首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

The Hargreaves method provides reference evapotranspiration (ETo) estimates when only air temperature data are available, although it requires previous local calibration for an acceptable performance. This method was evaluated using the data from 71 meteorological stations in the Seolma-cheon basin (8.48 km2), South Korea, comparing daily estimates against those from the Penman‐Monteith (PM) method, which was used as the standard. To estimate reference ETo more exactly, considering the climatological characteristics in South Korea, parameter regionalization of the Hargreaves equation is carried out. First, the modified Hargreaves equation is presented after an analysis of the relationship between solar radiation and temperature. Second, parameter (KET) optimization of the regional calibration of the Hargreaves equation (RCH) is performed using the PM method and the modified equation at 71 meteorological stations. Next, an application was carried out to evaluate the evapotranspiration methods (PM, original Hargreaves and RCH) in the SWAT (Soil and Water Assessment Tool) model by comparing these with the measured actual evapotranspiration (AET) in the basin. The SWAT model was calibrated using 3 years (2007–2009) of daily streamflow at the watershed outlet and 3 years (2007–2009) of daily AET measured at a mixed forest. The model was validated with 3 years (2010‐2012) of streamflow and AET. RCH will contribute to a better understanding of evapotranspiration of an ungauged watershed in areas where meteorological information is scarce.
EDITOR D. Koutsoyiannis ASSOCIATE EDITOR Not assigned  相似文献   

2.
Understanding the variation and magnitude of crop coefficient (Kc) is important for accurate determination of crop evapotranspiration and water use. In this study, we calculated Kc in an irrigated maize field with ground mulching by eddy covariance evapotranspiration measurements during the whole growing periods in 2009 and 2010 in an arid region of northwest China. A semi‐empirical practical approach for estimating Kc was proposed by introducing the dynamic fraction of canopy cover and incorporating the effect of leaf senescence as a function of days after sowing. The contribution of arid advection of sensible heat resulting from irrigation to Kc and the response of Kc to canopy conductance (Gc) were investigated. The averaged values of daily Kc were lower than typical values obtained previously without mulching due to decreasing effect of mulching on Kc, with 0.82 and 0.80 for the 2 years, respectively. The maximum average Kc occurred at the heading stage, with 1.21 and 1.04 for the 2 years, respectively. The difference of Kc was attributed to the difference of leaf area index. The semi‐empirical practical approach could well estimate the variations of Kc, thus could be a robust and useful tool for the practical users and water managers. The contributions to daily Kc from the arid advection were 4.4–28.0% of the measured Kc. The Gc had stronger control on daily Kc at the early and later stages than at the middle stage. When Gc, leaf area index and relative soil extractable water were lower than the respective threshold values of 20 mm s?1, 3.0 m2 m?2 and 0.5, the daily Kc increased significantly with the increase of the three factors, and almost remained constant when the three factors were beyond the threshold values. These results are helpful for quantifying contributions of individual factors to Kc, and subsequently improving water management practices according to Kc. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
王卫光  邹佳成  邓超 《湖泊科学》2023,35(3):1047-1056
为了探讨水文模型在不同水文数据同化方案下的径流模拟差异,本文采用集合卡尔曼滤波算法,以遥感蒸散发产品、实测径流为观测数据,构建了基于新安江模型的数据同化框架。基于此框架设计了4种不同同化方案(DA-ET、DAET(K)、DA-ET-Q、DA-ET-Q(K))以及1种对照方案OL,以赣江流域开展实例研究,评估了水文数据同化中遥感蒸散发产品的时间分辨率、模型蒸散发相关参数时变与否以及多源数据同化对径流模拟的影响。结果表明:在DA-ET方案下,同化两种不同时间分辨率的蒸散发产品均能提高模型整体的径流模拟精度,且时间分辨率更高的产品的同化效果更好;在DA-ET方案的基础上,考虑加入实测径流进行同化能够提升模型径流模拟精度,且DA-ET(K)与DA-ET-Q(K)方案所得径流相对误差的减幅均超过了20%,说明在蒸散发同化过程中同时考虑蒸散发参数动态变化的结果更优;相较于OL方案,4种同化方案均能不同程度地提高模型对径流高水部分的模拟能力,但DA-ET-Q(K)方案表现最差,而其余方案差异并不显著。本研究有助于进一步了解不同数据同化方案在径流模拟中的差异,从而为水资源高效利用与科学管理提供科学依据...  相似文献   

4.
