首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We provide an overview of the main results obtained as part of the programs for astrometric observations of bodies in the Solar system at the Pulkovo Observatory over the period 1898–2005. We summarize the results of photographic observations and show new possibilities for astrometric observations in connection with the transition to CCD detectors on Pulkovo instruments. Observing and data reduction techniques are considered. A database with Pulkovo observations of bodies in the Solar system has been created and opened to users. The database is accessible at http://www.puldb.ru.  相似文献   

2.
The new Lyot-coronagraph with 53 cm objective is described. The coronagraph has a grating spectrograph. The solar disk image on the slit of the spectrograph is 12.6 cm. The dispersion is 1 Å/mm in the second order. The coronagraph is situated at the Kislovodsk Station of Pulkovo Observatory, 2050 m above sea level.  相似文献   

3.
Pulkovo astrometric observations began in the 1840s using the Repsold transit instrument in the prime vertical and Ertel vertical circle. The first observers on these instruments were W.I. Struve, 1840–1856, and Kh.I. Peters, 1842–1849. In the present work, we collected and analyzed different series of latitude variations from observations made by M.O. Nuren, B. Wanach, A.A. Ivanov, I.N. Bonsdorf, and A.Ya. Orlov. In addition, results are given of investigations of a specific behavior of the Chandler polar motion in this interval, obtained by C. Chandler, Ivanov, Kh. Kimura, Orlov, and N. Sekiguchi. The aim of this paper is to search for and analyze the earliest series of Pulkovo latitudes, in order to evaluate the possibility of their use to study the motion of the pole at the maximum available range of observations. Different methods were used to isolate and analyze the sum of Chandler and annual latitude variations. The annex provides a series of Pulkovo latitude variations for 1840–1848, which may be used to extend latitude variation back to 1840.  相似文献   

4.
The October 1976 spectroscopic observations of the solar chromosphere with the great coronagraph of the Kislovodsk Station of the Pulkovo Observatory were analysed using the autocorrelation method. The autocorrelation function and the power spectrum were calculated. It was found that the brightness distribution in the chromosphere is essentially bimodal and has characteristic scales of 1.2 × 104 km and 2.4 × 104 km. The supergranulation (3.5 × 104 km) in the brightness field was found to show up more faintly at all heights.  相似文献   

5.
The paper reports the results of the analysis of the data on polar faculae for three solar cycles (1960–1986) at the Kislovodsk Station of the Pulkovo Observatory and on polar bright points in Ca ii K line for two solar cycles (1940–1957) at the Kodaikanal Station of the Indian Institute of Astrophysics. We have noticed that the monthly numbers of polar faculae and polar bright points in Ca ii K line and monthly sunspot areas in each hemisphere of the following solar cycle have a correlation with each other. A new cycle of polar faculae and polar bright points in the Ca ii K line begins after the polar magnetic field reversal. We find that the smaller the period between the ending of the polar field reversal and the beginning of a new sunspot cycle is, the more intense is the cycle itself. The intensity of the forthcoming solar cycle (cycle 22) and the periods of strong fluctuations in activity expected in this cycle are also discussed.  相似文献   

6.
The work studies the Chandler component of polar motion, obtained from variations in the Pulkovo latitude over 170 years (1840–2009). To extend the time series of variations in the Pulkovo latitude back into the past until 1840, we used the first Pulkov observations on the basis of the Reynolds transit instrument in the prime vertical and on the basis of large vertical Ertel circle. We employed different methods of analysis of nonstationary time series, such as wavelet analysis, methods of bandpass filtering, singular spectral analysis, and Fourier and Hilbert transforms. Changes in the Pulkovo latitude from 1904–2006, as inferred from ZTF-135 observations and as calculated from international data, were compared. It was shown that time changes in the amplitude and phase of Chandler polar motion can be studied based on long-term observation time series of latitude at a single observatory, even if these observation records have gaps. We were the first to study the changes in the Chandler wobble for that long time series of variations in the Pulkovo latitude with the help of different methods. The long observation record and the methods of analysis of nonstationary time series had allowed us to identify two similar structures, both well apparent during the periods of 1845–1925 and 1925–2005 in the time variations of phase and amplitude. The presence of this structure indicates that low-frequency regularities may be present in the Chandler polar motion, and one of the manifestations of this may be the well known feature in the region of 1925. The superimposed epoch method was used to estimate the period of variations in the amplitude with a simultaneous change of phase of this oscillation, which was found to be 80 years. In addition, advantages of singular spectral analysis for studying the long-period time series with involved structure are demonstrated.  相似文献   

