首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
We look for cosmologies with a scalar field (dark energy without cosmological constant), which mimic the standard ΛCDM cosmological model yielding exactly the same large-scale geometry described by the evolution of the Hubble parameter (i.e. photometric distance and angular diameter distance as functions on z). Asymptotic behavior of the field solutions is studied in the case of spatially flat Universe with pressureless matter and separable scalar field Lagrangians; the cases of power-law kinetic term and power-law potential are considered. Exact analytic solutions are found in some special cases. A number of models have the field solutions with infinite behavior in the past or even singular behavior at finite redshifts. We point out that introduction of the cosmological scalar field involves some degeneracy leading to lower precision in determination of Ω m . To remove this degeneracy additional information is needed besides the data on large-scale geometry. The article is published in the original.  相似文献   

2.
Singularity-free Robertson-Walker cosmological models (RWCM) are developed by considering the cosmic matter as composed of an interacting viscous fluid (with zero bulk viscosity) and a massive scalar (meson) field. Solutions are obtained for two different cases, viz., when the Hubble's parameterH is epoch independent and whenH is epoch dependent. A solution corresponding to RWCM with only the massive scalar field as the matter content is also presented. The essential physical behaviour of the models developed are discussed in detail.  相似文献   

3.
The evolution of a homogeneous, isotropic cosmological model driven by a nonminimally coupled scalar field is studied. The potential for the quintessential inflation model proposed by Peebles and Vilenkin is selected as a scalar potential. Possible scenarios for the cosmological dynamics are described in the conformal Einstein and Jordan representations. It is shown that, unlike in models with a minimal scalar field, here a class of solutions exists for which the scalar field is fixed at finite values during cosmological expansion. __________ Translated from Astrofizika, Vol. 49, No. 3, pp. 487–498 (August 2006).  相似文献   

4.
The evolution of scalar perturbations is studied for 2-component (non-relativistic matter and dark energy) cosmological models at the linear and non-linear stages. The dark energy is assumed to be the scalar field with either classical or tachyonic Lagrangian and constant equation-of-state parameter w. The fields and potentials were reconstructed for the set of cosmological parameters derived from observations. The comparison of the calculated within these models and observational large-scale structure characteristics is made. It is shown that for w = const such analysis can’t remove the existing degeneracy of the dark energy models. The article is published in the original.  相似文献   

5.
Using the quantum statistical method, we calculate quantum statistical entropy between the black hole horizon and the cosmological horizon in Schwarzchild spacetime and derive the expression of quantum statistical entropy in de Sitter spacetime. Under the Unruh-Verlinde temperature of Schwarzchild-de Sitter spacetime in the entropic force views, we obtain the expression of quantum statistical entropy in de Sitter spacetime. It is shown that in de Sitter spacetime quantum statistical entropy is the sum of thermodynamic entropy corresponding black hole horizon and the one corresponding cosmological horizon. And the correction term of de Sitter spacetime entropy is obtained. Therefore, it is confirmed that the black hole entropy is the entropy of quantum field outside the black hole horizon. The entropy of de Sitter spacetime is the entropy of quantum field between the black hole horizon and the cosmological horizon.  相似文献   

6.
Recent cosmological observations of large-scale structures (red shift of type Ia supernovae) confirm that the universe is currently expanding at an accelerating rate and its dominant component is dark energy. This has stimulated the development of the theory of gravity and led to many alternative variants, including tensor-scalar ones. This paper deals with the role of conformal transformations in the Jordan-Brans-Dicke theory. Variants of intrinsic, conformally coupled, and Einstein representations are examined. In the Einstein representation an exact analytic solution for the standard cosmological model is obtained. It is expressed in terms of the relative energy contributions of ordinary matter Ω m , the scalar field Ω CK , and a term ΩΛ related to the cosmological constant Λ . Information on the evolution of the universe for the case with a minimally coupled scalar field is given in the form of graphs.  相似文献   

7.
Using the method of canonical quantization in the static spacetime, we calculated the temperature Green function of the real scalar field of the de Sitter spacetime. We then used the generating functional of the Green function in the euclidean path integral representation to prove that the temperature Green function for T = (Λ3), Λ being positive cosmological constant, is identical with the Green function GE on the 4-dimensional euclidean sphere, thereby showing that the de Sitter-invariant vacuum state with respect to an inertial measuring system (geodesic observer) is the quantum mixed state with a Hawking temperature equal to T.  相似文献   

