首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yeh  Tyan 《Solar physics》1989,124(2):251-269
A dynamical model of prominence loops is constructed on the basis of the theory of hydromagnetic buoyancy force. A prominence loop is regarded as a flux rope immersed in the solar atmosphere above a bipolar region of the photospheric magnetic field. The motion of a loop is partitioned into a translational motion, which accounts for the displacement of the centroidal axis of the loop, and an expansional motion, which accounts for the displacement of the periphery of the loop relative to the axis. The translational motion is driven by the hydromagnetic buoyancy force exerted by the surrounding medium of the solar atmosphere and the gravitational force exerted by the Sun. The expansional motion is driven by the pressure gradient that sustains the pressure difference between internal and external gas pressures and the self-induced Lorentz force that results from interactions among internal currents. The main constituent of the hydromagnetic buoyancy force on a prominence loop is the diamagnetic force exerted on the internal currents by the external currents that sustain the pre-existing magnetic field. By spatial transformation between magnetic and mechanical stresses, the diamagnetic force is manifested through a mechanical force acting at various mass elements of the prominence. For a prominence loop in equilibrium, the gravitational force is balanced by the hydromagnetic buoyancy force and the Lorentz force of helical magnetic field is balanced by a gradient force of gas pressure.  相似文献   

2.
Tyan Yeh 《Solar physics》1982,78(2):287-316
A magnetohydrodynamic theory is presented for coronal loop transients. It is shown that the heliocentrifugal motion of a transient loop, as exhibited by the translational displacement of the axis of the loop, is driven by the magnetohydrodynamic buoyancy force exerted by the ambient medium. Self-induced hydromagnetic force, which includes the magnetic force produced by the internally driven current and the thermal force produced by the pressure imbalance between the internal and external gas pressures, causes the peripheral expansion of the loop, as exhibited by the lateral broadening and longitudinal stretching. This contention is substantiated by an analysis based on a model structure for a coronal loop.Besides accounting for the acceleration and expansion of a transient loop, this magnetohydrodynamic theory also provides an explanation for the initial ejection of a coronal loop from stationary equilibrium. Magnetic unwinding in consequence of abrupt magnetic activities at the solar surface will cause the periphery of a stationary coronal loop to expand. The increase in volume will enhance the magnetohydrodynamic buyoyancy force to exceed the gravitational force. Once a coronal loop is ejected from the solar surface, it will be continually accelerated and undergo expansion. Eventually a transient loop will blend with the ambient solar wind. This is also indicated by the theory presented in this paper.  相似文献   

3.
Tyan Yeh 《Solar physics》1985,95(1):83-97
An extraneous magnetized body, either a flux tube or a plasmoid, immersed in the solar atmosphere is subjected to a hydromagnetic buoyancy force. It results from the peripheral inhomogeneity of ambient hydromagnetic pressure, which is caused or enhanced by the presence of the extraneous body. This extra-caused force acts at various mass elements of the immersed body through its distribution as a nearly uniform force density, just like the gravitational force. Since hydromagnetic buoyancy force comprises hydrostatic buoyancy force, hydrodynamic lift force, and magnetostatic diamagnetic force, this constitutes a magnetohydrodynamic generalization of Archimedes' principle which deals with hydrostatic buoyancy force.In the solar atmosphere hydromagnetic buoyancy force has an obliquely upward direction, with a component in the direction opposite to the downward gravity. It provides an upward force to counterbalance or even to exceed the downward gravitational force. Such an upward force is the dynamic cause for the stationary equilibrium of quiescent prominences and outward motion of coronal transients.  相似文献   

4.
DÉmoulin  P.  HÉnoux  J. C.  Mandrini  C. H.  Priest  E. R. 《Solar physics》1997,174(1-2):73-89
In order to understand various solar phenomena controlled by the magnetic field, such as X-ray bright points, flares and prominence eruptions, the structure of the coronal magnetic field must be known. This requires a precise extrapolation of the photospheric magnetic field. Presently, only potential or linear force-free field approximations can be used easily. A more realistic modelling of the field is still an active research area because of well-known difficulties related to the nonlinear mixed elliptic-hyperbolic nature of the equations. An additional difficulty arises due to the complexity of the magnetic field structure which is caused by a discrete partition of the photospheric magnetic field. This complexity is not limited to magnetic regions having magnetic nulls (and so separatrices) but also occurs in those containing thin elongated volumes (called Quasi-Separatrix Layers) where the photospheric field-line linkage changes rapidly. There is a wide range for the thickness of such layers, which is determined by the character (bipolar or quadrupolar) of the magnetic region, by the sizes of the photospheric field concentrations and by the intensity of the electric currents. The aim of this paper is to analyse the recent nonlinear force-free field extrapolation techniques for complex coronal magnetic fields.  相似文献   