7.
A mission to Mars including two Small Stations, two Penetrators and an Orbiter was launched at Baikonur, Kazakhstan, on 16 November 1996. This was called the Mars-96 mission. The Small Stations were expected to land in September 1997 (Ls approximately 178 degrees), nominally to Amazonis-Arcadia region on locations (33 N, 169.4 W) and (37.6 N, 161.9 W). The fourth stage of the Mars-96 launcher malfunctioned and hence the mission was lost. However, the state of the art concept of the Small Station can be applied to future Martian lander missions. Also, from the manufacturing and performance point of view, the Mars-96 Small Station could be built as such at low cost, and be fairly easily accommodated on almost any forthcoming Martian mission. This is primarily due to the very simple interface between the Small Station and the spacecraft. The Small Station is a sophisticated piece of equipment. With the total available power of approximately 400 mW the Station successfully supports an ambitious scientific program. The Station accommodates a panoramic camera, an alpha-proton-x-ray spectrometer, a seismometer, a magnetometer, an oxidant instrument, equipment for meteorological observations, and sensors for atmospheric measurement during the descent phase, including images taken by a descent phase camera. The total mass of the Small Station with payload on the Martian surface, including the airbags, is only 32 kg. Lander observations on the surface of Mars combined with data from Orbiter instruments will shed light on the contemporary Mars and its evolution. As in the Mars-96 mission, specific science goals could be exploration of the interior and surface of Mars, investigation of the structure and dynamics of the atmosphere, the role of water and other materials containing volatiles and in situ studies of the atmospheric boundary layer processes. To achieve the scientific goals of the mission the lander should carry a versatile set of instruments. The Small Station accommodates devices for atmospheric measurements, geophysical and geochemical studies of the Martian surface and interior, and cameras for descent phase and panoramic views. These instruments would be able to contribute remarkably to the process of solving some of the scientific puzzles of Mars.  相似文献   

8.
Coordinates of polar faculae have been measured and processed using daily photoheliograms of the Kislovodsk Station of the Pulkovo observatory with the final goal of studying their latitude distribution during the solar cycles 20–21. The results obtained are as follows:
  1. The first polar faculae emerge immediately after the polarity inversion of the solar magnetic field at the latitudes from 40° to 70° with the average ?-55°.
  2. The zone of the emergence of polar faculae migrates poleward during the period between the neighbouring polarity inversions of the solar magnetic field. This migration is about 20° for 8 years, which corresponds to a velocity of 0.5 m s-1.
  3. The maximum number of polar faculae was reached at the activity minimum (1975–1976).
  4. The last polar faculae were observed in the second half of 1978 at the latitudes from 70° to 80°.
  相似文献   

9.
The results of investigations and observations with classical meridian circle MK-200 and photographic vertical circle (PVC) after its modernization and automation are discussed. The data concerning the stability of the instrumental system and the flexure of the Pulkovo Horizontal meridian circle (HMC) are given. New work on the establishment of in axial meridian circle in Nikolaev, Ecker meridian circle and reflecting one in Pulkovo is mentioned.  相似文献   

