首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper,we report an integrated study of U-Pb age and Hf isotope compositions of zircons from biotite plagioclase gneiss at Lianghe in western Yunnan.The zircons preserved inherited core and rim texture.Igneous zircon grains and rims yielded a weighted mean ~(206)Pb/~(238)U age of 120.4±1.7 Ma,theirε_(Hf)(120 Ma)values were mainly negative ranging from-13.9 to-10.7,with Hf model ages between 1.9 Ga and 2.0 Ga,some zircons had positiveε_(Hf)(120 Ma)values ranging from 0.2 to 2.1.The inherited cores ...  相似文献   

2.
New zircon reference materials for in situ zircon radiogenic Hf isotope and stable Zr isotopic determinations made by laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) are required due to high data productivity and consequently high reference material consumption rate. This study examines a new natural zircon for Zr isotope ratios by double spike thermal ionisation mass spectrometry (TIMS), and for Hf isotopes by bulk solution nebuliser (SN)-MC-ICP-MS with both Zr and Hf determined by LA-MC-ICP-MS. A total of five zirconium isotope measurements from drilled zircons, determined by TIMS, yield a mean δ94/90ZrIPGP-Zr value of -0.09 ± 0.06‰ (2s). Five and eight hafnium isotope measurements for powders from the drilled zircons and Ban-1-4 by SN-MC-ICP-MS, yield mean 176Hf/177Hf ratios of 0.282985 ± 0.000011 (2s) and 0.282982 ± 0.000007 (2s), respectively. The mean δ94/90ZrIPGP-Zr value and 176Hf/177Hf ratio determined by LA-MC-ICP-MS analyses are -0.06 ± 0.09‰ (2s, n = 504) and 0.282985 ± 0.000035 (2s, n = 327), respectively. The isotopic homogeneities suggest that the Ban-1 zircon is a suitable reference material for microbeam Zr and Hf isotopic measurements.  相似文献   

3.
We present multitechnique U‐Pb geochronology and Hf isotopic data from zircon separated from rapakivi biotite granite within the Eocene Golden Horn batholith in Washington, USA. A weighted mean of twenty‐five Th‐corrected 206Pb/238U zircon dates produced at two independent laboratories using chemical abrasion‐isotope dilution‐thermal ionisation mass spectrometry (CA‐ID‐TIMS) is 48.106 ± 0.023 Ma (2s analytical including tracer uncertainties, MSWD = 1.53) and is our recommended date for GHR1 zircon. Microbeam 206Pb/238U dates from laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) and secondary ion mass spectrometry (SIMS) laboratories are reproducible and in agreement with the CA‐ID‐TIMS date to within < 1.5%. Solution multi‐collector ICP‐MS (MC‐ICP‐MS) measurements of Hf isotopes from chemically purified aliquots of GHR1 yield a mean 176Hf/177Hf of 0.283050 ± 17 (2s,= 10), corresponding to a εHf0 of +9.3. Hafnium isotopic measurements from two LA‐ICP‐MS laboratories are in agreement with the solution MC‐ICP‐MS value. The reproducibility of 206Pb/238U and 176Hf/177Hf ratios from GHR1 zircon across a variety of measurement techniques demonstrates their homogeneity in most grains. Additionally, the effectively limitless reserves of GHR1 material from an accessible exposure suggest that GHR1 can provide a useful reference material for U‐Pb geochronology of Cenozoic zircon and Hf isotopic measurements of zircon with radiogenic 176Hf/177Hf.  相似文献   

