首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Despite the strong interaction between surface and subsurface waters, groundwater flow representation is often oversimplified in hydrological models. For instance, the interplay between local or shallow aquifers and deeper regional‐scale aquifers is typically neglected. In this work, a novel hillslope‐based catchment model for the simulation of combined shallow and deep groundwater flow is presented. The model consists of the hillslope‐storage Boussinesq (hsB) model representing shallow groundwater flow and an analytic element (AE) model representing deep regional groundwater flow. The component models are iteratively coupled via a leakage term based on Darcy's law, representing delayed recharge to the regional aquifer through a low conductivity layer. Simulations on synthetic single hillslopes and on a two‐hillslope open‐book catchment are presented, and the results are compared against a benchmark three‐dimensional Richards equation model. The impact of hydraulic conductivity, hillslope plan geometry (uniform, convergent, divergent), and hillslope inclination (0.2%, 5%, and 30%) under drainage and recharge conditions are examined. On the single hillslopes, good matches for heads, hydrographs, and exchange fluxes are generally obtained, with the most significant differences in outflows and heads observed for the 30% slope and for hillslopes with convergent geometry. On the open‐book catchment, cumulative outflows are overestimated by 1–4%. Heads in the confined and unconfined aquifers are adequately reproduced throughout the catchment, whereas exchange fluxes are found to be very sensitive to the hillslope drainable porosity. The new model is highly efficient computationally compared to the benchmark model. The coupled hsB/AE model represents an alternative to commonly used groundwater flow representations in hydrological models, of particular appeal when surface–subsurface exchanges, local aquifer–regional aquifer interactions, and low flows play a key role in a watershed's dynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
New Zealand's gravel‐bed rivers have deposited coarse, highly conductive gravel aquifers that are predominantly fed by river water. Managing their groundwater resources is challenging because the recharge mechanisms in these rivers are poorly understood and recharge rates are difficult to predict, particularly under a more variable future climate. To understand the river‐groundwater exchange processes in gravel‐bed rivers, we investigate the Wairau Plain Aquifer using a three‐dimensional groundwater flow model which was calibrated using targeted field observations, “soft” information from experts of the local water authority, parameter regularization techniques, and the model‐independent parameter estimation software PEST. The uncertainty of simulated river‐aquifer exchange flows, groundwater heads, spring flows, and mean transit times were evaluated using Null‐space Monte‐Carlo methods. Our analysis suggests that the river is hydraulically perched (losing) above the regional water table in its upper reaches and is gaining downstream where marine sediments overlay unconfined gravels. River recharge rates are on average 7.3 m3/s, but are highly dynamic in time and variable in space. Although the river discharge regularly hits 1000 m3/s, the net exchange flow rarely exceeds 12 m3/s and seems to be limited by the physical constraints of unit‐gradient flux under disconnected rivers. An important finding for the management of the aquifer is that changes in aquifer storage are mainly affected by the frequency and duration of low‐flow periods in the river. We hypothesize that the new insights into the river‐groundwater exchange mechanisms of the presented case study are transferable to other rivers with similar characteristics.  相似文献   

3.
Stream–aquifer interaction plays a vital role in the water cycle, and a proper study of this interaction is needed for understanding groundwater recharge, contaminants migration, and for managing surface water and groundwater resources. A model‐based investigation of a field experiment in a riparian zone of the Schwarzbach river, a tributary of the Rhine River in Germany, was conducted to understand stream–aquifer interaction under alternative gaining and losing streamflow conditions. An equivalent streambed permeability, estimated by inverting aquifer responses to flood waves, shows that streambed permeability increased during infiltration of stream water to aquifer and decreased during exfiltration. Aquifer permeability realizations generated by multiple‐point geostatistics exhibit a high degree of heterogeneity and anisotropy. A coupled surface water groundwater flow model was developed incorporating the time‐varying streambed permeability and heterogeneous aquifer permeability realizations. The model was able to reproduce varying pressure heads at two observation wells near the stream over a period of 55 days. A Monte Carlo analysis was also carried out to simulate groundwater flow, its age distribution, and the release of a hypothetical wastewater plume into the aquifer from the stream. Results of this uncertainty analysis suggest (a) stream–aquifer exchange flux during the infiltration periods was constrained by aquifer permeability; (b) during exfiltration, this flux was constrained by the reduced streambed permeability; (c) the effect of temporally variable streambed permeability and aquifer heterogeneity were found important to improve the accurate capture of the uncertainty; and (d) probabilistic infiltration paths in the aquifer reveal that such pathways and the associated prediction of the extent of the contaminant plume are highly dependent on aquifer heterogeneity.  相似文献   

4.