Few systematic studies of valley‐scale geomorphic drivers of streamflow regimes in complex alpine headwaters have compared response between catchments. As a result, little guidance is available for regional‐scale hydrological research and monitoring efforts that include assessments of ecosystem function. Physical parameters such as slope, elevation range, drainage area and bedrock geology are often used to stratify differences in streamflow response between sampling sites within an ecoregion. However, these metrics do not take into account geomorphic controls on streamflow specific to glaciated mountain headwaters. The coarse‐grained nature of depositional features in alpine catchments suggests that these landforms have little water storage capacity because hillslope runoff moves rapidly just beneath the rock mantle before emerging in fluvial networks. However, recent studies show that a range of depositional features, including talus slopes, protalus ramparts and ‘rock‐ice’ features may have more storage capacity than previously thought. To better evaluate potential differences in streamflow response among basins with extensive coarse depositional features and those without, we examined the relationships between streamflow discharge, stable isotopes, water temperature and the amplitude of the diurnal signal at five basin outlets. We also quantified the percentages of colluvial channel length measured along the stepped longitudinal profile. Colluvial channels, characterized by the presence of surficial, coarse‐grained depositional features, presented sediment‐rich, transport‐limited morphologies that appeared to have a cumulative effect on the timing and volume of flow downstream. Measurements taken from colluvial channels flowing through depositional landforms showed median recession constants (Kr) of 0.9–0.95, δ18O values of ≥?14.5 and summer diurnal amplitudes ≤0.8 as compared with more typical surface water recession constant values of 0.7, δ18O ≤ ?13.5 and diurnal amplitudes >2.0. Our results demonstrated strong associations between the percentage of colluvial channel length within a catchment and moderated streamflow regimes, water temperatures, diurnal signals and depleted δ18O related to groundwater influx. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
6.
The point measurement of soil properties allows to explain and simulate plot scale hydrological processes. An intensive sampling was carried out at the surface of an unsaturated clay soil to measure, on two adjacent plots of 4 × 11 m2 and two different dates (May 2007 and February–March 2008), dry soil bulk density, ρb, and antecedent soil water content, θi, at 88 points. Field‐saturated soil hydraulic conductivity, Kfs, was also measured at 176 points by the transient Simplified Falling Head technique to determine the soil water permeability characteristics at the beginning of a possible rainfall event yielding measurable runoff. The ρb values did not differ significantly between the two dates, but wetter soil conditions (by 31%) and lower conductivities (1.95 times) were detected on the second date as compared with the first one. Significantly higher (by a factor of 1.8) Kfs values were obtained with the 0.30‐m‐diameter ring compared with the 0.15‐m‐diameter ring. A high Kfs (> 100 mm h?1) was generally obtained for low θi values (< 0.3 m3m?3), whereas a high θi yielded an increased percentage of low Kfs data (1–100 mm h?1). The median of Kfs for each plot/sampling date combination was not lower than 600 mm h?1, and rainfall intensities rarely exceeded 100 mm h?1 at the site. The occurrence of runoff at the base of the plot needs a substantial reduction of the surface soil permeability characteristics during the event, probably promoted by a higher water content than the one of this investigation (saturation degree = 0.44–0.62) and some soil compaction due to rainfall impact. An intensive soil sampling reduces the risk of an erroneous interpretation of hydrological processes. In an unstable clay soil, changes in Kfs during the event seem to have a noticeable effect on runoff generation, and they should be considered for modeling hydrological processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The eddy covariance and energy balance method was employed to determine evapotranspiration (LE) over a wet temperate C3–C4 co‐existing grassland in Japan. After sensible heat flux (H) was estimated via the eddy covariance technique, LE was calculated as the residual of the energy budget with calibration against the direct measurements of LE by a lysimeter. Daily mean LE varied from 0·8 to 10·5 MJ d−1, with a peak at 16·5 MJ d−1 in late July to early August. Day‐to‐day and seasonal variability in LE was affected appreciably by net radiation (Rn), atmospheric vapour pressure deficit (VPD), canopy surface conductance (gc) and leaf area index (LAI). Before the canopy closure, LE responded to LAI in a linear manner. However, LE decreased with increasing LAI later in summer. Daytime variation in the decoupling coefficient (Ω) demonstrates that the canopy decoupled from the atmosphere in the morning and LE was primarily driven by the available energy, while in the afternoon the canopy partially coupled to the atmosphere so that LE was sensitive to VPD and gc. Throughout the whole measurement period, Ω was generally larger than 0·5, suggesting that the available energy contributes more to LE than VPD. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Global climate change and diverse human activities have resulted in distinct temporal–spatial variability of watershed hydrological regimes, especially in water‐limited areas. This study presented a comprehensive investigation of streamflow and sediment load changes on multi‐temporal scales (annual, flood season, monthly and daily scales) during 1952–2011 in the Yanhe watershed, Loess Plateau. The results indicated that the decreasing trend of precipitation and increasing trend of potential evapotranspiration and aridity index were not significant. Significant decreasing trends (p < 0.01) were detected for both the annual and flood season streamflow, sediment load, sediment concentration and sediment coefficient. The runoff coefficient exhibited a significantly negative trend (p < 0.01) on the flood season scale, whereas the decreasing trend on the annual scale was not significant. The streamflow and sediment load during July–August contributed 46.7% and 86.2% to the annual total, respectively. The maximum daily streamflow and sediment load had the median occurrence date of July 31, and they accounted for 9.7% and 29.2% of the annual total, respectively. All of these monthly and daily hydrological characteristics exhibited remarkable decreasing trends (p < 0.01). However, the contribution of the maximum daily streamflow to the annual total progressively decreased (?0.07% year?1), while that of maximum daily sediment load increased over the last 60 years (0.08% year?1). The transfer of sloping cropland for afforestation and construction of check‐dams represented the dominant causes of streamflow and sediment load reductions, which also made the sediment grain finer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Uncertainty is inherent in modelling studies. However, the quantification of uncertainties associated with a model is a challenging task, and hence, such studies are somewhat limited. As distributed or semi‐distributed hydrological models are being increasingly used these days to simulate hydrological processes, it is vital that these models should be equipped with robust calibration and uncertainty analysis techniques. The goal of the present study was to calibrate and validate the Soil and Water Assessment Tool (SWAT) model for simulating streamflow in a river basin of Eastern India, and to evaluate the performance of salient optimization techniques in quantifying uncertainties. The SWAT model for the study basin was developed and calibrated using Parameter Solution (ParaSol), Sequential Uncertainty Fitting Algorithm (SUFI‐2) and Generalized Likelihood Uncertainty Estimation (GLUE) optimization techniques. The daily observed streamflow data from 1998 to 2003 were used for model calibration, and those for 2004–2005 were used for model validation. Modelling results indicated that all the three techniques invariably yield better results for the monthly time step than for the daily time step during both calibration and validation. The model performances for the daily streamflow simulation using ParaSol and SUFI‐2 during calibration are reasonably good with a Nash–Sutcliffe efficiency and mean absolute error (MAE) of 0.88 and 9.70 m3/s for ParaSol, and 0.86 and 10.07 m3/s for SUFI‐2, respectively. The simulation results of GLUE revealed that the model simulates daily streamflow during calibration with the highest accuracy in the case of GLUE (R2 = 0.88, MAE = 9.56 m3/s and root mean square error = 19.70 m3/s). The results of uncertainty analyses by SUFI‐2 and GLUE were compared in terms of parameter uncertainty. It was found that SUFI‐2 is capable of estimating uncertainties in complex hydrological models like SWAT, but it warrants sound knowledge of the parameters and their effects on the model output. On the other hand, GLUE predicts more reliable uncertainty ranges (R‐factor = 0.52 for daily calibration and 0.48 for validation) compared to SUFI‐2 (R‐factor = 0.59 for daily calibration and 0.55 for validation), though it is computationally demanding. Although both SUFI‐2 and GLUE appear to be promising techniques for the uncertainty analysis of modelling results, more and more studies in this direction are required under varying agro‐climatic conditions for assessing their generic capability. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Scaling and multifractal properties of the hydrological processes of the Yangtze River basin were explored by using a multifractal detrended fluctuation analysis (MF‐DFA) technique. Long daily mean streamflow series from Cuntan, Yichang, Hankou and Datong stations were analyzed. Using shuffled streamflow series, the types of multifractality of streamflow series was also studied. The results indicate that the discharge series of the Yangtze River basin are non‐stationary. Different correlation properties were identified within streamflow series of the upper, the middle and the lower Yangtze River basin. The discharge series of the upper Yangtze River basin are characterized by short memory or anti‐persistence; while the streamflow series of the lower Yangtze River basin is characterized by long memory or persistence. h(q) vs q curves indicate multifractality of the hydrological processes of the Yangtze River basin. h(q) curves of shuffled streamflow series suggest that the multifractality of the streamflow series is mainly due to the correlation properties within the hydrological series. This study may be of practical and scientific importance in regional flood frequency analysis and water resource management in different parts of the Yangtze River basin. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Provision of reliable scientific support to socio‐economic development and eco‐environmental conservation is challenged by complexities of irregular nonlinearities, data uncertainties, and multivariate dependencies of hydrological systems in the Three Gorges Reservoir (TGR) region, China. Among them, the irregular nonlinearities mainly represent unreliability of regular functions for robust simulation of highly complicated relationships between variables. Based on the proposed discrete principal‐monotonicity inference (DPMI) approach, streamflow generation in the Xingshan Watershed, a representative watershed in this region, is examined. Based on system characterization, predictor identification, and streamflow distribution transformation, DPMI parameters are calibrated through a two‐stage strategy. Results indicate that the modelling efficiency of DPMI is satisfactory for streamflow simulation under these complexities. The distribution transformation method and the two‐stage calibration strategy can deal with non‐normality of streamflow and temporally unstable accuracy of hydrological models, respectively. The DPMI process and results reveal that both streamflow uncertainty and its rising tendency increase with flow levels. The dominant driving forces of streamflow generation are daily lowest temperature and daily cumulative precipitation in consideration of performances in global and local scales. The temporal heterogeneity of local significances to streamflow is insignificant for meteorological conditions. There is significant nonlinearity between meteorological conditions and streamflow and dependencies among meteorological conditions. The generation mechanism of low flows is more complicated than medium flows and high flows. The DPMI approach can facilitate improving robustness of hydro‐system analysis studies in the Xingshan Watershed or the TGR region. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The eddy covariance technique and the cuvette method were used to investigate water use efficiency in an irrigated winter wheat (Triticum asetivum L.)/summer maize (Zea mays L.) rotation system in the North China Plain. The results show that ecosystem water use efficiency (WUEe) changed diurnally and seasonally. Daily maximal WUEe appeared in the morning. WUEe generally peaked in late April in wheat field and in late July/early August in maize field. From 2003 to 2006, seasonal mean WUEe was 6.7–7.4 mg CO2 g−1 H2O for wheat and 8.4–12.1 mg CO2 g−1 H2O for maize. WUEe was much lower than canopy water use efficiency (WUEc) under small leaf area index (LAI) but very close to WUEc under large LAI. With the increase in LAI, WUEe enlarged rapidly under low LAI but slowly when LAI was higher than one. WUEe was greater on the cloudy days than on the sunny days. Under the same solar radiation, WUEe was higher in the morning than in the afternoon. The ratio of internal to ambient CO2 partial pressure (Ci/Ca) decreased significantly with the increase in photosynthetically active radiation (PAR) when PAR was lower than the critical values (around 500 and 1000 μmol m−2 s−1 for wheat and maize, respectively). Beyond critical PAR, Ci/Ca was approximately constant at 0.69 for wheat and 0.42 for maize. Therefore, when LAI and solar radiation was large enough, WUEe has negative correlation with vapor pressure deficit in both of irrigated wheat and maize fields.  相似文献   

13.