4.
We present results of study of the trace-element and Lu–Hf isotope compositions of zircons from Paleoproterozoic high-grade metasedimentary rocks (paragneisses) of the southwestern margin of the Siberian craton (Irkut terrane of the Sharyzhalgai uplift). Metamorphic zircons are represented by rims and multifaceted crystals dated at ~ 1.85 Ga. They are depleted in either LREE or HREE as a result of subsolidus recrystallization and/or synchronous formation with REE-concentrating garnet or monazite. In contrast to the metamorphic zircons, the detrital cores are enriched in HREE and have high (Lu/Gd)n ratios, which is typical of igneous zircon. The weak positive correlation between 176Lu/177Hf and 176Hf/177Hf in the zircon cores evidences that their Hf isotope composition evolved through radioactive decay in Hf = the closed system. Therefore, the isotope parameters of these zircons can give an insight into the provenance of metasedimentary rocks. The Paleoproterozoic detrital zircon cores from paragneisses, dated at ~ 2.3–2.4 and 2.0–1.95 Ga, are characterized by a wide range of εHf values (from + 9.8 to –3.3) and model age T C 2.8–2.0 Ga. The provenance of these detrital zircons included both rocks with juvenile isotope Hf parameters and rocks resulted from the recycling of the Archean crust with a varying contribution of juvenile material. Zircons with high positive εHf values were derived from the juvenile Paleoproterozoic crustal sources, whereas the lower εHf and higher T C values for zircons suggest the contribution of the Archean crustal source to the formation of their magmatic precursors. Thus, at the Paleoproterozoic stage of evolution of the southwestern margin of the Siberian craton, both crustal recycling and crustal growth through the contribution of juvenile material took place. On the southwestern margin of the Siberian craton, detrital zircons with ages of ~ 2.3–2.4 and 1.95–2.0 Ga are widespread in Paleoproterozoic paragneisses of the Irkut and Angara–Kan terranes and in terrigenous rocks of the Urik–Iya graben, which argues for their common and, most likely, proximal provenances. In the time of metamorphism (1.88–1.85 Ga), the age of Paleoproterozoic detrital zircons (2.4–2.0 Ga), and their Lu–Hf isotope composition (εHf values ranging from positive to negative values) the paragneisses of the southwestern margin of the Siberian craton are similar to the metasedimentary rocks of the Paleoproterozoic orogenic belts of the North China Craton. In the above two regions, the sources of detrital zircons formed by both the reworking of the Archean crust and the contribution of juvenile material, which is evidence for the crustal growth in the period 2.4–2.0 Ga.  相似文献   

5.
Young zircons from crystal-poor volcanic rocks provide the best samples for the investigations of pre-eruption magmatic processes and for testing a possible relationship between zircon Eu anomalies and crustal thickness. We report trace element chemistry and Hf-O isotope compositions of young zircons from 3 Holocene volcanoes in the Tengchong volcanic field, SE Tibet, in order to provide insights into magma evolution processes and conditions for high-K calc-alkaline volcanic rocks in a post-collisional setting. As decreasing zircon Ti content and falling temperature, zircon Hf content and Yb/Sm increase whereas zircon Eu anomaly and Th/U decrease, indicating fractional crystallization of plagioclase and zircon during magma cooling. More importantly, zircon Hf isotope ratio (εHf values) increases with decreasing zircon Ti content and falling temperature (T), suggesting gradually increasing incorporation of relatively high εHf juvenile materials in the crystallizing zircons during magma evolution. Negative correlations between zircon εHf and zircon δ18O also support open-system magma evolution. Our data suggest fractional crystallization of a magma with simultaneous contamination by high εHf and low δ 18O juvenile (immature) crustal materials during monotonic cooling after zircon saturation. The low-T, high-εHf and low- δ 18O zircons may indicate the involvement of the early Cretaceous juvenile granitic country rocks during shallow magma evolution. Average Eu anomalies in zircons from young Tengchong lavas yield crustal thickness of 40.7 ± 6.8 km, consistent with present crustal thickness (42.5 km) determined by geophysical methods.  相似文献   