Many studies have investigated the exchange processes that occur between rivers and groundwater systems and have successfully quantified the water fluxes involved. Specifically, these exchange processes include hyporheic exchange, river–aquifer exchange (groundwater discharge and river loss) and bank storage exchange. Remarkably, there are relatively few examples of field studies where more than one exchange process is quantified, and as a consequence, the relationships between them are not well understood. To compare the relative magnitudes of these common exchange processes, we have collected data from 54 studies that have quantified one or more of these exchange flux types. Each flux value is plotted against river discharge at the time of measurement to allow the different exchange flux types to be compared. We show that there are positive relationships between the magnitude of each exchange flux type and increasing river discharge across the different studies. For every one order of magnitude increase in river discharge, the hyporheic, river–aquifer and bank storage exchange fluxes increase by factors of 2.7, 2.9 and 2.5, respectively. On average, hyporheic exchange fluxes are almost an order of magnitude greater than river–aquifer exchange fluxes, which are, in turn, approximately four times greater than bank storage exchange fluxes for the same river discharge. Unless measurement approaches that can distinguish between different types of exchange flux are used, there is potential for hyporheic exchange fluxes to be misinterpreted as river–aquifer exchange fluxes, with possible implications for water resource management decisions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
This paper aims to assess MODFLOW and MT3D capabilities for simulating the spread of contaminants from a river exhibiting an unusual relationship with an alluvial aquifer, with the groundwater head higher than the river head on one side and lower on the other (flow‐through stream). A series of simulation tests is conducted using a simple hypothetical model so as to characterize and quantify these limitations. Simulation results show that the expected contaminant spread could be achieved with a specific configuration composed of two sets of parameters: (1) modeled object parameters (hydraulic groundwater gradient, hydraulic conductivity values of aquifer and streambed), and (2) modeling parameters (vertical discretization of aquifer, horizontal refinement of stream modeled with River [RIV] package). The influence of these various parameters on simulation results is investigated, and potential complications and errors are identified. Contaminant spread from stream to aquifer is not always reproduced by MT3D due to the RIV package's inability to simulate lateral exchange fluxes between stream and aquifer. This paper identifies the need for a MODFLOW streamflow package allowing lateral stream‐aquifer interactions and streamflow routine calculations. Such developments could be of particular interest for modeling contaminated flow‐through streams.  相似文献   

6.
This study investigates spatial patterns and temporal dynamics of aquifer–river exchange flow at a reach of the River Leith, UK. Observations of sub‐channel vertical hydraulic gradients at the field site indicate the dominance of groundwater up‐welling into the river and the absence of groundwater recharge from surface water. However, observed hydraulic heads do not provide information on potential surface water infiltration into the top 0–15 cm of the streambed as these depths are not covered by the existing experimental infrastructure. In order to evaluate whether surface water infiltration is likely to occur outside the ‘window of detection’, i.e. the shallow streambed, a numerical groundwater model is used to simulate hydrological exchanges between the aquifer and the river. Transient simulations of the successfully validated model (Nash and Sutcliff efficiency of 0·91) suggest that surface water infiltration is marginal and that the possibility of significant volumes of surface water infiltrating into non‐monitored shallow streambed sediments can be excluded for the simulation period. Furthermore, the simulation results show that with increasing head differences between river and aquifer towards the end of the simulation period, the impact of streambed topography and hydraulic conductivity on spatial patterns of exchange flow rates decreases. A set of peak flow scenarios with altered groundwater‐surface water head gradients is simulated in order to quantify the potential for surface water infiltration during characteristic winter flow conditions following the observation period. The results indicate that, particularly at the beginning of peak flow conditions, head gradients are likely to cause substantial increase in surface water infiltration into the streambed. The study highlights the potential for the improvement of process understanding of hyporheic exchange flow patterns at the stream reach scale by simulating aquifer‐river exchange fluxes with a standard numerical groundwater model and a simple but robust model structure and parameterization. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Rapidly transforming headwater catchments in the humid tropics provide important resources for drinking water, irrigation, hydropower, and ecosystem connectivity. However, such resources for downstream use remain unstudied. To improve understanding of the behaviour and influence of pristine rainforests on water and tracer fluxes, we adapted the relatively parsimonious, spatially distributed tracer‐aided rainfall–runoff (STARR) model using event‐based stable isotope data for the 3.2‐km2 San Lorencito catchment in Costa Rica. STARR was used to simulate rainforest interception of water and stable isotopes, which showed a significant isotopic enrichment in throughfall compared with gross rainfall. Acceptable concurrent simulations of discharge (Kling–Gupta efficiency [KGE] ~0.8) and stable isotopes in stream water (KGE ~0.6) at high spatial (10 m) and temporal (hourly) resolution indicated a rapidly responding system. Around 90% of average annual streamflow (2,099 mm) was composed of quick, near‐surface runoff components, whereas only ~10% originated from groundwater in deeper layers. Simulated actual evapotranspiration (ET) from interception and soil storage were low (~420 mm/year) due to high relative humidity (average 96%) and cloud cover limiting radiation inputs. Modelling suggested a highly variable groundwater storage (~10 to 500 mm) in this steep, fractured volcanic catchment that sustains dry season baseflows. This groundwater is concentrated in riparian areas as an alluvial–colluvial aquifer connected to the stream. This was supported by rainfall–runoff isotope simulations, showing a “flashy” stream response to rainfall with only a moderate damping effect and a constant isotope signature from deeper groundwater (~400‐mm additional mixing volume) during baseflow. The work serves as a first attempt to apply a spatially distributed tracer‐aided model to a tropical rainforest environment exploring the hydrological functioning of a steep, fractured‐volcanic catchment. We also highlight limitations and propose a roadmap for future data collection and spatially distributed tracer‐aided model development in tropical headwater catchments.  相似文献   

8.
Interaction between groundwater and surface water in watersheds has significant impacts on water management and water rights, nutrient loading from aquifers to streams, and in‐stream flow requirements for aquatic species. Of particular importance are the spatial patterns of these interactions. This study explores the spatio‐temporal patterns of groundwater discharge to a river system in a semi‐arid region, with methods applied to the Sprague River Watershed (4100 km2) within the Upper Klamath Basin in Oregon, USA. Patterns of groundwater–surface water interaction are explored throughout the watershed during the 1970–2003 time period using a coupled SWAT‐MODFLOW model tested against streamflow, groundwater level and field‐estimated reach‐specific groundwater discharge rates. Daily time steps and coupling are used, with groundwater discharge rates calculated for each model computational point along the stream. Model results also are averaged by month and by year to determine seasonal and decadal trends in groundwater discharge rates. Results show high spatial variability in groundwater discharge, with several locations showing no groundwater/surface water interaction. Average annual groundwater discharge is 20.5 m3/s, with maximum and minimum rates occurring in September–October and March–April, respectively. Annual average rates increase by approximately 0.02 m3/s per year over the 34‐year period, negligible compared with the average annual rate, although 70% of the stream network experiences an increase in groundwater discharge rate between 1970 and 2003. Results can assist with water management, identifying potential locations of heavy nutrient mass loading from the aquifer to streams and ecological assessment and planning focused on locations of high groundwater discharge. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The lower Apalachicola–Chattahoochee–Flint River Basin in the Southeast United States represents a major agricultural area underlain by the highly productive karstic Upper Floridan aquifer (UFA). During El Niño Southern Oscillation‐induced droughts, intense groundwater withdrawal for irrigation lowers streamflow in the Flint River due to its hydraulic connectivity with the UFA and threatens the habitat of the federally listed and endangered aquatic biota. This study assessed the compounding hydrologic effects of increased irrigation pumping during drought years (2010–2012) on stream–aquifer water exchange (stream–aquifer flux) between the Flint River and UFA using the United States Geological Survey modular finite element groundwater flow model. Principal component and K‐means clustering analyses were used to identify critical stream reaches and tributaries that are adversely affected by irrigation pumping. Additionally, the effectiveness of possible water restriction scenarios on stream–aquifer flux was also analysed. Moreover, a cost–benefit analysis of acreage buyout procedure was conducted for various water restriction scenarios. Results indicate that increased groundwater withdrawal in Water Year 2011 decreased baseflow in the lower Apalachicola–Chattahoochee–Flint River Basin, particularly, in Spring Creek, where irrigation pumping during April, June, and July changed the creek condition from a gaining to losing stream. Results from sensitivity analysis and simulated water restrictions suggest that reducing pumping in selected sensitive areas is more effective in streamflow recovery (approximately 78%) than is reducing irrigation intensity by a prescribed percentage of current pumping rates, such as 15% or 30%, throughout the basin. Moreover, analysis of acreage buyout indicates that restrictions on irrigation withdrawal can have significant impacts on stream–aquifer flux in the Basin, especially in critical watersheds such as Spring and Ichawaynochaway Creeks. The proposed procedure for ranking of stream reaches (sensitivity analysis) in this study can be replicated in other study areas/models. This study provides useful information to policymakers for devising alternate irrigation water withdrawal policies during droughts for maintaining flow levels in the study area.  相似文献   

10.
