首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Zircon crystals in the age range of ca. 10–300 ka can be dated by 230Th/238U (U‐Th) disequilibrium methods because of the strong fractionation between Th and U during crystallisation of zircon from melts. Laser ablation inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) analysis of nine commonly used reference zircons (at secular equilibrium) and a synthetic zircon indicates that corrections for abundance sensitivity and dizirconium trioxide molecular ions (Zr2O3+) are critical for reliable determination of 230Th abundances in zircon. When corrected for abundance sensitivity and interferences, mean activity ratios of (230Th)/(238U) for nine reference zircons analysed on five different days averaged 0.995 ± 0.023 (95% confidence weighted by data‐point uncertainty only, MSWD = 1.6; = 9), consistent with their U‐Pb ages > 4 Ma that imply equilibrium for all intermediate daughter isotopes (including 230Th) within the 238U decay chain. U‐Th zircon ages generated by LA‐ICP‐MS without mitigating (e.g., by high mass resolution) or correcting for abundance sensitivity and molecular interferences on 230Th are potentially unreliable. To validate the applicability of LA‐ICP‐MS to this dating method, we acquired data from three late Quaternary volcanic units: the 41 ka Campanian Ignimbrite (plutonic clasts), the 161 ka Kos Plateau Tuff (juvenile clasts) and the 12 ka Puy de Dôme trachyte lava (all eruption ages by Ar/Ar, with zircon U‐Th ages being of equal or slightly older). A comparison of the corrected LA‐ICP‐MS results with previously published secondary ion mass spectrometry (SIMS) data for these rocks shows comparable ages with equivalent precision for LA‐ICP‐MS and SIMS, but much shorter analysis durations (~ 2 min vs. ~ 15 min) per spot with LA‐ICP‐MS and much simpler sample preparation. Previously undated zircons from the Yali eruption (Kos‐Nisyros volcanic centre, Greece) were analysed using this method. This yielded a large age spread (~ 45 to > 300 ka), suggesting significant antecryst recycling. The youngest zircon age (~ 45 ± 10 ka) provides a reasonable maximum estimate for the eruption age, in agreement with the previously published age using oxygen isotope stratigraphy (~ 31 ka).  相似文献   

2.
Dating of young (<1 Ma) geological events has long been a challenge for geochronologists. Combining (U‐Th)/He with U‐Pb or U‐Th‐disequilibrium dating methods offers a unique dating tool that can address this important period. We present a new methodology that combines U‐Pb LA‐ICP‐MS and (U‐Th)/He dating of zircon and use it to date two Pleistocene marker tephras (A1Pm and DPm) from the Omachi Tephra suite (Japan). A1Pm and DPm yield U‐Pb ages in the range of 350–850 and ~140–630 ka, respectively, documenting protracted periods of zircon crystallisation (100's of k.y.) prior to eruption. (U‐Th)/He ages constrain the eruption ages of the A1Pm and DPm tephras to 375 ± 13 and 97.1 ± 7.3 ka, respectively, and are in agreement with published estimates. This study demonstrates the potential of combined zircon U‐Pb LA‐ICP‐MS and (U‐Th)/He dating to constrain magmatic and eruption events in the critical ~100 ka–1 Ma interval.  相似文献   

3.
We introduce a potential new working reference material – natural zircon megacrysts from an Early Pliocene alkaline basalt (from Penglai, northern Hainan Island, southern China) – for the microbeam determination of O and Hf isotopes, and U–Pb age dating. The Penglai zircon megacrysts were found to be fairly homogeneous in Hf and O isotopes based on large numbers of measurements by LA-multiple collector (MC)-ICP-MS and SIMS, respectively. Precise determinations of O isotopes by isotope ratio mass spectrometry (IRMS) and Hf isotopes by solution MC-ICP-MS were in good agreement with the statistical mean of microbeam measurements. The mean δ18O value of 5.31 ± 0.10‰ (2s) by IRMS and the mean 176Hf/177Hf value of 0.282906 ± 0.0000010 (2s) by solution MC-ICP-MS are the best reference values for the Penglai zircons. SIMS and isotope dilution-TIMS measurements yielded consistent 206Pb/238U ages within analytical uncertainties, and the preferred 206Pb/238U age was found to be 4.4 ± 0.1 Ma (95% confidence interval). The young age and variably high common Pb content make the Penglai zircons unsuitable as a primary U–Pb age reference material for calibration of unknown samples by microbeam analysis; however, they can be used as a secondary working reference material for quality control of U–Pb age determination for young (particularly < 10 Ma) zircon samples.  相似文献   

