首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 820 毫秒
1.
Silva  Adriana V. R.  Gary  Dale E.  White  Stephen M.  Lin  R. P.  de Pater  Imke 《Solar physics》1997,175(1):157-173
We present here the first images of impulsive millimeter emission of a flare. The flare on 1994 August 18 was simultaneously observed at millimeter (86 GHz), microwave (1-18 GHz), and soft and hard X-ray wavelengths. Images of millimeter, soft and hard X-ray emission show the same compact ( 8) source. Both the impulsive and the gradual phases are studied in order to determine the emission mechanisms. During the impulsive phase, the radio spectrum was obtained by combining the millimeter with simultaneous microwave emission. Fitting the nonthermal radio spectra as gyrosynchrotron radiation from a homogeneous source model with constant magnetic field yields the physical properties of the flaring source, that is, total number of electrons, power-law index of the electron energy distribution, and the nonthermal source size. These results are compared to those obtained from the hard X-ray spectra. The energy distribution of the energetic electrons inferred from the hard X-ray and radio spectra is found to follow a double power-law with slope 6–8 below 50 keV and 3–4 above those energies. The temporal evolution of the electron energy spectrum and its implication for the acceleration mechanism are discussed. Comparison of millimeter and soft X-ray emissions during the gradual phase implies that the millimeter emission is free-free radiation from the same hot soft X-ray emitting plasma, and further suggests that the flare source contains multiple temperatures.  相似文献   

2.
Rolli  E.  Wülser  J. P.  Magun  A. 《Solar physics》1998,180(1-2):361-375
The 20 August 1992 flare around 14:28 UT was observed in H, H and Ca ii H with the imaging spectrographs at Locarno-Monti, Switzerland, with the radiotelescopes in Bern, and in soft and hard X-rays by the Yohkoh satellite. In this paper we discuss the analysis of the temporal and spatial evolution of this flare, well observed at chromospheric and coronal layers. We find that the chromospheric electron density shows well-correlated rises with the hard X-rays emphasizing the direct response of the chromosphere to the energy deposition. Although both footpoints of the loops show simultaneous rises of the electron density, non-thermal electron injection is only observed in one of the footpoints, while an additional heating mechanism, like thermal conduction, must be assumed for the other footpoint. However, it is puzzling that all the chromospheric observations in both footpoints are delayed by 3 s compared to the hard X-ray light curve. Although this would be compatible with the thermal heating of one footpoint, it is in contradiction to the non-thermal heating of the other one. Finally, we observed evidence that during the first part of the flare a thermal conduction front propagates at a speed of 2000 km s-1 into a second loop, in which the energy release occurs in the second part of the flare.  相似文献   

3.
We report on observations of a large eruptive event associated with a flare that occurred on 27 September 1998 made with the Richard B. Dunn Solar Telescope at Sacramento Peak Observatory (several wave bands including off-line-center H), in soft and hard X-rays (GOES and BATSE), and in several TRACE wave bands (including Feix/x 171 Å, Fexii 195 Å, and Civ 1550 Å). The flare initiation is signaled by two H foot-point brightenings which are closely followed by a hard X-ray burst and a subsequent gradual increase in other wavelengths. The flare light curves show a complicated, three-component structure which includes two minor maxima before the main GOES class C5.2 peak after which there is a characteristic exponential decline. During the initial stages, a large spray event is observed within seconds of the hard X-ray burst which can be directly associated with a two-ribbon flare in H. The emission returns to pre-flare levels after about 35 min, by which time a set of bright post-flare loops have begun to form at temperatures of about 1.0–1.5 MK. Part of the flare plasma also intrudes into the penumbra of a large sunspot, generally a characteristic of very powerful flares, but the flare importance in GOES soft X-rays is in fact relatively modest. Much of the energy appears to be in the form of a second ejection which is observed in optical and ultraviolet bands, traveling out via several magnetic flux tubes from the main flare site (about 60° from Sun center) to beyond the limb.  相似文献   

4.
The HXIS, a joint instrument of the Space Research Laboratory at Utrecht, The Netherlands, and the Department of Space Research of the University of Birmingham, U.K., images the Sun in hard X-rays: Six energy bands in energy range 3.5–30 keV, spatial resolution 8 over Ø 240 and 32 over Ø 624 field of view, and time resolution of 0.5–7 s depending on the mode of operation. By means of a flare flag it alerts all the other SMM instruments when a flare sets in and informs them about the location of the X-ray emission. The experiment should yield information about the position, extension and spectrum of the hard X-ray bursts in flares, their relation to the magnetic field structure and to the quasi-thermal soft X-rays, and about the characteristics and development of type IV electron clouds above flare regions.  相似文献   