Understanding groundwater–surface water exchange in river banks is crucial for effective water management and a range of scientific disciplines. While there has been much research on bank storage, many studies assume idealized aquifer systems. This paper presents a field‐based study of the Tambo Catchment (southeast Australia) where the Tambo River interacts with both an unconfined aquifer containing relatively young and fresh groundwater (<500 μS/cm and <100 years old) and a semi‐confined artesian aquifer containing old and saline groundwater (electrical conductivity > 2500 μS/cm and >10 000 years old). Continuous groundwater elevation and electrical conductivity monitoring within the different aquifers and the river suggest that the degree of mixing between the two aquifers and the river varies significantly in response to changing hydrological conditions. Numerical modelling using MODFLOW and the solute transport package MT3DMS indicates that saline water in the river bank moves away from the river during flooding as hydraulic gradients reverse. This water then returns during flood recession as baseflow hydraulic gradients are re‐established. Modelling also indicates that the concentration of a simulated conservative groundwater solute can increase for up to ~34 days at distances of 20 and 40 m from the river in response to flood events approximately 10 m in height. For the same flood event, simulated solute concentrations within 10 m of the river increase for only ~15 days as the infiltrating low‐salinity river water drives groundwater dilution. Average groundwater fluxes to the river stretch estimated using Darcy's law were 7 m3/m/day compared with 26 and 3 m3/m/day for the same periods via mass balance using Radon (222Rn) and chloride (Cl), respectively. The study shows that by coupling numerical modelling with continuous groundwater–surface water monitoring, the transient nature of bank storage can be evaluated, leading to a better understanding of the hydrological system and better interpretation of hydrochemical data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Subsurface flow and heat transport near Freienbrink, NE Germany, was simulated in order to study groundwater–surface water exchange between a floodplains aquifer and a section of the lowland River Spree and an adjacent oxbow. Groundwater exfiltration was the dominant process, and only fast surface water level rises resulted in temporary infiltration into the aquifer. The main groundwater flow paths are identified based on a 3D groundwater flow model. To estimate mass fluxes across the aquifer–surface water interfaces, a 2D flow and heat transport modelling approach along a transect of 12 piezometers was performed. Results of steady‐state and transient water level simulations show an overall high accuracy with a Spearman coefficient ρ = 0.9996 and root mean square error (RMSE) = 0.008 m. Based on small groundwater flow velocities of about 10?7 to 10?6 ms?1, mean groundwater exfiltration rates of 233 l m?2 d?1 are calculated. Short periods of surface water infiltration into the aquifer do not exceed 10 days, and the infiltration rates are in the same range. The heat transport was modelled with slightly less accuracy (ρ = 0.8359 and RMSE = 0.34 °C). In contrast to the predominant groundwater exfiltration, surface water temperatures determine the calculated temperatures in the upper aquifer below both surface water bodies down to 10 m during the whole simulation period. These findings emphasize prevailing of heat conduction over advection in the upper aquifer zones, which seems to be typical for lowland streams with sandy aquifer materials and low hydraulic gradients. Moreover, this study shows the potential of coupled numerical flow and heat transport modelling to understand groundwater–surface water exchange processes in detail. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
In coastal rivers, tides can propagate for tens to hundreds of kilometres inland beyond the saltwater line. Yet the influence of tides on river–aquifer connectivity and solute transport in tidal freshwater zones (TFZs) is largely unknown. We estimate that along the TFZ of White Clay Creek (Delaware, USA), 11% of river water exchanges through tidal bank storage zones. Additional hyporheic processes such as flow through bedforms likely contribute even more exchange. The turnover length associated with tidal bank storage is 150 km, on the order of turnover lengths for all hyporheic exchange processes in non‐tidal rivers of similar size. Based on measurements at a transect of piezometers located 17 km from the coast, tides exchange 0.36 m3 of water across the banks and 0.86 m3 across the bed per unit river length. Exchange fluxes range from ?1.66 to 2.26 m