5.
We analyse the magnetic support of solar prominences in two-dimensional linear force-free fields. A line current is added to model a helical configuration, well suited to trap dense plasma in its bottom part. The prominence is modeled as a vertical mass-loaded current sheet in equilibrium between gravity and magnetic forces.We use a finite difference numerical technique which incorporates both vertical photospheric and horizontal prominence magnetic field measurements. The solution of this mixed boundary problem generally presents singularities at both the bottom and top of the model prominence. The removal of the singularities is achieved by superposition of solutions. Together with the line current equilibrium, these three conditions determine the amplitude of the magnetic field in the prominence, the flux below the prominence and the current intensity, for a given height of the line current. A numerical check of accuracy in the removal of singularities, is done by using known analytical solutions in the potential limit.We have investigated both bipolar and quadrupolar photospheric regions. In this mixed boundary problem the polarity of the field component orthogonal to the prominence is mainly fixed by the imposed height of the line current. For bipolar regions above (respectively below) a critical height the configuration is inverse (respectively normal). For quadrupolar regions the polarity is reversed if we refer the prominence polarity to the closest photospheric polarities. We introduce the polarity of the component parallel to the prominence axis with reference to a sheared arcade. Increasing the shear with fixed boundary conditions can increase or decrease the mass supported depending on the configuration.  相似文献   

6.
We investigate the formation and support of solar prominences in a quadrupolar magnetic configuration. The prominence is modeled as a current sheet with mass in equilibrium in a two-dimensional field. The model possesses an important property which is now thought to be necessary, namely that the prominence forms within the dip, rather than the dip being created by the prominence.The approach of two bipolar regions of the same sign gives a natural way to form a dip in the magnetic field in a horizontal band above the photospheric polarity inversion line. As the approach proceeds, the height of the dip region decreases but, in agreement with observations, a corridor, free of significant magnetic field, is needed in order to obtain a dip at low heights.Support is achieved locally just as for normal-polarity configurations, so the model avoids the strong self-pinching effect of several inverse-polarity configurations (such as the Kuperus and Raadu model). The role of the strong field component along the prominence axis, which is here modelled by a uniform field in that direction, may well be to provide the necessary thermal properties for prominence formation.The model thus has several attractive features which make it credible for inverse polarity prominences: (i) both the dip and the inverse orientation are naturally present; (ii) prominence formation is by converging rather than shearing motions, in agreement with observations; converging photospheric motions induce a horizontal upward motion in the filament; (iii) the orientation of the axial field, opposite to what is expected from differential rotation, is naturally accounted for; (iv) the observed relation between chromospheric and prominence magnetic field strengths is naturally reproduced; (v) the field configuration is more complex than a simple bipole, in agreement with observations.  相似文献   

7.
G. S. Choe  L. C. Lee 《Solar physics》1992,138(2):291-329
A numerical simulation is performed to investigate the prominence formation in a magnetic arcade by photospheric shearing motions. A two-and-a-half-dimensional magnetohydrodynamic (MHD) code is used, in which the gravitational force, radiative cooling, thermal conduction and a simplified form of coronal heating are included. It is found that a footpoint shear induces an expansion of the magnetic arcade and cooling of the plasma in it. Simultaneously the denser material from the lower part of the arcade is pulled up by the expanding field lines. A local enhancement of radiative cooling is thus effected, which leads to the onset of thermal instability and the condensation of coronal plasma. The condensed material grows vertically to form a sheet-like structure making dips on field lines, leading to the formation of the Kippenhahn- Schlüter type prominence. The mass of the prominence is found to be supplied not only by the condensation of the material in the vicinity but also by the siphon-type upflows. The upward growth of the vertical sheet-structure of the prominence is saturated at a certain stage and the newly condensed material is found to slide down from above the prominence along magnetic field lines. This drainage of material leads to the formation of an arc-shaped cavity of low density and low pressure around the prominence. The problem of force and heat balance is addressed and the prominence is found to be not in a static equilibrium but in a dynamic interaction with its environment.  相似文献   