6.
The Tongshankou Cu-Mo deposit, located in southeast Hubei province, is a typical skarn–porphyry type ore deposit closely related to the Tongshankou granodiorite porphyry, characterized by a high Sr/Y ratio.Detailed in situ analyses of the trace elements and U–Pb and Lu–Hf isotopes in zircons from the Tongshankou granodiorite porphyry were performed.Scarcely any inherited zircons were observed, and the analyzed zircons yielded highly concordant results with a weighted mean 206Pb/238 U age of 143.5 ± 0.45 Ma(n=20, mean square weighted deviation was 0.75), which was interpreted to represent the crystallization age of the Tongshankou granodiorite porphyry.The chondrite-normalized rare-earth element pattern was characterized by a slope that steeply rises from the light-group rare-earth elements(LREE) to the heavy-group rare-earth elements(HREE) with a positive Ce-anomaly and inconspicuous Eu-anomaly, which was coincident with the pattern of the zircons from the Chuquicamata West porphyry, Chile.The analyzed zircons also had relatively low 176Hf/177 Hf ratios of 0.282526–0.282604.Assuming t=143 Ma, the corresponding calculated initial Hf isotope compositions(εHf(t)) ranged from-5.6 to-2.9.The results of the in situ analysis of trace elements and U–Pb and Lu–Hf isotopes in zircons from the Tongshankou granodiorite porphyry suggest that a deep-seated process involving a thickened-crust/enriched-mantle interaction may play an important role in the generation of high Sr/Y-ratio magma and potentially in the generation of porphyry Cu-Mo systems.  相似文献   

7.
The Chelopech deposit is one of the largest European gold deposits and is located 60 km east of Sofia, within the northern part of the Panagyurishte mineral district. It lies within the Banat–Srednegorie metallogenic belt, which extends from Romania through Serbia to Bulgaria. The magmatic rocks define a typical calc-alkaline suite. The magmatic rocks surrounding the Chelopech deposit have been affected by propylitic, quartz–sericite, and advanced argillic alteration, but the igneous textures have been preserved. Alteration processes have resulted in leaching of Na2O, CaO, P2O5, and Sr and enrichment in K2O and Rb. Trace element variation diagrams are typical of subduction-related volcanism, with negative anomalies in high field strength elements (HFSE) and light element, lithophile elements. HFSE and rare earth elements were relatively immobile during the hydrothermal alteration related to ore formation. Based on immobile element classification diagrams, the magmatic rocks are andesitic to dacitic in compositions. Single zircon grains, from three different magmatic rocks spanning the time of the Chelopech magmatism, were dated by high-precision U–Pb geochronology. Zircons of an altered andesitic body, which has been thrust over the deposit, yield a concordant 206Pb/238U age of 92.21 ± 0.21 Ma. This age is interpreted as the crystallization age and the maximum age for magmatism at Chelopech. Zircon analyses of a dacitic dome-like body, which crops out to the north of the Chelopech deposit, give a mean 206Pb/238U age of 91.95 ± 0.28 Ma. Zircons of the andesitic hypabyssal body hosting the high-sulfidation mineralization and overprinted by hydrothermal alteration give a concordant 206Pb/238U age of 91.45 ± 0.15 Ma. This age is interpreted as the intrusion age of the andesite and as the maximum age of the Chelopech epithermal high-sulfidation deposit. 176Hf/177Hf isotope ratios of zircons from the Chelopech magmatic rocks, together with published data on the Chelopech area and the about 92-Ma-old Elatsite porphyry–Cu deposit, suggest two different magma sources in the Chelopech–Elatsite magmatic area. Magmatic rocks associated with the Elatsite porphyry–Cu deposit and the dacitic dome-like body north of Chelopech are characterized by zircons with ɛHfT90 values of ∼5, which suggest an important input of mantle-derived magma. Some zircons display lower ɛHfT90 values, as low as −6, and correlate with increasing 206Pb/238U ages up to about 350 Ma, suggesting assimilation of basement rocks during magmatism. In contrast, zircon grains in andesitic rocks from Chelopech are characterized by homogeneous 176Hf/177Hf isotope ratios with ɛHfT90 values of ∼1 and suggest a homogeneous mixed crust–mantle magma source. We conclude that the Elatsite porphyry–Cu and the Chelopech high-sulfidation epithermal deposits were formed within a very short time span and could be partly contemporaneous. However, they are related to two distinct upper crustal magmatic reservoirs, and they cannot be considered as a genetically paired porphyry–Cu and high-sulfidation epithermal related to a single magmatic–hydrothermal system centered on the same intrusion.  相似文献   