day?1 across the bank and ?0.84 to 1.88 m day?1 across the bed. During rising tide, river water infiltrates into the riparian aquifer, and the downstream transport rate in the channel is low. During falling tide, stored groundwater is released to the river, and the downstream transport rate in the channel increases. Tidal bank storage zones may remove nutrients or other contaminants from river water and attenuate nutrient loads to coasts. Alternating expansion and contraction of aerobic zones in the riparian aquifer likely influence contaminant removal along flow paths. A clear need exists to understand contaminant removal and other ecosystem services in TFZs and adopt best management practices to promote these ecosystem services. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Knowledge on groundwater–surface water interaction and especially on exchange fluxes between streams and aquifers is an important prerequisite for the study of transport and fate of contaminants and nutrients in the hyporheic zone. One possibility to quantify groundwater–surface water exchange fluxes is by using heat as an environmlental tracer. Modern field equipment including multilevel temperature sticks and the novel open‐source analysis tool LPML make this technique ever more attractive. The recently developed LPML method solves the one‐dimensional fluid flow and heat transport equation by combining a local polynomial method with a maximum likelihood estimator. In this study, we apply the LPML method on field data to quantify the spatial and temporal variability of vertical fluxes and their uncertainties from temperature–time series measured in a Belgian lowland stream. Over several months, temperature data were collected with multilevel temperature sticks at the streambed top and at six depths for a small stream section. Long‐term estimates show a range from gaining fluxes of ?291 mm day?1 to loosing fluxes of 12 mm day?1; average seasonal fluxes ranged from ?138 mm day?1 in winter to ?16 mm day?1 in summer. With our analyses, we could determine a high spatial and temporal variability of vertical exchange fluxes for the investigated stream section. Such spatial and temporal variability should be taken into account in biogeochemical cycling of carbon, nutrients and metals and in fate analysis of contaminant plumes. In general, the stream section was gaining during most of the observation period. Two short‐term high stream stage events, seemingly caused by blockage of the stream outlet, led to a change in flow direction from gaining to losing conditions. We also found more discharge occurring at the outer stream bank than at the inner one indicating a local flow‐through system. With the conducted analyses, we were able to advance our understanding of the regional groundwater flow system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A two‐dimensional variable‐density groundwater flow and transport model was developed to provide a conceptual understanding of past and future conditions of nitrate (NO3) transport and estimate groundwater nitrate flux to the Gulf of Mexico. Simulation results show that contaminant discharge to the coast decreases as the extent of saltwater intrusion increases. Other natural and/or artificial surface waters such as navigation channels may serve as major sinks for contaminant loading and act to alter expected transport pathways discharging contaminants to other areas. Concentrations of NO3 in the saturated zone were estimated to range between 30 and 160 mg?L?1 as NO3. Relatively high hydraulic vertical gradients and mixing likely play a significant role in the transport processes, enhancing dilution and contaminant migration to depth. Residence times of NO3 in the deeper aquifers vary from 100 (locally) to about 300 years through the investigated aquifer system. NO3 mass fluxes from the shallow aquifers (0 to 5.7 × 104 mg?m?2?day?1) were primarily directed towards the navigation channel, which intersects and captures a portion of the shallow groundwater flow/discharge. Direct NO3 discharge to the sea (i.e. Gulf of Mexico) from the shallow aquifer was very low (0 to 9.0 × 101 mg · m?2?day?1) compared with discharge from the deeper aquifer system (0 to 8.2 × 103 mg?m?2?day?1). Both model‐calibrated and radiocarbon tracer‐determined contaminant flux estimates reveal similar discharge trends, validating the use of the model for density‐dependent flow conditions. The modelling approach shows promise to evaluate contaminant and nutrient loading for similar coastal regions worldwide. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