4.
A silicic ignimbrite flare-up episode occurred in the Pannonian Basin during the Miocene, coeval with the syn-extensional period in the region. It produced important correlation horizons in the regional stratigraphy; however, they lacked precise and accurate geochronology. Here, we used U–Pb (LA-ICP-MS and ID-TIMS) and (U–Th)/He dating of zircons to determine the eruption ages of the youngest stage of this volcanic activity and constrain the longevity of the magma storage in crustal reservoirs. Reliability of the U–Pb data is supported by (U–Th)/He zircon dating and magnetostratigraphic constraints. We distinguish four eruptive phases from 15.9 ± 0.3 to 14.1 ± 0.3 Ma, each of which possibly includes multiple eruptive events. Among these, at least two large volume eruptions (>10 km3) occurred at 14.8 ± 0.3 Ma (Demjén ignimbrite) and 14.1 ± 0.3 Ma (Harsány ignimbrite). The in situ U–Pb zircon dating shows wide age ranges (up to 700 kyr) in most of the crystal-poor pyroclastic units, containing few to no xenocrysts, which implies efficient recycling of antecrysts. We propose that long-lived silicic magma reservoirs, mostly kept as high-crystallinity mushes, have existed in the Pannonian Basin during the 16–14 Ma period. Small but significant differences in zircon, bulk rock and glass shard composition among units suggest the presence of spatially separated reservoirs, sometimes existing contemporaneously. Our results also better constrain the time frame of the main tectonic events that occurred in the Northern Pannonian Basin: We refined the upper temporal boundary (15 Ma) of the youngest counterclockwise block rotation and the beginning of a new deformation phase, which structurally characterized the onset of the youngest volcanic and sedimentary phase.  相似文献   

5.
Zircon megacrysts are found in alluvial deposits associated with Cenozoic basalts from Changle in Shandong Province, Mingxi in Fujian Province and Penglai in Hainan Province within the coastal area of eastern China. They are colourless, transparent to light brown–maroon, and some of them are up to 16 mm long. U–Pb ages of zircon megacrysts from Changle, Mingxi and Penglai are 19.2?±?0.7 Ma, 1.2?±?0.1 Ma and 4.1?±?0.2 Ma respectively, slightly older than the eruption ages of their corresponding host rocks (16.05–18.87 Ma, 0.9–2.2 Ma, 3 Ma). εHf(t) values of zircon megacrysts are 9.02?±?0.49, 6.83?±?0.47, 4.46?±?0.48 for Changle, Mingxi and Penglai, respectively, which indicates their mantle origin. We suggest that the zircon megacrysts originated from metasomatised lithospheric mantle and were later brought up quickly by the host basaltic magma. The euhedral forms, uniform internal structure and chemical homogeneity within a single grain suggest crystallization under stable conditions. Pronounced positive Ce anomalies and negligible Eu anomalies suggest oxidizing conditions and little or no fractional crystallization of plagioclase. The differences in Hf-isotope compositions among the zircon megacrysts from different localities are consistent with the Sr-Nd-Pb isotopic compositions of their respective host basalts. This indicates that the host basalts acquired their isotopic signatures from the lithospheric mantle from which the zircon megacrysts derived. These data document the lateral compositional heterogeneity in the upper mantle beneath eastern China. Like mantle xenoliths, zircon megacrysts also have the potential to fingerprint the composition and evolution of the subcontinental lithospheric mantle.  相似文献   

6.
Independent geochronological and thermal modelling approaches are applied to a biostratigraphically exceptionally well‐controlled borehole, Alcsútdoboz‐3 (Ad‐3), in order to constrain the age of Cenozoic geodynamic events in the western Pannonian Basin and to test the efficacy of the methods for dating volcanic rocks. Apatite fission track and zircon U–Pb data show two volcanic phases of Middle Eocene (43.4–39.0 Ma) and Early Oligocene (32.72 ± 0.15 Ma) age respectively. Apatite (U–Th)/He ages (23.8–14.8 Ma) and independent thermal and subsidence history models reveal a brief period of heating to 55–70 °C at ~17 Ma caused by an increased heat‐flow related to crustal thinning and mantle upwelling. Our results demonstrate that, contrary to common perception, the apatite (U–Th)/He method is likely to record ‘apparent’ or ‘mixed’ ages resulting from subsequent thermal events rather than ‘cooling’ or ‘eruption’ ages directly related to distinct geological events. It follows that a direct conversion of ‘apparent’ or ‘mixed’ (U‐Th)/He ages into cooling, exhumation or erosion rates is incorrect.  相似文献   