8.
The Duolong porphyry Cu–Au deposit (5.4 Mt at 0.72% Cu, 41 t at 0.23 g/t Au) was recently discovered in the southern Qiangtang terrane, central Tibet. Here, new whole‐rock elemental and Sr–Nd–Pb isotope and zircon Hf isotopic data of syn‐ and post‐ore volcanic rocks and barren and ore‐bearing granodiorite porphyries are presented for a reconstruction of magmas associated with Cu–Au mineralization. LA–ICP–MS zircon U–Pb dating yields mean ages of 117.0 ± 2.0 and 120.9 ± 1.7 Ma for ore‐bearing granodiorite porphyry and 105.2 ± 1.3 Ma for post‐ore basaltic andesite. All the samples show high‐K calc‐alkaline compositions, with enrichment of light rare earth elements (LREE) and large ion lithophile elements (LILE: Cs and Rb) and depletion of high field strength elements (HFSE: Nb and Ti), consistent with the geochemical characteristics of arc‐type magmas. Syn‐ and post‐ore volcanic rocks show initial Sr ratios of 0.7045–0.7055, εNd(t) values of −0.8 to 3.6, (206Pb/204Pb)t ratios of 18.408–18.642, (207Pb/204Pb)t of 15.584–15.672 and positive zircon εHf(t) values of 1.3–10.5, likely suggesting they dominantly were derived from metasomatized mantle wedge and contaminated by southern Qiangtang crust. Compared to mafic volcanic rocks, barren and ore‐bearing granodiorite porphyries have relatively high initial Sr isotopic ratios (0.7054–0.7072), low εNd(t) values (−1.7 to −4.0), similar Pb and enriched zircon Hf isotopic compositions [εHf(t) of 1.5–9.7], possibly suggesting more contribution from southern Qiangtang crust. Duolong volcanic rocks and granodiorite porphyries likely formed in a continental arc setting during northward subduction of the Bangong–Nujiang ocean and evolved at the base of the lower crust by MASH (melting, assimilation, storage and homogenization) processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Growing evidence from the accessible geological record reveals that crust-mantle differentiation on Earth started as early as 4.4 Ga. In order to assess the extent of early Archean mantle depletion, we obtained 176Lu-176Hf, 147Sm-143Nd, and high field strength element (HFSE) concentration data for the least altered, well characterized boninite-like metabasalts and associated metasedimentary rocks from the Isua supracrustal belt (southern West Greenland). The metasediments exhibit initial εHf(3720) values from −0.7 to +1.5 and initial εNd(3720) values from +1.6 to +2.1. Initial εHf(3720) values of the least altered boninite-like metabasalts span a range from +3.5 to +12.9 and initial εNd(3720) values from −0.3 to +3.2. These initial Hf-isotope ratios display coherent trends with SiO2, Al2O3/TiO2 and other relatively immobile elements, indicating contamination via assimilation of enriched components, most likely sediments derived from the earliest crust in the region. This model is also consistent with previously reported initial γOs(3720) values for some of the samples. In addition to the positive εHf(3720) values, the least disturbed samples exhibit positive εNd(3720) values and a co-variation of εHf(3720) and εΝd(3720) values. Based on these observations, it is argued, that the most depleted samples with initial εHf(3720) values of up to +12.9 and high 176Lu/177Hf of ∼0.05 to ∼0.09 tap a highly depleted mantle source with a long term depletion history in the garnet stability field. High precision high field strength element (HFSE) data obtained for the Isua samples confirm the contamination trend. Even the most primitive samples display negative Nb-Ta anomalies and elevated Nb/Ta, indicating a subduction zone setting and overprint of the depleted mantle sources by felsic melts generated by partial melting of eclogite. Collectively, the data for boninite-like metabasalts support the presence of strongly depleted mantle reservoirs as previously inferred from Hf isotope data for Hadean zircons and combined 142Nd-143Nd isotope data for early Archean rocks.  相似文献   