Transformations of precipitation into groundwater and streamflow are fundamental hydrological processes, critical to irrigated agriculture, hydroelectric power generation, and ecosystem health. Our understanding of the timing of groundwater recharge and streamflow generation remains incomplete, limiting our ability to predict fresh water, nutrient, and contaminant fluxes, especially in large basins. Here, we analyze thousands of rain, snow, groundwater, and streamflow δ18O and δ2H values in the Nelson River basin, which covers 1.2 million km2 of central Canada. We show that the fraction of precipitation that recharges aquifers is ~1.3–5 times higher for precipitation falling during cold months with subzero mean monthly temperatures than for precipitation falling during warmer months. The near‐ubiquity of cold‐season‐biased groundwater recharge implies that changes to winter water balances may have disproportionate impacts on annual groundwater recharge rates. We also show that young streamflow—defined as precipitation that enters a river in less than ~2.3 months—comprises ~27% of annual streamflow but varies widely among tributaries in the Nelson River basin (1–59%). Young streamflow fractions are lower in steep catchments and higher in flatter catchments such as the transboundary Red River basin. Our findings imply that flat, lower permeability, heavily tiled landscapes favor more rapid transmission of precipitation into rivers, possibly mobilizing excess soluble fertilizers and exacerbating eutrophication events in Lake Winnipeg.  相似文献   

14.
Water and energy fluxes at and between the land surface, the subsurface and the atmosphere are inextricably linked over all spatio‐temporal scales. Our research focuses on the joint analysis of both water and energy fluxes in a pre‐alpine catchment (55 km2) in southern Germany, which is part of the Terrestrial Environmental Observatories (TERENO). We use a novel three‐dimensional, physically based and distributed modelling approach to reproduce both observed streamflow as an integral measure for water fluxes and heat flux and soil temperature measurements at an observation location over a period of 2 years. While heat fluxes are often used for comparison of the simulations of one‐dimensional land surface models, they are rarely used for additional validation of physically based and distributed hydrological modelling approaches. The spatio‐temporal variability of the water and energy balance components and their partitioning for dominant land use types of the study region are investigated. The model shows good performance for simulating daily streamflow (Nash–Sutcliffe efficiency > 0.75). Albeit only streamflow measurements are used for calibration, the simulations of hourly heat fluxes and soil temperatures at the observation site also show a good performance, particularly during summer. A limitation of the model is the simulation of temperature‐driven heat fluxes during winter, when the soil is covered by snow. An analysis of the simulated spatial fields reveals heat flux patterns that reflect the distribution of the land use and soil types of the catchment. The water and energy partitioning is characterized by a strong seasonal cycle and shows clear differences between the selected land use types. Copyright © 2016 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

15.