A large‐scale groundwater flow and transport model is developed for a deep‐seated (100 to 300 m below ground surface) sedimentary aquifer system. The model is based on a three‐dimensional (3D) hydrostratigraphic model, building on a sequence stratigraphic approach. The flow model is calibrated against observations of hydraulic head and stream discharge while the credibility of the transport model is evaluated against measurements of 39Ar from deep wells using alternative parameterizations of dispersivity and effective porosity. The directly simulated 3D mean age distributions and vertical fluxes are used to visualize the two‐dimensional (2D)/3D age and flux distribution along transects and at the top plane of individual aquifers. The simulation results are used to assess the vulnerability of the aquifer system that generally has been assumed to be protected by thick overlaying clayey units and therefore proposed as future reservoirs for drinking water supply. The results indicate that on a regional scale these deep‐seated aquifers are not as protected from modern surface water contamination as expected because significant leakage to the deeper aquifers occurs. The complex distribution of local and intermediate groundwater flow systems controlled by the distribution of the river network as well as the topographical variation (Tóth 1963) provides the possibility for modern water to be found in even the deepest aquifers.  相似文献   

16.
Flow regulation and water diversion for irrigation have considerably impacted the exchange of surface water between the Murray River and its floodplains. However, the way in which river regulation has impacted groundwater–surface water interactions is not completely understood, especially in regards to the salinization and accompanying vegetation dieback currently occurring in many of the floodplains. Groundwater–surface water interactions were studied over a 2 year period in the riparian area of a large floodplain (Hattah–Kulkyne, Victoria) using a combination of piezometric surface monitoring and environmental tracers (Cl, δ2H, and δ18O). Despite being located in a local and regional groundwater discharge zone, the Murray River is a losing stream under low flow conditions at Hattah–Kulkyne. The discharge zone for local groundwater, regional groundwater and bank recharge is in the floodplain within ∼1 km of the river and is probably driven by high rates of transpiration by the riparian Eucalyptus camaldulensis woodland. Environmental tracers data suggest that the origin of groundwater is principally bank recharge in the riparian zone and a combination of diffuse rainfall recharge and localized floodwater recharge elsewhere in the floodplain. Although the Murray River was losing under low flows, bank discharge occurred during some flood recession periods. The way in which the water table responded to changes in river level was a function of the type of stream bank present, with point bars providing a better connection to the alluvial aquifer than the more common clay‐lined banks. Understanding the spatial variability in the hydraulic connection with the river channel and in vertical recharge following inundations will be critical to design effective salinity remediation strategies for large semi‐arid floodplains. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Most groundwater models simulate stream‐aquifer interactions with a head‐dependent flux boundary condition based on a river conductance (CRIV). CRIV is usually calibrated with other parameters by history matching. However, the inverse problem of groundwater models is often ill‐posed and individual model parameters are likely to be poorly constrained. Ill‐posedness can be addressed by Tikhonov regularization with prior knowledge on parameter values. The difficulty with a lumped parameter like CRIV, which cannot be measured in the field, is to find suitable initial and regularization values. Several formulations have been proposed for the estimation of CRIV from physical parameters. However, these methods are either too simple to provide a reliable estimate of CRIV, or too complex to be easily implemented by groundwater modelers. This paper addresses the issue with a flexible and operational tool based on a 2D numerical model in a local vertical cross section, where the river conductance is computed from selected geometric and hydrodynamic parameters. Contrary to other approaches, the grid size of the regional model and the anisotropy of the aquifer hydraulic conductivity are also taken into account. A global sensitivity analysis indicates the strong sensitivity of CRIV to these parameters. This enhancement for the prior estimation of CRIV is a step forward for the calibration and uncertainty analysis of surface‐subsurface models. It is especially useful for modeling objectives that require CRIV to be well known such as conjunctive surface water‐groundwater use.  相似文献   

18.