8.
We study the flux emergence process in NOAA active region 11024, between 29 June and 7 July 2009, by means of multi-wavelength observations and nonlinear force-free extrapolation. The main aim is to extend previous investigations by combining, as much as possible, high spatial resolution observations to test our present understanding of small-scale (undulatory) flux emergence, whilst putting these small-scale events in the context of the global evolution of the active region. The combination of these techniques allows us to follow the whole process, from the first appearance of the bipolar axial field on the east limb, until the buoyancy instability could set in and raise the main body of the twisted flux tube through the photosphere, forming magnetic tongues and signatures of serpentine field, until the simplification of the magnetic structure into a main bipole by the time the active region reaches the west limb. At the crucial time of the main emergence phase high spatial resolution spectropolarimetric measurements of the photospheric field are employed to reconstruct the three-dimensional structure of the nonlinear force-free coronal field, which is then used to test the current understanding of flux emergence processes. In particular, knowledge of the coronal connectivity confirms the identity of the magnetic tongues as seen in their photospheric signatures, and it exemplifies how the twisted flux, which is emerging on small scales in the form of a sea-serpent, is subsequently rearranged by reconnection into the large-scale field of the active region. In this way, the multi-wavelength observations combined with a nonlinear force-free extrapolation provide a coherent picture of the emergence process of small-scale magnetic bipoles, which subsequently reconnect to form a large-scale structure in the corona.  相似文献   

9.
An interesting coronal structure was observed during the solar eclipse of May 30, 1965. This comprised a series of bright arches centered approximately on a quiescent prominence. A bright ray originated near the top of one of the arches and pointed almost radially away from the photosphere. The ray could be followed for 1.5 solar radii and was deflected towards a direction parallel to the equatorial plane. By comparing the photographs with Fraunhofer maps and magnetograms, the following interpretation of the structure was obtained. The prominence lies above the neutral line of an extended bipolar magnetic region. The bright arches coincide with flux tubes arising from small photospheric regions of enhanced magnetic-field strength. The ray represents a projection view of a thin region of enhanced plasma density in the neighborhood of a current sheet which separates two flux tubes of opposite polarity. The ray is interpreted as a coronal streamer, and it is suggested that all streamers are related to current sheets.  相似文献   

10.
Using a two-dimensional, dissipative magnetohydrodynamic model, this paper presents a numerical simulation of the magnetic energy buildup in a quadrupolar field by photospheric shear motion. When electric current density is larger than a certain critical value, an anomalous resistivity is introduced in order to account for the dissipation caused by instabilities in high current regions. It is shown that like a bipolar field, a quadrupolar field can efficiently store magnetic free energy through photospheric shear motion. Electric current formed by shear concentrates on the separatrix and magnetic loops rooted in areas where the shear velocity gradient is large. The atmosphere is heated by anomalous resistive dissipation during the shear. Both magnetic and thermal energy increases nonlinearly with shearing displacement. When the anomalous resistivity increases or the critical current density decreases, the growth rate reduces for magnetic energy but goes up for thermal energy.  相似文献   

11.
The onset stage of coronal mass ejections (CMEs) is difficult to observe and is poorly studied. In spite of their practical importance, methods for CME predictions with sufficient lead times are only in the nascent stages of development. The most probable CME mechanism is a catastrophic loss of equilibrium of a large-scale current system in the corona (a flux rope). A twisted magnetic rope is maintained by the tension of field lines of photospheric sources until parameters of the system reach critical values and the equilibrium is lost. Unfortunately, there is low-density plasma (coronal cavity) in most of the rope volume; thus, it is difficult to observe a rope. However, the lower parts of the helical field lines of a rope are fine traps for the dense cold plasma of prominences. Thus, prominences are the best tracers of flux ropes in the corona. The maximal height up to which the rope is in stable equilibrium can be found by analyzing the distribution of the magnetic field generated by photospheric sources in the corona. Comparing this critical height with the actually observed prominence height, one can estimate the probability of the loss of equilibrium by a magnetic rope with a following eruption of prominences and coronal mass ejections.  相似文献   