5.
Rolli  E.  Wülser  J. P.  Magun  A. 《Solar physics》1998,180(1-2):343-359
The 5 January 1992 flare around 13:16 UT was observed in H, H, and Ca ii H with the imaging spectrographs at Locarno-Monti, Switzerland and in soft and hard X-rays by the Yohkoh satellite. In this paper we discuss the analysis of the temporal and spatial evolution of this flare well observed at chromospheric and coronal layers. We find that the strongest footpoint emission in the optical lines does not coincide with the sites of non-thermal electron injection and show that these footpoints are mainly heated by thermal conduction. The chromospheric electron density, determined from the H line profiles, shows several temporally well correlated rises with the hard X-ray intensity at the electron injection sites. Two of the flare loops clearly are associated with strong chromospheric evaporation, while very weak evaporation is observed in the loop with the strongest footpoint emission in the optical lines.  相似文献   

6.
Veronig  A.  Vršnak  B.  Temmer  M.  Hanslmeier  A. 《Solar physics》2002,208(2):297-315
The timing of 503 solar flares observed simultaneously in hard X-rays, soft X-rays and H is analyzed. We investigated the start and the peak time differences in different wavelengths, as well as the differences between the end of the hard X-ray emission and the maximum of the soft X-ray and H emission. In more than 90% of the analyzed events, a thermal pre-heating seen in soft X-rays is present prior to the impulsive flare phase. On average, the soft X-ray emission starts 3 min before the hard X-ray and the H emission. No correlation between the duration of the pre-heating phase and the importance of the subsequent flare is found. Furthermore, the duration of the pre-heating phase does not differ for impulsive and gradual flares. For at least half of the events, the end of the non-thermal emission coincides well with the maximum of the thermal emission, consistent with the beam-driven evaporation model. On the other hand, for 25% of the events there is strong evidence for prolonged evaporation beyond the end of the hard X-rays. For these events, the presence of an additional energy transport mechanism, most probably thermal conduction, seems to play an important role.  相似文献   

7.
Flaring arches     
Flaring arches is a name assigned to a particular component of some flares. This component consists of X-ray and H emission which traverses a coronal arch from one to the other of its chromospheric footpoints. The primary footpoint is at the site of a flare. The secondary footpoint, tens of thousands of kilometers distant from the source flare, but in the same active region, brightens in H concurrent with the beginning of the hard X-ray burst at the primary site. From the inferred travel time of the initial exciting agent we deduce that high speed electron streams travelling through the arch must be the source of the initial excitation at the secondary footpoint. Subsequently, a more slowly moving agent gradually enhances the arch first in X-rays and subsequently in H, starting at the primary footpoint and propagating along the arch trajectory. The plasma flow in H shows clearly that material is injected into the arch from the site of the primary footpoint and later on, at least in some events, a part of it is also falling back.Thus a typical flaring arch has three, and perhaps four consecutive phases: (1) An early phase characterized by the onset of hard X-ray burst and brightening of the secondary footpoint in H. (2) The main X-ray phase, during which X-ray emission propagates through the arch. (3) The main H phase, during which H emitting material propagates through the arch. And (4) an aftermath phase when some parts of the ejected material seem to flow in the reverse direction towards the primary site of injection.An extensive series of flaring arches was observed from 6 to 13 November, 1980 at the Big Bear Solar Observatory and with the Hard X-Ray Imaging Spectrometer (HXIS) on board the SMM in a magnetically complex active region. The two most intense arches for which complete H and X-ray data are available and which occurred on 6 November at 17 21 UT (length 57000 km) and on 12 November at 16 57 UT (length 263 000 km) are discussed in this paper.  相似文献   

8.
The H observations of a limb flare, which were associated with exceptional gamma-ray and hard X-ray emission, are presented and discussed. The good spatial and temporal resolution of the H data allow us to investigate the detailed structure of the elevated flare loops and the intensity variations of the loops, footpoints and surrounding chromosphere during each phase of the flare event. A delay time of 12 s was found between at least one of the hard X-ray (28–485 keV) peaks and corresponding H intensity maximum at a loop footpoint. A comparison is made between this event and another well-observed limb flare with many similar characteristics to seek evidence for the large difference in their levels of energy release.  相似文献   