Processes controlling streamflow generation were determined using geochemical tracers for water years 2004–2007 at eight headwater catchments at the Kings River Experimental Watersheds in southern Sierra Nevada. Four catchments are snow‐dominated, and four receive a mix of rain and snow. Results of diagnostic tools of mixing models indicate that Ca2+, Mg2+, K+ and Cl? behaved conservatively in the streamflow at all catchments, reflecting mixing of three endmembers. Using endmember mixing analysis, the endmembers were determined to be snowmelt runoff (including rain on snow), subsurface flow and fall storm runoff. In seven of the eight catchments, streamflow was dominated by subsurface flow, with an average relative contribution (% of streamflow discharge) greater than 60%. Snowmelt runoff contributed less than 40%, and fall storm runoff less than 7% on average. Streamflow peaked 2–4 weeks earlier at mixed rain–snow than snow‐dominated catchments, but relative endmember contributions were not significantly different between the two groups of catchments. Both soil water in the unsaturated zone and regional groundwater were not significant contributors to streamflow. The contributions of snowmelt runoff and subsurface flow, when expressed as discharge, were linearly correlated with streamflow discharge (R2 of 0.85–0.99). These results suggest that subsurface flow is generated from the soil–bedrock interface through preferential pathways and is not very sensitive to snow–rain proportions. Thus, a declining of the snow–rain ratio under a warming climate should not systematically affect the processes controlling the streamflow generation at these catchments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A modified Jarvis–Stewart model of canopy transpiration (Ec) was tested over five ecosystems differing in climate, soil type and species composition. The aims of this study were to investigate the model's applicability over multiple ecosystems; to determine whether the number of model parameters could be reduced by assuming that site‐specific responses of Ec to solar radiation, vapour pressure deficit and soil moisture content vary little between sites; and to examine convergence of behaviour of canopy water‐use across multiple sites. This was accomplished by the following: (i) calibrating the model for each site to determine a set of site‐specific (SS) parameters, and (ii) calibrating the model for all sites simultaneously to determine a set of combined sites (CS) parameters. The performance of both models was compared with measured Ec data and a statistical benchmark using an artificial neural network (ANN). Both the CS and SS models performed well, explaining hourly and daily variation in Ec. The SS model produced slightly better model statistics [R2 = 0.75–0.91; model efficiency (ME) = 0.53–0.81; root mean square error (RMSE) = 0.0015–0.0280 mm h‐1] than the CS model (R2 = 0.68–0.87; ME = 0.45–0.72; RMSE = 0.0023–0.0164 mm h‐1). Both were highly comparable with the ANN (R2 = 0.77–0.90; ME = 0.58–0.80; RMSE = 0.0007–0.0122 mm h‐1). These results indicate that the response of canopy water‐use to abiotic drivers displayed significant convergence across sites, but the absolute magnitude of Ec was site specific. Period totals estimated with the modified Jarvis–Stewart model provided close approximations of observed totals, demonstrating the effectiveness of this model as a tool aiding water resource management. Analysis of the measured diel patterns of water use revealed significant nocturnal transpiration (9–18% of total water use by the canopy), but no Jarvis–Stewart formulations are able to capture this because of the dependence of water‐use on solar radiation, which is zero at night. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Sixteen small catchments in the Maroondah region of Victoria, Australia were analysed using rainfall, temperature and streamflow time series with a rainfall–runoff model whose parameters efficiently characterize the hydrological response of a catchment. A set of catchment attributes for each of these catchments was then compared with the associated set of hydrological response characteristics of the catchments as estimated by the model. The time constant governing quickflow recession of streamflow (τq) was related to the drainage network and catchment area. The time constant governing slowflow recession of streamflow (τs) was related to the slope and shape of the catchment. The parameter governing evapotranspirative losses ( f ) was related to catchment gradient and vegetative water use. Forestry activities in the catchments changed evapotranspirative losses and thus total volume of streamflow, but did not affect the rate of streamflow recession.  相似文献   

18.