12.
In this paper we analyse the non-potential magnetic field and the relationship with current (helicity) in the active region NOAA 9077 in 2000 July, using photospheric vector magnetograms obtained at different solar observatories and also coronal extreme-ultraviolet 171-Å images from the TRACE satellite.
We note that the shear and squeeze of magnetic field are two important indices for some flare-producing regions and can be confirmed by a sequence of photospheric vector magnetograms and EUV 171-Å features in the solar active region NOAA 9077. Evidence on the release of magnetic field near the photospheric magnetic neutral line is provided by the change of magnetic shear, electric current and current helicity in the lower solar atmosphere. It is found that the 'Bastille Day' 3B/5.7X flare on 2000 July 14 was triggered by the interaction of the different magnetic loop systems, which is relevant to the ejection of helical magnetic field from the lower solar atmosphere. The eruption of the large-scale coronal magnetic field occurs later than the decay of the highly sheared photospheric magnetic field and also current in the active region.  相似文献   

13.
Photospheric motion shears or twists solar magnetic fields to increase magnetic energy in the corona, because this process may change a current-free state of a coronal field to force-free states which carry electric current. This paper analyzes both linear and nonlinear two-dimensional force-free magnetic field models and derives relations of magnetic energy buildup with photospheric velocity field. When realistic data of solar magnetic field (B 0 103 G) and photospheric velocity field (v max 1 km s–1) are used, it is found that 3–4 hours are needed to create an amount of free magnetic energy which is of the order of the current-free field energy. Furthermore, the paper studies situations in which finite magnetic diffusivities in photospheric plasma are introduced. The shearing motion increases coronal magnetic energy, while the photospheric diffusion reduces the energy. The variation of magnetic energy in the coronal region, then, depends on which process dominates.  相似文献   

14.
We present a 2-D potential-field model for the magnetic structure in the environment of a typical quiescent polar-crown prominence. The field is computed using the general method of Titov (1992) in which a curved current sheet, representing the prominence, is supported in equilibrium by upwardly directed Lorentz forces to balance the prominence weight. The mass density of the prominence sheet is computed in this solution using a simple force balance and observed values of the photospheric and prominence magnetic field. This calculation gives a mass density of the correct order of magnitude. The prominence sheet is surrounded by an inverse-polarity field configuration adjacent to a region of vertical, open polar field in agreement with observations.A perturbation analysis provides a method for studying the evolution of the current sheet as the parameters of the system are varied together with an examination of the splitting of an X-type neutral point into a current sheet.Program Systems Institute of the Russian Academy of Sciences, Pereslavl-Zalessky 152140, Russia.  相似文献   

15.
A model is presented for the penetration into the corona of a new magnetic field of a developing bipolar region and for its interaction with an old large-scale coronal field. An important feature of the model is a reconnection of the old and new fields inside the current sheet arising along the zero line of the total magnetic field calculated in the potential approximation. The magnetic reconnection and accumulation of plasma inside the current sheet can explain the appearance of dense coronal loops and the energy source at their tops. The plasma together with the magnetic lines is flowed into the sheet from both its sides. This fact explains the appearance of coronal cavities above the loops. If the large-scale field gradually decreases with the height, the loop motion is slowed down. The account of the dipolar structure of the magnetic field at large heights explains the possibility of a rapid break of the new field through the corona and the appearance of transients and open field regions - the coronal holes. In this case a fast rising current sheet can be a source of accelerated particles and of type II radio burst, instead of the shock wave considered usually.  相似文献   

16.
Gary  G. Allen  Alexander  David 《Solar physics》1999,186(1-2):123-139
A method is presented for constructing the coronal magnetic field from photospheric magnetograms and observed coronal loops. A set of magnetic field lines generated from magnetogram data is parameterized and then deformed by varying the parameterized values. The coronal flux tubes associated with this field are adjusted until the correlation between the field lines and the observed coronal loops is maximized. A mathematical formulation is described which ensures that (i) the normal component of the photospheric field remains unchanged, (ii) the field is given in the entire corona over an active region, (iii) the field remains divergence-free, and (iv) electric currents are introduced into the field. It is demonstrated that a parameterization of a potential field, comprising a radial stretching of the field, can provide a match for a simple bipolar active region, AR 7999, which crossed the central meridian on 1996 November 26. The result is a non-force-free magnetic field with the Lorentz force being of the order of 10–5.5 g cm s–2 resulting from an electric current density of 0.079 A m–2. Calculations show that the plasma beta becomes larger than unity at a relatively low height of 0.25 r supporting the non-force-free conclusion. The presence of such strong non-radial currents requires large transverse pressure gradients to maintain a magnetostatic atmosphere, required by the relatively persistent nature of the coronal structures observed in AR 7999. This scheme is an important tool in generating a magnetic field solution consistent with the coronal flux tube observations and the observed photospheric magnetic field.  相似文献   