9.
The 2B/X2.8 double-ribbon flare of 30 March, 1982 is investigated using H, white light, X-rays, and microwaves. The X-ray burst seems to consist of two components, i.e., an impulsive component showing a long chain of peaks and a thermal component (T 2 × 107 K).In the early phase, the source images for the impulsive component were available simultaneously at soft (7–14 keV) and hard (20–40 keV) X-rays. Both sources are elongated along a neutral line. The core of the source for the hard X-rays is located at one end which seems to be a footpoint (or a leg) of a loop or arcade, while the core for the soft X-rays is located at the center of the elongated source which would be the center of the loop. The core for the hard X-rays shifted to this center in the main and later phase, accompanied by decrease in the source size in the later phase.A peak of one-directional intensity distribution at 35 GHz always lies on the core of the hard X-ray source, showing a shift of the position synchronous with the hard X-ray core. This may imply a common source for the radio waves and the hard X-rays.The source of the thermal component observed at the soft X-rays (7–14 keV) after the early phase covers a whole H patches. This may imply a physical relation between the thermal X-ray loops and the H brightening.  相似文献   

10.
A study has been made of the variation in hard (E 10 keV) X-radiation, H and microwave emission during the impulsive phase of solar flares. Analysis shows that the rise-time in the 20–30-keV X-ray spike depends on the electron hardness, i.e., t rise exp (0.87 ). The impulsive phase is also marked by an abrupt, very intense increase in H emission in one or more knots of the flare. Properties of these H kernels include: (1) a luminosity several times greater than the surrounding flare, (2) an intensity rise starting about 20–30 s before, peaking about 20–25 s after, and lasting about twice as long as the hard spike, (3) an effective diameter of 3000–6000 km for class 1 flares, representing less than 1/8-1/2 of the main flare, (4) a location lower in the chromosphere than the remaining flare, (5) essentially no expansion prior to the hard spike, (6) a position within 6000 km of the boundary separating polarities, usually forming on both sides of the neutral line near both feet of the same tube of force, (7) a shape often resembling isogauss contours of the photospheric field indicated on magnetograms and (8) total radiated energy less than l/50 that of the hard electrons. Correspondingly, impulsive microwave events are characterized by: (1) the detection of a burst at 8800 MHz for every X-ray spike ifthe number of electrons above 100 keV is greater than 1033, (2) great similarity in burst structure with 20–32 keV X-rays but only at f > 5000 MHz, (3) typical low frequency burst cutoff between 1400–3800 MHz, and (4) maximum emission at f > 7500 MHz. Finally the H, X-ray and microwave data are combined to present a picture of the impulsive phase consistent with the above observations.  相似文献   

11.
Taeil Bai 《Solar physics》1979,62(1):113-121
The X-ray line at 6.4 keV has been observed from solar flares. It is found that K-fluorescence of neutral iron in the photosphere due to thermal (T 107 K) X-rays of the gradual phase is its dominant production mechanism. For a given flux and energy spectrum of incident X-rays, the flux at 1 AU of iron K-photons depends on the photospheric iron abundance, the height of the X-ray source, and the helio-centric angle between the flare and the observer. Therefore, the flux of iron K-photons, when measured simultaneously with the flux and energy spectrum of the X-ray continuum and the flare location, can give us information on the height of the X-ray source and the photospheric iron abundance. Here we present our Monte Carlo calculations of iron K-fluorescence efficiencies, so that they might be useful for interpretations of future measurements of the 6.4 keV line (e.g., by a detector to be flown on the Solar Maximum Mission).  相似文献   

12.
Tindo  I. P.  Ivanov  V. D.  Valníček  B.  Livshits  M. A. 《Solar physics》1972,27(2):426-435
Analysis of the X-ray polarization data at 0.8 Å for three major chromospheric flares shows that during the hard phase of the flare the X-rays are polarized in the plane, the projection of which on the solar disc is going approximately from the flare region to the center of the disc. Simultaneously performed measurements of the spectral energy distribution have proved that observed X-rays are produced by the bremsstrahlung of the accelerated electrons with the energies in the range 10–100 keV. The experimental data are in good agreement with the flare model, which deals with the radial movement of accelerated electrons towards the photosphere, together with the continuous injection of these electrons into the emitting region.Presented to International Meeting on Solar Activity, IZMIRAN, November 15–22, 1971.  相似文献   