The hydraulic gradient between aquifers and rivers is one of the most variable properties in a river/aquifer system. Detailed process understanding of bank storage under hydraulic gradients is obtained from a two‐dimensional numerical model of a variably saturated aquifer slice perpendicular to a river. Exchange between the river and the aquifer occurs first at the interface with the unsaturated zone. The proportion of total water exchanged through the river bank compared to the river bed is a function of aquifer hydraulic conductivity, partial penetration, and hydraulic gradient. Total exchange may be estimated to within 50% using existing analytical solutions provided that unsaturated zone processes do not strongly influence exchange. Model‐calculated bank storage is at a maximum when no hydraulic gradient is present and increases as the hydraulic conductivity increases. However, in the presence of a hydraulic gradient, the largest exchange flux or distance of penetration does not necessarily correspond to the highest hydraulic conductivity, as high hydraulic conductivity increases the components of exchange both into and out of an aquifer. Flood wave characteristics do not influence ambient groundwater discharge, and so in large floods, hydraulic gradients must be high to reduce the volume of bank storage. Practical measurement of bank storage metrics is problematic due to the limitations of available measurement technologies and the nested processes of exchange that occur at the river‐aquifer interface. Proxies, such as time series concentration data in rivers and groundwater, require further development to be representative and quantitative.  相似文献   

19.
Current climate change models for the southeast UK predict changing rainfall patterns, with increased incidence of extreme events. The chalk aquifer in the UK and northern France is susceptible to groundwater‐induced flooding under such conditions. In this methodological study we apply a frequency domain analysis approach to the chalk aquifer to derive a transfer function between effective rainfall and groundwater level from 7 years of monitoring data from the North Heath Barn site, near Brighton. The derived transfer function was calibrated and validated against monitoring data and then used to predict groundwater level for rainfall models for high, medium and low emission scenarios from the UKCP09 database. The derived transfer function is most closely comparable to the linear aquifer model, despite evidence for both matrix and fracture or karst water flow in the chalk, with transmissivity and unconfined storativity at the catchment scale of 1548 m2 day?1 and 1.6 × 10?2. The application of the transfer function to UKCP09 rainfall data suggests that groundwater‐induced flooding may be about four times more frequent by 2040–2069 compared with 1961–1990 and seven times more frequent by 2070–2099. The model data also suggest an increase in the duration of groundwater minima relative to the reference period. Compared to deterministic modelling which requires detailed knowledge of aquifer heterogeneity and processes, the transfer function approach, although with limitations, is simpler, incorporating these factors into the analysis through frequency and phase coefficients, and thus may have the potential for groundwater risk assessment in other areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Rivers and aquifers are, in many cases, a connected resource and as such the interactions between them need to be understood and quantified for the resource to be managed appropriately. The objective of this paper is to advance the understanding of river–aquifer interactions processes in semi‐arid environments stressed by groundwater abstraction. This is performed using data from a specific catchment where records of precipitation, evapotranspiration, river flow, groundwater levels and groundwater abstraction are analysed using basic statistics, hydrograph analysis and a simple mathematical model to determine the processes causing the spatial and temporal changes in river–aquifer interactions. This combined approach provides a novel but simple methodology to analyse river–aquifer interactions, which can be applied to catchments worldwide. The analysis revealed that the groundwater levels have declined (~ 3 m) since the onset of groundwater abstraction. The decline is predominantly due to the abstraction rather than climatic changes (r = 0.84 for the relationship between groundwater abstraction and groundwater levels; r = 0.92 for the relationship between decline in groundwater levels and magnitude of seasonal drawdown). It is then demonstrated that, since the onset of abstraction, the river has changed from being gaining to losing during low‐flow periods, defined as periods with flow less than 0.5, 1.0 or 1.5 GL/day (1 GL/day = 1 × 106 m3/day). If defined as < 1.0 GL/day, low‐flow periods constitute approximately 65% of the river flows; the periods where the river is losing at low‐flow conditions are thus significant. Importantly, there was a significant delay (> 10 years) between the onset of groundwater abstraction and the changeover from gaining to losing conditions. Finally, a relationship between the groundwater gradient towards the river and the river flow at low‐flow is demonstrated. The results have important implications for water management as well as water ecology and quality. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号