10.
1 Introduction Mesozoic volcano-intrusive rocks are widely distributed in the Da Hinggan Range of northeastern China, and are considered as one of the most spectacular geological sights in eastern Asia. Recently, studies on granites with high εNd(t) values and Phanerozoic crustal growth in the Centra Asian Orogenic Belt have greatly promoted fundamental research into the geology of this area (Jahn et al., 2000, 2001, 2004; Wu et al., 2000, 2002, 2003). However, work on the eruption time,…  相似文献   

11.
The Weihai migmatite in the Sulu ultra-high-pressure (UHP) metamorphic terrane, eastern China, underwent partial melting in the Late Triassic during its exhumation. The primary partial melts experienced a decompressional fractional crystallization (DFC) process to produce plagioclase (Pl)-rich leucosome crystallized under eclogite to granulite facies conditions and K-feldspar (Kfs)-rich pegmatitic veins crystallized under amphibolite-facies conditions. In this study, our results demonstrate that the DFC process can cause decoupling between whole-rock Sr and Nd isotopes. The Pl-rich leucosome has εNd(t) values (–10.4 to ?15.0) and initial (87Sr/86Sr) ratios (0.708173–0.712476) very similar to those of the melanosome, but the Kfs-rich pegmatitic veins have homogeneous εNd(t) values (?14.8 to ?15.2) and significantly high initial (87Sr/86Sr) ratios (0.713882–0.716284). Our results also suggest that the DFC process can change zircon 176Yb/177Hf and 176Lu/177Hf isotopic ratios, with no effect on 176Hf/177Hf ratios or εHf (t) values. Zircon 176Yb/177Hf and 176Lu/177Hf ratios increase dramatically from the Pl-rich leucosome to the Kfs-rich pegmatitic veins, but zircon 176Hf/177Hf ratios (Pl-rich leucosomes = 0.282330 ± 0.000017; Kfs-rich pegmatitic veins = 0.282321 ± 0.000026) and εHf (t) values (Pl-rich leucosomes = ?10.9 ± 0.6; Kfs-rich pegmatitic veins = ?11.6 ± 0.8) remain almost unchanged. We propose that the isotopic decoupling between the Pl-rich leucosome and Kfs-rich pegmatitic vein might be caused by melt fractional crystallization occurring too rapidly to allow complete equilibrium between them.  相似文献   

12.
Late Mesozoic volcanic-subvolcanic rocks and related iron deposits, known as porphyry iron deposits in China, are widespread in the Ningwu ore district (Cretaceous basin) of the middle–lower Yangtze River polymetallic ore belt, East China. Two types of Late Mesozoic magmatic rocks are exposed: one is dioritic rocks closely related to iron mineralization as the hosted rock, and the other one is granodioritic (-granitic) rocks that cut the ore bodies. To understand the age of the iron mineralization and the ore-forming event, detailed zircon U-Pb dating and Hf isotope measurement were performed on granodioritic stocks in the Washan, Gaocun-Nanshan, Dongshan and Heshangqiao iron deposits in the basin. Four emplacement and crystallization (typically for zircons) ages of granodioritic rocks were measured as 126.1±0.5 Ma, 126.8±0.5 Ma, 127.3±0.5 Ma and 126.3±0.4 Ma, respectively in these four deposits, with the LA-MC-ICP-MS zircon U-Pb method. Based on the above results combined with previous dating, it is inferred that the iron deposits in the Ningwu Cretaceous basin occurred in a very short period of 131–127 Ma. In situ zircon Hf compositions of εHf(t) of the granodiorite are mainly from ?3 to ?8 and their corresponding 176Hf/177Hf ratio are from 0.28245 to 0.28265, indicating similar characteristics of dioritic rocks in the basin. We infer that granodioritic rocks occurring in the Ningwu ore district have an original relationship with dioritic rocks. These new results provide significant evidence for further study of this ore district so as to understand the ore-forming event in the study area.  相似文献   