13.
Jordan  Stuart  Garcia  Adriana  Bumba  Vaclav 《Solar physics》1997,173(2):359-376
A time series of K3 spectroheliograms taken at the Coimbra Observatory exhibits an erupting loop on the east limb on July 9, 1982 in active region NOAA 3804. The Goddard SMM Hard X-Ray Burst Spectrometer (HXRBS) observations taken during this period reveal a hard X-ray flare occurring just before the loop eruption is observed, and SMS-GOES soft X-ray observations reveal a strong long-duration event (LDE) following the impulsive phase of the flare. A Solwind coronagram exhibits a powerful coronal mass ejection (CME) associated with the erupting loop. H flare and prominence observations as well as centimeter and decimeter radio observations of the event are also reviewed. A large, north–south-oriented quiescent prominence reported within the upper part of the CME expansion region may play a role in the eruption as well. The spatial and temporal correlations among these observations are examined in the light of two different current models for prominence eruption and CME activation: (1) The CME is triggered by the observed hard X-ray impulsive flare. (2) The CME is not triggered by a flare, and the observed soft X-ray flare is an LDE due to reconnection within the CME bubble. It is concluded that this event is probably of a mixed type that combines characteristics of models (1) and (2). The July 9 event is then compared to three other energetic CME and flare eruptions associated with the same active-region complex, all occurring in the period July 9 through September 4, 1982. It is noted that these four energetic events coincide with the final evolutionary phase of a long-lasting active-region complex, which is discussed in a companion paper (Bumba, Garcia, and Jordan, 1997). The paper concludes by addressing the solar flare myth controversy in the light of this work.  相似文献   

14.
The flare of 11 November, 1980, 1725 UT occurred in a magnetically complex region. It was preceded by some ten minutes by a gradual flare originating over the magnetic inversion line, close to a small sunspot. This seems to have triggered the main flare (at 70 000 km distance) which originated between a large sunspot and the inversion line. The main flare started at 172320 UT with a slight enhancement of hard X-rays (E > 30 keV) accompanied by the formation of a dark loop between two H bright ribbons. In 3–8 keV X-rays a southward expansion started at the same time, with - 500 km s –1. At the same time a surge-like expansion started. It was observable slightly later in H, with southward velocities of 200 km s–1. The dark H loop dissolved at 1724 UT at which time several impulsive phenomena started such as a complex of hard X-ray bursts localized in a small area. At the end of the impulsive phase at 172540 UT, a coronal explosion occurred directed southward with an initial expansion velocity of 1800 km s–1, decreasing in 40 s to 500 km s–1.Now at Fokker Aircraft Industries, Schiphol, The Netherlands.  相似文献   

15.
We present X-ray observations of the 21 July, 1980 flare which was observed both with the Einstein Observatory Imaging Proportional Counter (IPC) and the X-Ray Polychromator (XRP) and Gamma-Ray Spectrometer onboard the SMM satellite. The Einstein observations were obtained in scattered X-ray light, i.e., in X-rays scattered off the Earth's atmosphere. In this way it is possible to obtain spatially unresolved X-ray data of a solar flare with the same instrument that observed many X-ray flares on other stars. This paper juxtaposes the results and implications of the stellar interpretation to those obtained from the far more detailed SMM observations. The result of this calibration observation is that the basic properties of the flaring plasma can be reliably determined from the stellar data, however, the basic physics issues can only be studied through models.  相似文献   

16.
S. R. Kane 《Solar physics》1972,27(1):174-181
Observations of impulsive solar flare X-rays 10 keV made with the OGO-5 satellite are compared with ground based measurements of type III solar radio bursts in 10–580 MHz range. It is shown that the times of maxima of these two emissions, when detectable, agree within 18 s. This maximum time difference is comparable to that between the maxima of the impulsive X-ray and impulsive microwave bursts. In view of the various observational uncertainties, it is argued that the observations are consistent with the impulsive X-ray, impulsive microwave, and type III radio bursts being essentially simultaneous. The observations are also consistent with 10–100 keV electron streams being responsible for the type III emission. It is estimated that the total number of electrons 22 keV required to produce a type III burst is 1034. The observations indicate that the non-thermal electron groups responsible for the impulsive X-ray, impulsive microwave, and type III radio bursts are accelerated simultaneously in essentially the same region of the solar atmosphere.  相似文献   