7.
The dating of volcanic tephras forms a critical cornerstone of chronostratigraphy and is paramount for the resolution of the geological timescale. (U‐Th[‐Sm])/He dating is an emerging tool in Quaternary tephrochronology and ideally suited to date tephras <1 Ma. We present zircon, magnetite and apatite (U‐Th[‐Sm])/He combined with zircon U‐Pb data for a Pleistocene tephra in syn‐rift strata of the Woodlark Rift in Papua New Guinea. The results reveal a young He age mode (~0.5 to 0.8 Ma), consistent with an autocrystic zircon U‐Pb crystallisation age of 0.8 ± 0.1 Ma, as well as a broad range of older (U‐Th[‐Sm])/He (~1.6 to 10.2 Ma) and U‐Pb (~4.4 to 107 Ma) ages. These data demonstrate the potential of integrated U‐Pb and (U‐Th[‐Sm])/He multi‐method chronometry for dating the youngest coherent age mode, detecting contaminant grains and evaluating the isotopic systematics of these techniques.  相似文献   

8.
We introduce and propose zircon M257 as a future reference material for the determination of zircon U‐Pb ages by means of secondary ion mass spectrometry. This light brownish, flawless, cut gemstone specimen from Sri Lanka weighed 5.14 g (25.7 carats). Zircon M257 has TIMS‐determined, mean isotopic ratios (2s uncertainties) of 0.09100 ± 0.00003 for 206pb/238U and 0.7392 ± 0.0003 for 207pb/235U. Its 206pb/238U age is 561.3 ± 0.3 Ma (unweighted mean, uncertainty quoted at the 95% confidence level); the U‐Pb system is concordant within uncertainty of decay constants. Zircon M257 contains ~ 840 μg g?1 U (Th/U ~ 0.27). The material exhibits remarkably low heterogeneity, with a virtual absence of any internal textures even in cathodoluminescence images. The uniform, moderate degree of radiation damage (estimated from the expansion of unit‐cell parameters, broadening of Raman spectral parameters and density) corresponds well, within the “Sri Lankan trends”, with actinide concentrations, U‐Pb age, and the calculated alpha fluence of 1.66 × 1018 g?1. This, and a (U+Th)/He age of 419 ± 9 Ma (2s), enables us to exclude any unusual thermal history or heat treatment, which could potentially have affected the retention of radiogenic Pb. The oxygen isotope ratio of this zircon is 13.9%o VSMOW suggesting a metamorphic genesis in a marble or calc‐silicate skarn.  相似文献   

9.
Large volumes of silicic magma were produced on a very short timescale in the nested caldera complex of the SW Nevada volcanic field (SWNVF). Voluminous ash flows erupted in two paired events: Topopah Spring (TS, >1,200 km3, 12.8 Ma)–Tiva Canyon (TC, 1,000 km3, 12.7 Ma) and Rainier Mesa (RM, 1,200 km3, 11.6 Ma)–Ammonia Tanks (AT, 900 km3, 11.45 Ma; all cited ages are previously published 40Ar/39Ar sanidine ages). Within each pair, eruptions are separated by only 0.1–0.15 My and produced tuffs with contrasting isotopic values. These events represent nearly complete evacuation of sheet-like magma chambers formed in the extensional Basin and Range environment. We present ion microprobe ages from zircons in the zoned ash-flow sheets of TS, TC, RM, and AT in conjunction with δ18O values of zircons and other phenocrysts, which differ dramatically among subsequently erupted units. Bulk zircons in the low-δ18O AT cycle were earlier determined to exhibit ∼1.5‰ core-to-rim oxygen isotope zoning; and high-spatial resolution zircon analyses by ion microprobe reveal the presence of older grains that are zoned by 0.5–2.5‰. The following U–Pb isochron ages were calculated after correcting for the initial U–Pb disequilibria: AT (zircon rims: 11.7 ± 0.2 Ma; cores: 12.0 ± 0.1 Ma); pre-AT rhyolite lava: (12.0 ± 0.3 Ma); RM: 12.4 ± 0.3); TC: (13.2 ± 0.15 Ma); TS: (13.5 ± 0.2). Average zircon crystallization ages calculated from weighted regression or cumulative averaging are older than the Ar–Ar stratigraphy, but preserve the comparably short time gaps within each of two major eruption cycles (TS/TC, RM/AT). Notably, every sample yields average zircon ages that are 0.70–0.35 Ma older than the respective Ar–Ar eruption ages. The Th/U ratio of SWNVF zircons are 0.4–4.7, higher than typically found in igneous zircons, which correlates with elevated Th/U of the whole rocks (5–16). High Th/U could be explained if uranium was preferentially removed by hydrothermal solutions or is retained in the protolith during partial melting. For low-δ18O AT-cycle magmas, rim ages from unpolished zircons overlap within analytical uncertainties with the 40Ar/39Ar eruption age compared to core ages that are on average ∼0.2–0.3 My older than even the age of the preceding caldera forming eruption of RM tuff. This age difference, the core-to-rim oxygen isotope zoning in AT zircons, and disequilibrium quartz–zircon and melt-zircon isotopic fractionations suggest that AT magma recycled older zircons derived from the RM and older eruptive cycles. These results suggest that the low-δ18O AT magmas were generated by melting a hydrothermally-altered protolith from the same nested complex that erupted high-δ18O magmas of the RM cycle only 0.15 My prior to the eruption of the AT, the largest volume low-δ18O magma presently known.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