13.
Chemical compositions and geochronological data utilising the laser ablation ICP-MS technique are presented for zircon megacrysts found in alluvial gem corundum deposits associated with Upper Cretaceous–Cenozoic alkali basalts in the Inverell district-New England field, New South Wales, eastern Australia. Three localities, Kings Plains, Swan Brook and Mary Anne Gully, produce gem-quality transparent dark brown and yellow zircon megacrysts, mostly under 10 mm in size. Although brown zircon shows relative enrichment in Hf and REE, there are no differences in relative transition metal concentrations between the colours. Chemical homogeneity within a single crystal indicates stable crystallisation conditions. The 206Pb/238U age of zircon megacrysts from these three localities define older and younger groups of 216–174 Ma and 45–37.7 Ma, respectively. The ?Hf values of zircon megacrysts from Kings Plains show +7.51±0.34 in the older group and +10.72±0.31 in the younger group. Swan Brook zircons give +11.54±0.47 and +8.32±0.58, and Mary Anne Gully zircons are +13.67±0.63 and +8.50±0.48, respectively. These zircons from New England alluvial gem deposits have two main formational events around Upper TriassicLower Jurassic and Eocene episodes. Most originated from lithospheric mantle and all were brought-up by later host basaltic magmas.  相似文献   

14.
Detailed studies on U-Pb ages and Hf isotope have been carried out in zircons from a carbonatite dyke associated with the Bayan Obo giant REE-Nb-Fe deposit, northern margin of the North China Craton(NCC), which provide insights into the plate tectonic in Paleoproterozoic. Analyses of small amounts of zircons extracted from a large sample of the Wu carbonatite dyke have yielded two ages of late Archaean and late Paleoproterozoic(with mean 207 Pb/206 Pb ages of 2521±25 Ma and 1921±14 Ma, respectively). Mineral inclusions in the zircon identified by Raman spectroscopy are all silicate minerals, and none of the zircon grains has the extremely high Th/U characteristic of carbonatite, which are consistent with crystallization of the zircon from silicate, and the zircon is suggested to be derived from trapped basement complex. Hf isotopes in the zircon from the studied carbonatite are different from grain to grain, suggesting the zircons were not all formed in one single process. Majority of εHf(t) values are compatible with ancient crustal sources with limited juvenile component. The Hf data and their TDM2 values also suggest a juvenile continental growth in Paleoproterozoic during the period of 1940–1957 Ma. Our data demonstrate the major crustal growth during the Paleoproterozoic in the northern margin of the NCC, coeval with the assembly of the supercontinent Columbia, and provide insights into the plate tectonic of the NCC in Paleoproterozoic.  相似文献   

15.
The 176Hf/177Hf composition of inherited and magmatic zircon in the 538 Ma S-type Peninsula pluton (South Africa) has been determined at different scales. In the smallest rock samples investigated (<0.5 dm3), as well as within individual thin sections, magmatic zircon crystals exhibit the same wide range in εHf(538) as the pluton (8ε units). In addition, across a significant range of bulk-rock compositions, both the range and average of the magmatic zircon Hf isotopic composition do not vary significantly with compositional parameters that are expected to scale with the proportion of mantle-derived magma addition (e.g., Mg# and Ca). At all scales, the εHf variability in the magmatic zircon fraction matches well with that portrayed by the time-evolved inherited zircon population [i.e., with the εHf(538) range of the inherited zircon cores]. This evidence suggests that the εHf heterogeneity of magmatic zircon is directly inherited from the source. However, the analysis of zircon core–rim pairs reveals that the 176Hf/177Hf composition of the inherited crystals does not directly transfer to their magmatic overgrowths. Small-scale modeling of zircon dissolution and re-precipitation in a static magma generates sub-mm melt domains having variable Zr content and Hf isotope composition. The composition of these domains is controlled by the size and isotope composition of the nearest dissolving zircon crystals and the cooling rate of the magma. These results suggest that in magma systems with a substantial inherited zircon load, zircon crystals within the same rock should record variable 176Hf/177Hf in the magmatic zircon fraction.  相似文献   