This paper examines the impact of contrasting antecedent soil moisture conditions on the hydrochemical response, here the changes in dissolved nitrogen (NO3?, NH4+ and dissolved organic nitrogen (DON)) and dissolved organic carbon (DOC) concentrations, of a first‐order stream during hydrological events. The study was performed in the Hermine, a 5 ha forested watershed of the Canadian Shield. It focused on a series of eight precipitation events (spring, summer and fall) sampled every 2 or 3 h and showing contrasted antecedent moisture conditions. The partition of the eight events between two groups (dry or wet) of antecedent moisture conditions was conducted using a principal component analysis (PCA). The partition was controlled (first axis explained 86% of the variability) by the antecedent streamflow, the streamflow to precipitation ratio Q/P and by the antecedent groundwater depth. The mean H+, NO3?, NH4+, total dissolved nitrogen and DOC concentrations and electrical conductivity values in the stream were significantly higher following dry antecedent conditions than after wetter conditions had prevailed in the Hermine, although the temporal variability was high (17 to 138%). At the event scale, a significantly higher proportion of the changes in DON, NO3?, and DOC concentrations in the stream was explained by temporal variations in discharge compared with the seasonal and annual scales. Two of the key hydrochemical features of the dry events were the synchronous changes in DOC and flow and the frequent negative relationships between discharge and NO3?. The DON concentrations were much less responsive than DOC to changes in discharge, whereas NH was not in phase with streamflow. During wet events, the synchronicity between streamflow and DON or NO3? was higher than during dry events and discharge and NO3? were generally positively linked. Based on these observations, the hydrological behaviour of the Hermine is conceptually compatible with a two‐component model of shallow (DON and DOC rich; variable NO3?) and deep (DON and DOC poor; variable NO3?) subsurface flow. The high NO3? and DOC levels measured at the early stages of dry events reflected the contribution from NO3?‐rich groundwaters. The contribution of rapid surface flow on water‐repellent soil materials located close to the stream channel is hypothesized to explain the DOC levels. An understanding of the complex interactions between antecedent soil moisture conditions, the presence of soil nutrients available for leaching and the dynamics of soil water flow paths during storms is essential to explain the fluxes of dissolved nitrogen and carbon in streams of forested watersheds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
《水文科学杂志》2013,58(4):613-625
Abstract

Estimates of rainfall elasticity of streamflow in 219 catchments across Australia are presented. The rainfall elasticity of streamflow is defined here as the proportional change in mean annual streamflow divided by the proportional change in mean annual rainfall. The elasticity is therefore a simple estimate of the sensitivity of long-term streamflow to changes in long-term rainfall, and is particularly useful as an initial estimate of climate change impact in land and water resources projects. The rainfall elasticity of streamflow is estimated here using a hydrological modelling approach and a nonparametric estimator. The results indicate that the rainfall elasticity of streamflow (? P ) in Australia is about 2.0–3.5 (observed in about 70% of the catchments), that is, a 1% change in mean annual rainfall results in a 2.0–3.5% change in mean annual streamflow. The rainfall elasticity of streamflow is strongly correlated to runoff coefficient and mean annual rainfall and streamflow, where streamflow is more sensitive to rainfall in drier catchments, and those with low runoff coefficients. There is a clear relation-ship between the ? P values estimated using the hydrological modelling approach and those estimated using the nonparametric estimator for the 219 catchments, although the values estimated by the hydrological modelling approach are, on average, slightly higher. The modelling approach is useful where a detailed study is required and where there are sufficient data to reliably develop and calibrate a hydrological model. The nonparametric estimator is useful where consistent estimates of the sensitivity of long-term streamflow to climate are required, because it is simple to use and estimates the elasticity directly from the historical data. The nonparametric method, being model independent, can also be easily applied in comparative studies to data sets from many catchments across large regions.  相似文献   

20.
Wildfires are common in Australia and can cause vegetation loss and affect hydrological processes such as interception, evapotranspiration, soil water storage and streamflow. This study investigates wildfire impacts on catchment mean annual streamflow for 14 Australian catchments that have been severely impacted by the 2009 Victoria wildfire, the second-worst wildfire disaster in Australia. A statistical approach based on sensitivity coefficients was used for quantifying the climate variability impacts on streamflow and the time trend analysis method was used to estimate the annual streamflow changes due to wildfire respectively. Our results show that wildfire has caused a noticeable increase in mean annual streamflow in the catchments with a burnt area above 70% for an immediate post-wildfire period (2009–2015) and the wildfire impact on streamflow is evidently larger than the climate change impact in the majority of burnt catchments. Furthermore, the wildfire impact on mean annual streamflow strongly increases with the burnt percentage area, indicated by R2 = 0.73 between the two. The results also illustrate that catchments with high burnt percentage areas can have more potential to gain increased streamflow due to wildfires compared with that due to climate variability and can have significant streamflow change after wildfires above the 70% threshold of burnt area. These results provide evidence for evaluating large-scale wildfire impact on streamflow at small to medium-sized catchments, and guidance for process-based hydrological models for simulating wildfire impacts on hydrological processes for the immediate period after the wildfire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号