10.
In situ U-Pb geochronology and hafnium, oxygen and zirconium isotope measurements in zircons using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and ion microprobe techniques can provide essential isotopic data to constrain geological evolutionary histories. Developing reliable zircon reference materials is the cornerstone for in situ zircon chronology and isotopic studies. In this study, the homogeneity of U-Pb ages and Hf-O-Zr isotope ratios in three Sri Lankan zircon megacrysts (SLZA, SLZB and SLZC) were investigated using multiple analytical methods. The obtained U, Th, Pb and Hf mass fractions of the SLZA zircon were 839 ± 56 μg g-1 (1s), 151 ± 15 μg g-1 (1s), 198 ± 28 μg g-1 (1s) and 8635 ± 286 μg g-1 (1s), respectively. The mass fractions of U, Th, Pb and Hf in the SLZB zircon were 1106 ± 106 μg g-1 (1s), 331 ± 61 μg g-1 (1s), 376 ± 57 μg g-1 (1s) and 9673 ± 976 μg g-1 (1s), respectively. The U, Th, Pb and Hf mass fractions determined in the SLZC zircon were 551 ± 35 μg g-1 (1s), 111 ± 8 μg g-1 (1s), 129 ± 18 μg g-1 (1s) and 7881 ± 393 μg g-1 (1s), respectively. The chemical abrasion isotope dilution thermal ionisation mass-spectrometry (CA-ID-TIMS) method yielded a Th-corrected weighted mean 206Pb/238U age of 556.94 ± 1.29 Ma (95% conf., n = 5) for the SLZA zircon, 552.90 ± 1.29 Ma (95% conf., n = 7) for the SLZB zircon and 560.83 ± 1.29 Ma (95% conf., n = 7) for the SLZC zircon. The obtained Hf isotopic compositions of the SLZA, SLZB and SLZC zircons determined with the solution MC-ICP-MS method were 0.281651 ± 0.000014 (2s, n = 10), 0.281704 ± 0.000008 (2s, n = 10) and 0.281676 ± 0.000006 (2s, n = 10), respectively. The obtained O isotopes of the SLZA and SLZB zircons measured with the laser fluorination method were 12.14 ± 0.56‰ (2s, n = 4) and 11.91 ± 0.30‰ (2s, n = 4), respectively. The Zr isotopes of the SLZA, SLZB and SLZC zircons determined with double spike TIMS analysis yielded mean δ94/90ZrSRM3169 values of -0.03 ± 0.06‰ (2s, n = 10), -0.03 ± 0.04‰ (2s, n = 10) and 0.00 ± 0.07‰ (2s, n = 8), respectively. The SLZA zircon can be used as a primary reference or quality control material for microbeam U-Pb, Hf and Zr isotope measurements because of its slight heterogeneity. The U-Pb, Hf and Zr isotopic compositions of the SLZB and SLZC megacrysts were homogeneous. The O isotopic compositions in the SLZA and SLZB zircon were slightly dispersed, indicating that these two megacrysts can only serve as secondary reference materials for microbeam O isotope measurements.  相似文献   