17.
By comparison between SMM HXRBS observation and ground observation of H and Caii K lines for the 2B flare on February 3, 1983, we found that there was a temporal correlation between H intensity and hard X-ray flux at the early stage of the impulsive phase while different peaks in the hard X-ray flux curve represented bursts at different locations. When we combined SMM HXRBS observation with chromospheric flare models, we further found that the temporal coincidence between H intensity and hard X-ray flux could be explained quantitatively by the fact that the H flare was indeed due to the heating by non-thermal electron beams responsible for the emission of hard X-rays. Together with the discussion on coronal density based on chromospheric flare models, it was also shown that the source of electrons seemed to be situated around the top of the flare loop and the column density at the top of the chromosphere in semi-empirical flare models could not be taken as the total material above the top of the chromosphere.  相似文献   

18.
Simultaneous X-ray images in hard (20–40 keV) and softer (6.5–15 keV) energy ranges were obtained with the hard X-ray telescope aboard the Hinotori spacecraft of an impulsive solar X-ray burst associated with a flare near the solar west limb.The burst was composed of an impulsive component with a hard spectrum and a thermal component with a peak temperature of 2.8 × 107 K. For about one minute, the impulsive component was predominant even in the softer energy range.The hard X-ray image for the impulsive component is an extended single source elongated along the solar limb, rather steady and extends from the two-ribbon H flare up to 104 km above the limb. The centroid of this source image is located about 10 (7 × 103 km) ± 5 above the neutral line. The corresponding image observed at the softer X-rays is compact and located near the centroid of the hard X-ray image.The source for the thermal component observed in the later phase at the softer X-rays is a compact single source, and it shows a gradual rising motion towards the later phase.  相似文献   

19.
In this paper a new method for the determination of the position of microwave burst sources on the Sun, its implementation and first observational results, are presented. The 13.7 m antenna at Itapetinga with a five-channel receiver operating at 48 GHz and with a time resolution of 1 ms is used. Five horn antennas clustered around the focus of the Cassegrain reflector provide 5 beams diverging by about 2. This configuration allows the observation of different parts of an active region and the determination of the center of the burst position with an accuracy of 5 to 20 depending on the angular distance relative to the antenna axis. The field of view is 2 by 4. The time resolution of 1 ms is suitable to search for fast structures at 48 GHz. A total bandwidth of 400 MHz is used in order to achieve a sensitivity of 0.04 s.f.u. sufficient for the detection of weak bursts. First observational results of the flare on May 11, 1991 show a well-located source position during all stages.Paper presented at the 4th CESRA workshop in Ouranopolis (Greece) 1991.  相似文献   

20.
We analyze hard and soft X-ray, microwave and meter wave radio, interplanetary particle, and optical data for the complex energetic solar event of 22 July 1972. The flare responsible for the observed phenomena most likely occurred 20° beyond the NW limb of the Sun, corresponding to an occultation height of 45 000 km. A group of type III radio bursts at meter wavelengths appeared to mark the impulsive phase of the flare, but no impulsive hard X-ray or microwave burst was observed. These impulsive-phase phenomena were apparently occulted by the solar disk as was the soft X-ray source that invariably accompanies an H flare. Nevertheless essentially all of the characteristic phenomena associated with second-stage acceleration in flares - type II radio burst, gradual second stage hard X-ray burst, meter wave flare continuum (FC II), extended microwave continuum, energetic electrons and ions in the interplanetary medium - were observed. The spectrum of the escaping electrons observed near Earth was approximately the same as that of the solar population and extended to well above 1 MeV.Our analysis of the data leads to the following results: (1) All characteristics are consistent with a hard X-ray source density n i 108 cm–3 and magnetic field strength 10 G. (2) The second-stage acceleration was a physically distinct phenomenon which occurred for tens of minutes following the impulsive phase. (3) The acceleration occurred continuously throughout the event and was spatially widespread. (4) The accelerating agent was very likely the shock wave associated with the type II burst. (5) The emission mechanism for the meter-wave flare continuum source may have been plasma-wave conversion, rather than gyrosynchrotron emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号