10.
11.
Solar radio and microwave sources were observed with the Very Large Array (VLA) and the RATAN-600, providing high spatial resolution at 91 cm (VLA) and detailed spectral and polarization data at microwave wavelengths (1.7 to 20 cm - RATAN). The radio observations have been compared with images from the Soft X-ray Telescope (SXT) aboard theYohkoh satellite and with full-disk phoptospheric magnetic field data from the Kislovodsk Station of the Pulkovo Observatory. The VLA observations at 91 cm show fluctuating nonthermal noise storm sources in the middle corona. The active regions that were responsible for the noise storms generally had weaker microwave emission, fainter thermal soft X-ray emission, as well as less intense coronal magnetic fields than those associated with other active regions on the solar disk. The noise storms did, however, originate in active regions whose magnetic fields and radiation properties were evolving on timescales of days or less. We interpret these noise storms in terms of accelerated particles trapped in radiation belts above or near active regions, forming a decimetric coronal halo. The particles trapped in the radiation belts may be the source of other forms of nonthermal radio emission, while also providing a reservoir from which energetic particles may drain down into lower-lying magnetic structures.Presented at the CESRA-Workshop on Coronal Magnetic Energy Release at Caputh near Potsdam in May 1994.  相似文献   

12.
While implementing the first stage of the Pulkovo program of research on stars with large proper motions, we determined the trigonometric parallaxes of 29 stars (12 m < V < 16 m ) based on CCD observations with a 26-inch refractor. The mean standard error was 3.7 mas. Comparison of the Pulkovo parallaxes with those obtained at the Observatory of the Yale University and the US Naval Observatory (USNO) has shown that the parallax differences (Pulkovo-Yale/USNO) lie within the limits of their measurement errors in an overwhelming majority of cases. On average, they are −0.6 ± 1.0 mas. No systematic dependences on stellar distance, magnitude, and color in this set of differences have been found. Our comparisons show that the observing and data reduction techniques used in the Pulkovo program of research on fast stars allow highly accurate trigonometric parallaxes of these objects to be obtained. All program stars are within 50 pc of the Sun; most of them belong to the immediate solar neighborhood (D < 25 pc). For two stars (J0522+3814 and J1202+3636), the trigonometric parallaxes have been determined for the first time.  相似文献   

13.
Summary The orbits of four binaries ADS48, 9031, 14636 (61 Cyg) and 11632 were determined by the AMP-method from the short arc photographic observations made in Pulkovo with the 26-inch refractor.  相似文献   

14.
One of the goals of the Pulkovo program of research on stars with large proper motions is to reveal among the low-luminosity stars those that have evidence of binarity. Twelve astrometric binary candidates from the Pulkovo list have been included in the program of speckle observations with the BTA telescope at the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS) and the 2.5-m telescope at the Caucasus Observatory (CO) of the Sternberg Astronomical Institute of the Moscow State University to confirm their binarity and then to determine the parameters of the revealed stellar pairs. The binarity of the brightest of these stars, J1158+4239 (GJ 3697), has been confirmed. Four sessions of speckle observations with the BTA SAO RAS telescope and one session with the 2.5-m CO telescope have been carried out in 2015–2016. The weighted mean estimates of the pair parameters are ρ = 286.5 ± 1.2 mas and θ = 230.24? ± 0.16? at the epoch B2015.88248. The magnitude difference between the pair stars is Δm = 0.55 ± 0.03 (a filter with a central wavelength of 800 nm and a FWHM of 100 nm) and Δm = 0.9 ± 0.1 (an R filter).  相似文献   

15.
A series of daytime observations of the Sun and major planets are obtained at the mountain astronomical station of the Pulkovo Observatory using the Ertel-Struve meridian instruments. A series of declinations of Solar System bodies and major planets includes 4057 positions and that of right ascensions of Solar System bodies comprising 2057 positions. Based on the joint processing of observations of the Sun, Mercury, Venus, and Mars obtained with the Ertel-Struve vertical circle and large transit instrument, the orientation elements of the DE200/LE200 dynamic coordinate system, namely, a correction for the right ascensions of FK5 stars ΔA = +0.127″ ± 0.033″, a correction for declinations of FK5 stars ΔD = +0.056″ ± 0.011″, a correction for the ecliptic inclination Δɛ = −0.044″ ± 0.012″, and a correction for the average longitude of the Sun ΔL = −0.083″±0.035″, are determined with respect to the stellar coordinate system.  相似文献   