17.
Belenko  Irina A. 《Solar physics》2001,199(1):23-35
Spatial and temporal distributions of coronal holes for the rising phase of the solar cycle during 1996–1999 are considered. Connections between the number of non-polar coronal holes on the solar disk and the Wolf number, the mean solar photospheric magnetic field, and the solar flux density at 2800 mHz are analyzed. Peculiarities of the photospheric magnetic field structure of the regions corresponding to coronal hole locations and comparison with `clear' ones are discussed.  相似文献   

18.
An eruption of opposite magnetic flux into a bipolar background field is likely to lead to the formation of a natural current sheet between the new emerging field and the background. A numerical study is made on this process, based on the ideal MMD equations, taking into account the interaction between the magnetic field and the coronal plasma. The result shows that a subsonic eruption will give rise to a four region structure; 1) a cool and dense prominence made of the erupting material in the innermost region; 2) a cool and tenuous region further out; 3) a hot and dense loop formed by the concentration of both the erupting material and the coronal material in the neutral current sheet; and 4) a forerunner region outside the loop with density slightly above the background, due to fast magneto-acoustic waves. This structure agrees with the observed features of typical loop coronal transients. Therefore the eruption of opposite magnetic flux into a bipolar background is probably an important mechanism for triggering off such transients.  相似文献   

19.
Knowledge regarding the coronal magnetic field is important for the understanding of many phenomena, like flares and coronal mass ejections. Because of the low plasma beta in the solar corona, the coronal magnetic field is often assumed to be force-free and we use photospheric vector magnetograph data to extrapolate the magnetic field into the corona with the help of a nonlinear force-free optimization code. Unfortunately, the measurements of the photospheric magnetic field contain inconsistencies and noise. In particular, the transversal components (say B x and B y) of current vector magnetographs have their uncertainties. Furthermore, the magnetic field in the photosphere is not necessarily force free and often not consistent with the assumption of a force-free field above the magnetogram. We develop a preprocessing procedure to drive the observed non–force-free data towards suitable boundary conditions for a force-free extrapolation. As a result, we get a data set which is as close as possible to the measured data and consistent with the force-free assumption.  相似文献   

20.
We present a detailed analysis of the magnetic topology of AR 2776 together with Hα UV, X-rays, and radio observations of the November 5, 1980 flares in order to understand the role of the active region large-scale topology on the flare process. As at present the coronal magnetic field is modeled by an ensemble of sub-photospheric sources whose positions and intensities are deduced from a least-square fit between the computed and observed longitudinal magnetic fields. Charges and dipole representations are shown to lead to similar modeling of the magnetic topology provided that the number of sources is great enough. However, for AR 2776, departure from a potential field has to be taken into account, therefore a linear force-free field extrapolation is used. The locations of the four bright off-band Hα kernels in quadrupolar active regions have been studied previously. In this new study the active region is bipolar and shows a two-ribbon structure. We show that these two ribbons are a consequence of the bipolar photospheric field (the four kernels of quadrupolar regions merge into two bipolar regions). The two ribbons are found to be located at the intersection of the separatrices with the chromosphere when the shear, deduced from the fibril direction, is taken into account. This study supports the hypothesis that magnetic energy is stored in field-aligned currents and released by magnetic reconnection at the location of the separator, before being transported along field lines to the chromospheric level. It is also possible that part of the magnetic energy could be stored and released on the separatrices. Our study shows that meeting just one of two conditions- the presence of intense coronal currents or of a separator in a magnetic field configuration - is not sufficient for flaring. In order to release the stored energy, the coronal currents need either to be formed along the separatrices or to be transported towards the separator or separatrices. The location of the observed photospheric current concentrations on the computed separatrices supports this view. Member of the Carrera del Investigador Científico, CONICET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号