首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
6.
Wave propagation in weakly anisotropic inhomogeneous media is studied by the quasi-isotropic approximation of ray theory. The approach is based on the ray-tracing and dynamic ray-tracing differential equations for an isotropic background medium. In addition, it requires the integration of a system of two complex coupled differential equations along the isotropic ray.
The interference of the qS waves is described by traveltime and polarization corrections of interacting isotropic S waves. For qP waves the approach leads to a correction of the traveltime of the P wave in the isotropic background medium.
Seismograms and particle-motion diagrams obtained from numerical computations are presented for models with different strengths of anisotropy.
The equivalence of the quasi-isotropic approximation and the quasi-shear-wave coupling theory is demonstrated. The quasi-isotropic approximation allows for a consideration of the limit from weak anisotropy to isotropy, especially in the case of qS waves, where the usual ray theory for anisotropic media fails.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
Geometric ray theory is an extremely efficient tool for modelling wave propagation through heterogeneous media. Its use is, however, only justified when the inhomogeneity satisfies certain smoothness criteria. These criteria are often not satisfied, for example in wave propagation through turbulent media. In this paper, the effect of velocity perturbations on the phase and amplitude of transient wavefields is investigated for the situation that the velocity perturbation is not necessarily smooth enough to justify the use of ray theory. It is shown that the phase and amplitude perturbations of transient arrivals can to first order be written as weighted averages of the velocity perturbation over the first Fresnel zone. The resulting averaging integrals are derived for a homogeneous reference medium as well as for inhomogeneous reference media where the equations of dynamic ray tracing need to be invoked. The use of the averaging integrals is illustrated with a numerical example. This example also shows that the derived averaging integrals form a useful starting point for further approximations. The fact that the delay time due to the velocity perturbation can be expressed as a weighted average over the first Fresnel zone explains the success of tomographic inversions schemes that are based on ray theory in situations where ray theory is strictly not justified; in that situation one merely collapses the true sensitivity function over the first Fresnel zone to a line integral along a geometric ray.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号