11.
For magmatic rocks, it is often found that zircon 206 Pb/238 U and 207 Pb/235 U ratios continuously plot on the concordia line with a relatively large age span for the same sample, which gives rise to large dating errors or even unrealistic dating results. As the trace element concentrations of zircon can reflect its equilibrated magma characteristics, they can be used to determine whether all the analytical spots on the zircons selected to calculate the weighted mean age are cogenetic and formed in a single magma chamber. This work utilizes the results of zircon trace element concentrations and U-Pb isotopic analyses to explore the screening of reasonable U-Pb ages, which can be used to determine a more accurate intrusion crystallization age. The late Mesozoic Huayuangong granitic pluton complex, which is located in the Lower Yangtze region, eastern China, was selected for a case study. The Huayuangong pluton comprises the central intrusion and the marginal intrusion. Two samples from the marginal intrusion yielded consistent zircon weighted mean 206 Pb/238 U ages of 124.6 ± 2.0 Ma and 125.9 ± 1.6 Ma. These analytical spots also exhibit Zr/Hf and Th/U ratios concordant with the evolution of a single magma, from which the dated zircons crystallized. However, for the central intrusion, the analytical spots on zircons from two samples all show a continuous distribution on the concordia line with a relatively large age span. For each sample from the central intrusion, the zircon Zr/Hf ratios do not conform to a single magma evolutionary trend, but rather can be divided into two groups. We propose that zircon Zr/Hf ratios can provide a new constraint on U-Pb zircon dating and zircon Th/U ratios can also be used as a supplementary indicator to constrain zircon dating and determine the origins of the zircons and whether magma mixing has occurred. By screening zircon analytical spots using these two indicators, the two samples from the central intrusion of the Huayuangong pluton produce results of 122.8 ± 4.3 Ma and 122.9 ± 2.2 Ma, which are consistent with the field observations that the central intrusion is slightly younger than the marginal intrusion.  相似文献   

12.
We present multitechnique U‐Pb geochronology and Hf isotopic data from zircon separated from rapakivi biotite granite within the Eocene Golden Horn batholith in Washington, USA. A weighted mean of twenty‐five Th‐corrected 206Pb/238U zircon dates produced at two independent laboratories using chemical abrasion‐isotope dilution‐thermal ionisation mass spectrometry (CA‐ID‐TIMS) is 48.106 ± 0.023 Ma (2s analytical including tracer uncertainties, MSWD = 1.53) and is our recommended date for GHR1 zircon. Microbeam 206Pb/238U dates from laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) and secondary ion mass spectrometry (SIMS) laboratories are reproducible and in agreement with the CA‐ID‐TIMS date to within < 1.5%. Solution multi‐collector ICP‐MS (MC‐ICP‐MS) measurements of Hf isotopes from chemically purified aliquots of GHR1 yield a mean 176Hf/177Hf of 0.283050 ± 17 (2s,= 10), corresponding to a εHf0 of +9.3. Hafnium isotopic measurements from two LA‐ICP‐MS laboratories are in agreement with the solution MC‐ICP‐MS value. The reproducibility of 206Pb/238U and 176Hf/177Hf ratios from GHR1 zircon across a variety of measurement techniques demonstrates their homogeneity in most grains. Additionally, the effectively limitless reserves of GHR1 material from an accessible exposure suggest that GHR1 can provide a useful reference material for U‐Pb geochronology of Cenozoic zircon and Hf isotopic measurements of zircon with radiogenic 176Hf/177Hf.  相似文献   

