soil‐water content, rainfall and runoff were measured on a hillslope burned by the 2010 Fourmile Canyon Fire west of Boulder, Colorado during cyclonic and convective rainstorms in the spring and summer of 2011. Some of the field measurements and measured soil physical properties were used to calibrate a one‐dimensional post‐wildfire numerical model, which was then used as a ‘virtual instrument’ to provide estimates of the saturated hydraulic conductivity and high‐resolution (1 mm) estimates of the soil‐water profile and water fluxes within the unsaturated zone. Field and model estimates of the wetting‐front depth indicated that post‐wildfire infiltration was on average confined to shallow depths less than 30 mm. Model estimates of the effective saturated hydraulic conductivity, Ks, near the soil surface ranged from 0.1 to 5.2 mm h?1. Because of the relatively small values of Ks, the time‐to‐start of runoff (measured from the start of rainfall), tp, was found to depend only on the initial soil‐water saturation deficit (predicted by the model) and a measured characteristic of the rainfall profile (referred to as the average rainfall acceleration, equal to the initial rate of change in rainfall intensity). An analytical model was developed from the combined results and explained 92–97% of the variance of tp, and the numerical infiltration model explained 74–91% of the variance of the peak runoff rates. These results are from one burned site, but they strongly suggest that tp in fire‐affected soils (which often have low values of Ks) is probably controlled more by the storm profile and the initial soil‐water saturation deficit than by soil hydraulic properties. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号