16.
Zircons have been studied in three samples of Archean plagiogneisses from the Kola superdeep well (SG-3). The crystals consist of cores, magmatic shells, and metamorphic rims. The cores and shells are characterized by similar lowered concentrations of most trace elements, which is typical of zircons from plagiogranitoids, rocks of elevated basicity, and basites. At a wide range of Hf isotope characteristics, the cores and shells have similar average 176Hf/177Hfi, which determines the close composition of their sources. The metamorphic rims have close 176Hf/177Hfi ratio. The minimum age of the crustal contaminant of parental melts is estimated at 3.4 and 3.3 Ga for cores and 3.3–3.2 Ga for shells at almost equal proportions of mantle and crustal components in them. The contribution of Paleoarchean crust established in zircons from plagiogneisses of SG-3 using Lu-Hf isotope systematics is confirmed by the presence of 3.3and 3.4-Ga old zircons in surrounding TTG.  相似文献   

17.
Zircon U–Pb ages, major and trace elements, and Sr, Nd and Hf isotope compositions of the Changboshan‐Xieniqishan (CX) intrusion from the Great Xing'an Range (GXAR), northeastern China, were studied to investigate its derivation, evolution and geodynamic significance. Laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) zircon U–Pb dating yields an emplacement age of 161 ± 2 Ma for the CX intrusion. Bulk‐rock analyses show that this intrusion is characterized by high SiO2, Na2O and K2O, but low MgO, CaO and P2O5. They are enriched in large‐ion lithophile elements and light rare earth elements, with marked Eu anomalies (mostly from 0.36 to 0.65), and depleted in heavy rare earth elements and high field strength elements. Most samples have relatively low (87Sr/86Sr)i values (0.70423–0.70457), with εNd(t) fluctuating between −0.4 and 2.3. The εHf(t) for zircons varies from 5.4 to 8.7. Sr–Nd isotope modelling results, in combination with young Nd and Hf model ages (760–986 and 549–728 Ma, respectively) and the presence of relict zircons, indicate that the CX intrusion may originate from the partial melting of juvenile crust, with minor contamination of recycled crustal components, and then underwent extensive fractional crystallization of K‐feldspar, plagioclase, biotite, sphene, apatite, zircon and allanite. Considering the widespread presence of granitoids with coeval volcanic rocks, we contend that the CX intrusion formed in an extensional environment related to the upwelling of asthenospheric mantle induced by the subduction of the Palaeo‐Pacific plate, rather than a lithospheric delamination model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The Archean lithospheric root of the North China Craton (NCC) has been considerably eroded and modified by Phanerozoic magmatic processes. Here we investigate the decratonization of the NCC through U–Pb and Hf isotopic analyses of zircons from Cenozoic basalts in the Liaodong Peninsula using ion-probe and MC-ICPMS techniques. The U–Pb zircon geochronology identifies three zircon populations: Precambrian, Paleozoic and Mesozoic. The Precambrian zircons yield 207Pb/206Pb ages of 2275–2567 Ma with a peak at around 2.5 Ga. They define a U–Pb discordia with upper intercept ages of 2447 ± 50 Ma to 2556 ± 50 Ma and a wide range of Hf TDM ages with a mode at 2.7–2.8 Ga. Our results clearly demonstrate the presence of an Archean lower crust in the Liaodong region. The Paleozoic zircons from the Liaodong region lack the clear internal zoning and are subhedral to rounded in shape, and yield a narrow 206Pb/238U concordant ages of 419–487 Ma with a weighted mean age of 462 ± 16 Ma. The Mesozoic zircons predominantly show crystallization in the early Cretaceous and yield a relatively large range in 206Pb/238U ages from 100 to 138 Ma (n = 53) with a peak around 120 Ma. Three samples give indistinguishable weighted mean 206Pb/238U ages of 120 ± 5 Ma, 120 ± 4 Ma and 121 ± 2 Ma. These early Cretaceous zircons have enriched Hf isotope compositions with εHf(t) values from ?26 to ?16. Our results provide important constraints on episodic magmatism during the Phanerozoic in the Liaodong region, which led to substantial reactivation of the Archean basement of the North China Craton.  相似文献   