13.
The oxygen isotope ratios of Phanerozoic zircons from kimberlite pipes in the Kaapvaal Craton of southern Africa and the Siberian Platform vary from 4.7 to 5.9‰ VSMOW. High precision, accurate analyses by laser reveal subtle pipe-to-pipe differences not previously suspected. These zircons have distinctive chemical and physical characteristics identifying them as mantle-derived megacrysts similar to zircons found associated with diamond, coesite, MARID xenoliths, Cr-diopside, K-richterite, or Mg-rich ilmenite. Several lines of evidence indicate that these 18O values are unaltered by kimberlite magmas during eruption and represent compositions preserved since crystallization in the mantle, including: U/Pb age, large crystal size, and the slow rate of oxygen exchange in non-metamict zircon. The average 18O of mantle zircons is 5.3‰, ∼0.1 higher and in equilibrium with values for olivine in peridotite xenoliths and oceanic basalts. Zircon megacrysts from within 250 km of Kimberley, South Africa have average 18O=5.32±0.17 (n=28). Small, but significant, differences among other kimberlite pipes or groups of pipes may indicate isotopically distinct reservoirs in the sub-continental lithosphere or asthenosphere, some of which are anomalous with respect to normal mantle values of 5.3±0.3. Precambrian zircons (2.1–2.7 Ga) from Jwaneng, Botswana have the lowest values yet measured in a mantle zircon, 18O=3.4 to 4.7‰. These zircon megacrysts originally crystallized in mafic or ultramafic rocks either through melting and metasomatism associated with kimberlite magmatism or during metamorphism. The low 18O zircons are best explained by subduction of late Archean ocean crust that exchanged with heated seawater prior to underplating as eclogite and to associated metasomatism of the mantle wedge. Smaller differences among other pipes and districts may result from variable temperatures of equilibration, mafic versus ultramafic hosts, or variable underplating. The narrow range in zircon compositions found in most pipes suggests magmatic homogenization. If this is correct, these zircons document the existence of significant quantities of magma in the sub-continental mantle that was regionally variable in 18O and this information restricts theories about the nature of ancient subduction. Received: 8 August 1997 / Accepted: 6 May 1998  相似文献   

14.
The diamondiferous Ellendale 9 (E9) pipe is a funnel-shaped maar-diatreme volcano consisting of inward-dipping tuff sequences intruded by lamproite plugs and dykes. The host rocks for the E9 pipe are Permian sandstones. The multiple lithological contacts exposed within the mined maar volcano provide a natural laboratory in which to study the effect of volcanic processes on U–Th–Pb–He systematics. Zircon from the regional sandstone and E9 lamproite display a bimodal distribution of ages on (U–Th)/He–U/Pb plots. The zircon U/Pb ages for the E9 pipe (n?=?52) range from 440 to 2,725 Ma, while the cluster of (U–Th)/He ages for the lamproite dyke zircon indicate that dyke emplacement occurred at 20.6?±?2.8 Ma, concordant with a maximum emplacement age of about ≤22 Ma from phlogopite 40Ar/39Ar. These ages indicate a xenocrystic origin for the zircon entrained in the E9 dyke. The U/Pb ages of detrital zircon from the regional sandstone host (373–3,248 Ma; n?=?41) are indistinguishable from those of the lamproite zircon xenocrysts, whereas the detrital zircon in the host sandstone yield (U–Th)/He ages from 260 to 1,500 Ma. A thermochronology traverse across the E9 lamproite dyke reveals that the zircon (U–Th)/He ages in the host sandstone have not been significantly thermally reset during dyke emplacement, even at the contact. The capability of the zircon (U–Th)/He method to distinguish deep, mantle source lithologies from upper crustal source lithologies could be used in geochemical exploration for diamonds. Pre-screening of detrital samples using etching and helium assay methods will improve the efficiency and decrease the cost of greenfields exploration.  相似文献   

15.
1 Introduction According to recent researches, the North China Craton consists of three parts: the eastern block, western block and central zone (Zhao, 2001; Wilde et al., 2002). Paleoarchean continental blocks and zircon residuals have only been found in a few regions, such as Anshan, East Liaoning (Liu et al., 1992; Song et al., 1996; Wan et al., 2002, 2005), Caozhuang, East Hebei (Liu et al., 1992) and Xinyang, West Henan (Zheng et al., 2004), which are mainly distributed in the east…  相似文献   