16.
We list the principal stages of astroclimatic studies concerned with choosing the sites for astrophysical observatories in Caucasus and Crimea. We chow that the sites for three observatories in Northern Caucasus (Kislovodsk Mountain Astronomical Station of Pulkovo Main Astronomical Observatory of the Russian Academy of Sciences, Special Astrophysical Observatory of the Russian Academy of Sciences, Terskol Observatory) were chosen without obtaining representative statistical data in terms of the number of clear night hours and seeing. We report the data on the number of clear night hours and seeing for the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences based on results of long-term observations. We discuss the possible causes of the discrepancies between experimental and forecast data and conclude that currently none of the three observatories in the North Caucasus can be preferred because of the great variety of the methods employed and limited statistics in terms of astroclimatic and meteorological parameters for some sites.  相似文献   

17.
The results of the reduction, investigation, and comparison of the photographic observations of the major Saturnian satellites and CCD observations with an ST6 CCD camera obtained at the 264nch Pulkovo refractor in 1995–2007 are presented. A comparison of the observational results with the TASS 1.7 theory of motion of the Saturnian satellites has served as the basis for investigating and comparing the series of observations. The period-averaged (O-C) residuals and observational errors have been calculated. A comparison of the series of CCD and photographic observations has shown the same external accuracy of the observations at a higher internal accuracy of the CCD observations than that of the photographic ones. A comparison of the Pulkovo results with those of other authors has shown them to be close in accuracy. The accuracy of the theory has been estimated by comparing simultaneous (on the same night) CCD and photographic observations. The errors of the observations and the theory have been found from this comparison to be the following: 0.081“ and 0.067” for the observations and 0.077“ and 0.115” for the theory (inxandy, respectively). An analysis of the dependence of (O-C)x,y for three satellites (the sixth, seventh, and eighth) on the satellite positions in Saturn-centered orbits has revealed systemat ic deviations for the seventh satellite in both coordinates. The positions of Saturn have been determined from satellite observations without measuring its images on photographic plates with accuracies of 0.121“ and 0.105” in right ascension and declination, respectively.  相似文献   

18.
Solar System Research - The asteroid (13553) Masaakikoyama was observed with the ZA-320M and MTM-500M telescopes of the Pulkovo observatory in August and September 2018. Its axial rotation period...  相似文献   

19.
A list of selected binary stars is presented that have been observed for several decades using a 26-inch refractor at the Pulkovo Observatory. These stars are at a distance from 3.5 to 25 pc from the Sun. They belong to spectral classes F, G, K, and M. Their masses range from 0.3 to 1.5 solar masses. We have analyzed them as possible parent stars for exoplanets taking into account the physical characteristics of these stars. In view of dynamic parameters and orbital elements that we have obtained by Pulkovo observations, ephemerides of positions for the coming years are calculated. The boundaries of the habitable zones around these stars are calculated. The astrometric signal that depends on the gravitational influence of hypothetical planets is estimated. Space telescopes for astrometric observations with microsecond accuracy can be used to detect Earth-like planets near the closest stars of this program. This paper presents an overview of astrometric programs of searches for exoplanets.  相似文献   

20.
This article is devoted to the Pulkovo astronomer, Prof. Aleksandr Nikolaevich Deich (Deutsch) (1899-1986), on the 110-th anniversary of his birth. Deich is known as the founder of the Pulkovo program for observing stars with invisible companions, as well as for his research on the star 61 Cyg, which was suspected, in his time, of having invisible companions with the masses of planets. Astrometric observations on the long focus astrograph and searches for exoplanets of nearby stars are reviewed. Modern methods of searching for exoplanets are summarized briefly. Instrument designs proposed by astronomers at Kharkiv (Scientific Research Institute of Astronomy at Kharkiv National University, NIIA KhNU) and Kazan (Institute of Astronomy, Kazan State University, AO KGU) for use in the search for low-mass dark components of stars are discussed. Examples are given of confirmations of invisible companions of stars which were first discovered by observation. A number of theoretical results on this topic from Kharkiv National University (Scientific Research Institute of Astronomy at Kharkiv and the Dept. of Astronomy) are noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号