19.
The broad belt of intraplate volcanism in the East Atlantic between 25° and 37° N is proposed to have formed by two adjacent hotspot tracks (the Madeira and Canary tracks) that possess systematically different isotopic signatures reflecting different mantle source compositions. To test this model, Hf isotope ratios from volcanic rocks from all individual islands and all major seamounts are presented in this study. In comparison with published Nd isotope variations (6 εNd units), 176Hf/177Hf ratios span a much larger range (14 εHf units). Samples from the proposed Madeira hotspot track have the most radiogenic Hf isotopic compositions (176Hf/177Hfm up to 0.283335), extending across the entire field for central Atlantic MORB. They form a relatively narrow, elongated trend on the Nd vs. Hf isotope diagram (stretching over > 10 εHf units) between a depleted N-MORB-like endmember and a moderately enriched composition located on, or slightly below, the Nd–Hf mantle array, which overlaps the proposed “C” mantle component of Hanan and Graham (1996). In contrast, all samples from the Canary hotspot track plot below the mantle array (176Hf/177Hfm = 0.282943–0.283067) and form a much denser cluster with less compositional variation (~4 εHf units). The cluster falls between (1) a low Hf isotope HIMU-like endmember, (2) a more depleted composition, and (3) the moderately enriched end of the Madeira trend. The new Hf isotope data confirm the general geochemical distinction of the Canary and Madeira domains in the East Atlantic. Both domains, however, seem to share a common, moderately enriched endmember that has “C”-like isotope compositions and is believed to represent subducted, <1-Ga-old oceanic lithosphere (oceanic crust and possibly minor sediment addition). The lower 176Hf/177Hf ratio of the enriched, HIMU-like Canary domain endmember indicates the contribution of oceanic lithosphere with somewhat older recycling ages of ≥1 Ga.  相似文献   

20.
Sensitive high-resolution ion microprobe (SHRIMP) U–Pb dating, laser-ablation multi-collector ICPMS Hf isotope and electron microprobe element analyses of inherited/antecrystal and magmatic zircons from five granitoid intrusions of Linxi area, in the southern segment of the Great Xing’an Range of China were integrated to solve continental crustal growth mechanisms. These intrusions were divided into two suites. Suites 1 and 2 are mainly granodiorite and syenogranite and correspond to magnesian and ferroan granites, respectively. SHRIMP dating establishes an Early Cretaceous (135–125 Ma) age for most Linxi granitoids and a time of ∼146 Ma when their source rocks were generated or re-melted. However, some granitoids were generated in Early Triassic (241 Ma) and Late Jurassic (146 Ma), after their source rock experienced precursory melting episodes at 263 Ma and 165 Ma, respectively. All zircon 206Pb/238U ages (<300 Ma, n = 100), and high positive zircon εHf(t) values (n = 175) suggest juvenile source materials with an absence of Precambrian basement. Hf–Nd isotopic decoupling of Linxi granitoids suggests a source component of pelagic sediments, i.e. Paleozoic subduction accretion complexes. Zircon εHf(t) values (t = 263–165 Ma) form a trend sub-parallel to the depleted mantle Hf isotope evolution curve, whilst those with t = 146–125 Ma fall markedly below the latter. The first trend indicates a provenance from essentially subducted oceanic slabs. However, the abrupt εHf(t) decrease, together with extensive Early Cretaceous magmatism, is interpreted as reflecting mantle upwelling and resultant underplating, and exhumation of subducted oceanic slabs. Suite 1 granitoids derive mainly from subducted oceanic slabs or Paleozoic subduction accretion complex, whereas Suite 2 from underplated mafic rock and, subordinately, Paleozoic subduction accretion complex. Compositions of Suites 1 and 2 depend on the hydrous, oxidized or relatively anhydrous, reduced nature of source rocks. Among each of these five intrusions, magmatic zircons have systematically lower 176Hf/177Hf than inherited/antecrystal zircons. Hf isotopic and substituting element profiles through inherited/antecrystal zircons (t = 263 to ∼146 Ma) indicate repeated low melt-fraction melting in the source region. In contrast, profiles through inherited/antecrystal and magmatic zircons (t = 146–125 Ma) reveal melting region expansion with a widening range of source compositions and increasing melt fractions. These results lead to the conclusion that continental growth in this region involved a three-step process. This included subduction accretion and repeated underplating, intermediary differentiation of juvenile rocks, and granitoid production from these differentiated rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号