16.
This paper evaluates the analytical precision, accuracy and long‐term reliability of the U‐Pb age data obtained using inductively coupled plasma–mass spectrometry (ICP‐MS) with a frequency quintupled Nd‐YAG (λ = 213nm) laser ablation system. The U‐Pb age data for seven standard zircons of various ages, from 28 Ma to 2400 Ma (FCT, SL13, 91500, AS3, FC1, QGNG and PMA7) were obtained with an ablation pit size of 30 μm diameter. For 207Pb/206Pb ratio measurement, the mean isotopic ratio obtained on National Institute of Standards and Technology (NIST) SRM610 over 4 months was 0.9105 ± 0.0014 (n = 280, 95% confidence), which agrees well with the published value of 0.9096. The time‐profile of Pb/U ratios during single spot ablation showed no significant difference in shape from NIST SRM610 and 91500 zircon standards. These results encouraged the use of the glass standard as a calibration standard for the Pb/U ratio determination for zircons with shorter wavelength (λ = 213 nm) laser ablation. But 206Pb/238U and 207Pb/235U ages obtained by this method for seven zircon standards are systematically younger than the published U‐Pb ages obtained by both isotope dilution–thermal ionization mass spectrometry (ID‐TIMS) and sensitive high‐resolution ion‐microprobe (SHRIMP). Greater discrepancies (3–4% younger ages) were found for the 206Pb/238U ages for SL13, AS3 and 91500 zircons. The origin of the differences could be heterogeneity in Pb/U ratio on SRM610 between the different disks, but a matrix effect accuracy either in the ICP ion source or in the ablation‐transport processes of the sample aerosols cannot be neglected. When the 206Pb/238U (= 0.2302) newly defined in the present study is used, the measured 206Pb/238U and 207Pb/235U ages for the seven zircon standards are in good agreement with those from ID‐TIMS and SHRIMP within ±2%. This suggests that SRM610 glass standard is suitable for ICP‐MS with laser ablation sampling (LA‐ICP‐MS) zircon analysis, but it is necessary to determine the correction factor for 206Pb/238U by measuring several zircon standards in individual laboratories.  相似文献   

17.
Analyses of zircon grains from the Queureuilh Quaternary tephras (pumice) provide new information about their pre-eruptive history. U-Pb dating was performed in situ using two methods: SHRIMP and LA-MC-ICPMS equipped with a multi-ion counting system. Both methods provided reliable 207Pb/206Pb and 206Pb/238U ratios as well as U and Th abundances required for U-Pb Concordia intercept age determination, after initial 230Th disequilibrium correction. The new LA-MC-ICPMS method was validated by dating a reference zircon (61.308B) and zircons from a phonolitic lava dated independently with the two techniques. A time resolution of about 20 kyr for 1 Ma zircon crystals was achieved for both methods.The clear euhedral zircon population from Queureuilh tephras is quite complex from several points of view: (1) some grains are reddish or yellowish while others are colorless; (2) the U and Th composition changes by more than an order of magnitude and Th/U is generally high (∼1-2); (3) there are three discrete ages recorded at 2.35 ± 0.04, 1.017 ± 0.008 and 0.640 ± 0.010 Ma.From the previously determined 40Ar/39Ar age at 0.571 ± 0.060 Ma [Duffell H. (1999) Contribution géochronologique à la stratigraphie volcanique du Massif des Monts Dore par la méthode 40Ar/39Ar. D.E.A. Univ. Clermont-Ferrand, 56 p.], the discontinuous zircon age populations, the color of the grains and their composition, we favor the following model as explanation: The oldest, less numerous group of reddish zircons represents xenocrystic grains resulting from assimilation of the local material during magma ascent. A primitive magma chamber, perhaps deep in crustal level, was formed at 1.0 Ma. The related magma, previously characterized by high Th/U ratio (2.2 ± 1.1), underwent rejuvenation during ascent to a new chamber at shallow depth and/or during injection of more mafic magmas. During this stage, at 0.64 Ma, the colorless zircon grains of lower Th/U ratio (1.3 ± 0.5) crystallized. This last stage defined the magma residence time of 70 kyr prior to eruption dated by the 40Ar/39Ar method. However, if the primitive magma is considered, the magma residence time as a whole from this first stage reached 446 kyr.In the light of the complex history of such magmas, which commonly involves recycling of zircon grains that precipitated tens to hundreds of kyr earlier than eruptions, the use of Zr concentration in geochemical modeling of whole rock compositional data can be problematic.  相似文献   

18.
Highly elevated and well-preserved peneplains are characteristic geomorphic features of the Tibetan plateau in the northern Lhasa Terrane, north–northwest of Nam Co. The peneplains were carved in granitoids and in their metasedimentary host formations. We use multi-method geochronology (zircon U–Pb and [U–Th]/He dating and apatite fission track and [U–Th]/He dating) to constrain the post-emplacement thermal history of the granitoids and the timing and rate of final exhumation of the peneplain areas. LA-ICP-MS U–Pb geochronology of zircons yields two narrow age groups for the intrusions at around 118 Ma and 85 Ma, and a third group records Paleocene volcanic activity (63–58 Ma) in the Nam Co area. The low-temperature thermochronometers indicate common age groups for the entire Nam Co area: zircon (U–Th)/He ages cluster around 75 Ma, apatite fission track ages around 60 Ma and apatite (U–Th)/He ages around 50 Ma. Modelling of the thermochronological data indicates that exhumation of the basement blocks took place in latest Cretaceous to earliest Paleogene time. By Middle Eocene time the relief was already flat, documented by a thin alluvial sediment sequence covering a part of the planated area. The present-day horst and graben structure of the peneplains is a Late Cenozoic feature triggered by E–W extension of the Tibetan Plateau. The new thermochronological data precisely bracket the age of the planation to Early Eocene, i.e. between ca. 55 and 45 Ma. The erosional base level can be deduced from the presence of Early Cretaceous zircon grains in Eocene strata of Bengal Basin. The sediment generated during exhumation of the Nam Co area was transported by an Early Cenozoic river system into the ocean, suggesting that planation occurred at low elevation.  相似文献   

19.
Zircons and other heavy minerals (corundum, rutile, ilmenite, magnetite, sillimanite) are identified in the Nsanaragati gem corundum placer deposit, in the western part of the Mamfe sedimentary basin, SW Cameroon. These alluvial minerals have different morphological characteristics and zircons, in particular, vary mostly in colour and shape. They are reddish, brownish, yellowish, pink or colourless. These minerals form rounded and sub‐rounded alluvial grains, prismatic, pyramidal or dipyramidal crystals. Reddish zircons retain their original crystallographic shape. Trace element and U–Pb isotopic geochemical analyses of these reddish zircons, using the LA‐ICP‐MS method give significant Hf (4576–6334 ppm), Th (46–1565 ppm) and U (66–687 ppm) contents, with Th/U ratio ranging from 0.6 to 3.0. The 206Pb/238U corrected mean age gave 12.39 ± 0.55 Ma, which characterizes an Upper Cenozoic (Serravallian) magmatic event. The zircons are probably sourced from a magmatic field in the South eastern boundary of the Cross River Formation. The Cameroon Volcanic Line of basaltic and alkaline lavas and intrusions which lie east of the Mamfe Basin mostly range in age from 37 Ma to <1 Ma. The zircons may also relate to the Mount Bambouto plateau lavas which lie northeast of the Mamfe sedimentary basin and have an eruptive age range of 21–14 Ma. The oldest Nsanaragati reddish zircon ages overlap within error with the end stages of the Bambouto eruptions. This eruptive or a related episode provides a potential source for megacrystic reddish zircons within the Nsanagarati placer deposit.  相似文献   

20.
We report SHRIMP U–Pb age of zircons in four samples of eclogite and one sample of orthogneiss from Sulu ultrahigh-pressure (UHP) zone in Yangkou area, eastern China. UHP rocks are distributed along the Sulu orogenic belt suturing North China Block with South China Block. In Yangkou area, UHP unit is well exposed for about 200 m along Yangkou beach section and consists mainly of blocks or lenses of ultramafic rocks and eclogite together with para- and orthogneiss which are highly sheared partly. Zircon grains examined in this study from eclogite show oscillatory zoning and overgrowth texture in CL images, and most of the grains have high Th/U ratio ranging from 0.8 to 2.1 indicating an igneous origin. The weighted mean 206Pb/238U ages of zircons from the four samples range from 690 to 734 Ma. These ages can be correlated to the magmatic stage of the protoliths. In rare cases, zircon grains possess a narrow rim with very low Th/U ratio (< 0.02). EPMA U–Th-total Pb dating of such rim yields younger ages that range from 240 to 405 Ma marking the metamorphic stage. On the other hand, zircons from the orthogneiss show irregular shape and zoning with inclusion-rich core and inclusion-free rim. These grains of zircon yield U–Pb discordia intercept ages of 226 ± 63 Ma and 714 ± 110 Ma (MSWD 0.78). Bulk of the areas of the rims rim of the zircons demonstrate younger 206Pb/238U ages close to the upper intercept, with low Th/U ratio (< 0.20) indicating their metamorphic origin. In contrast, the cores show older 206Pb/238U ages close to lower intercept and high Th/U ratio of (0.14–5.25) indicating their igneous origin. The upper intercept age is also commonly noted in zircons from eclogite. Our results suggest a bimodal igneous activity along this zone during the Neoproterozoic, probably related to the rifting of the Rodinia supercontinent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号