8.
Using a static massive spherically symmetric scalar field coupled to gravity in the Schwarzschild-de Sitter (SdS) background, first we consider some asymptotic solutions near horizon and their local equations of state (E.O.S.) on them. We show that near cosmological and event horizons our scalar field behaves as a dust. At the next step near two pure de Sitter or Schwarzschild horizons we obtain a coupling dependent pressure to energy density ratio. In the case of a minimally coupling this ratio is ?1 which springs to the mind thermodynamical behavior of dark energy. If having a negative pressure behavior near these horizons we concluded that the coupling constant must be ξ<¼. Therefore we derive a new constraint on the value of our coupling ξ. These two different behaviors of unique matter in the distinct regions of spacetime at present era can be interpreted as a phase transition from dark matter to dark energy in the cosmic scales and construct a unified scenario.  相似文献   

9.
The scalar field theory on the background of cosmological models with n(n ≥ 1) spaces of constant curvature is considered. We take the integrable case of Ricci flat internal spaces. The coupling between the scalar and the gravitational fields includes the minimal coupling as well as the conformal case. In the ground state of the scalar field we find the conditions for vacuum instability realized for most of the possible solutions to Einstein's equations if the coupling parameter takes appropriate values. For the excited states of the scalar field we show the induction of massive modes and discuss their properties.  相似文献   

10.
11.
A variant of the Jordan-Brans-Dicke (JBD) theory is examined which contains a cosmological scalar that is written so that on going to the Einstein representation it becomes the ordinary cosmological constant of general relativity theory. This paper is divided into two parts. In Part I we examine the cosmological solutions for the Einstein representation of the JBD theory, i.e., in the presence of a minimally coupled scalar field. In Part II we shall study the cosmological solutions in the proper representation of the JBD theory with a self consistent scalar field. The analysis of these solutions is of interest in connection with modern concepts of the evolution of the universe, in particular, with the observed acceleration of cosmological expansion and estimates of the density of dark matter and dark energy.__________Translated from Astrofizika, Vol. 48, No. 3, pp. 455–462 (August 2005).  相似文献   

12.
A multi-dimensional cosmological model with space-time consisting of n(n ≥ 2) Einstein spaces Mi is investigated in the presence of a cosmological constant λ and a homogeneous minimally coupled free scalar field. A generalized de Sitter solution was found for λ > 0 and a Ricci-flat external space for the case of static internal spaces with fine tuning of parameters.  相似文献   

13.
Limits on cosmic time scale variations of gravitational and cosmological `constants' are studied. The study is based on a function which can measure the temporal variation of the magnitude of the gradient of any scalar field defined inside a medium exposed to a gravitational field. The cosmic time dependent scalar fields are taken to be the gravitational and cosmological `constants'. The medium; in which those scalar fields are defined; is taken to be the spatially perturbed Friedman-Robertson-Walker (FRW) expanding universe. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Bianchi type-I string cosmological models are studied in Saez-Ballester theory of gravitation when the source for the energy momentum tensor is a viscous string cloud coupled to gravitational field. The bulk viscosity is assumed to vary with time and is related to the scalar expansion. The relationship between the proper energy density ρ and string tension density λ are investigated from two different cosmological models.  相似文献   

15.
Dark matter is obtained from a scalar field coupled conformally to gravitation, the scalar being a relict of Dirac's gauge function. This conformally coupled dark matter includes a gas of very light (m 2.25 × 10–34 eV) neutral bosons having spin 0, as well as a time-dependent global scalar field, both pervading all of the cosmic space. The time-development of this dark matter in the expanding F-R-W universe is investigated, and an acceptable cosmological behaviour is obtained.  相似文献   

16.
A viscous fluid cosmological model in presence of magnetic field and zero-mass scalar fields is developed. The non-negativity condition of viscous fluid pressure prescribes a certain minimum value oft vis-a-vis of the scale factorQ(t) and at this epoch the model is found to be singularity free.  相似文献   

17.
Cosmological solutions are examined in the proper representation of the JBD theory with a dominant nonminimally coupled scalar field. It is shown that only the introduction of a cosmological scalar that transforms to the ordinary cosmological constant in the Einstein representation enables a phase of evolution with a uniform and then an accelerated expansion of the universe over cosmological time scales. __________ Translated from Astrofizika, Vol. 48, No. 4, pp. 633–640 (November 2005).  相似文献   

18.
Our Universe consistes of particles, space and time. Ever since Descartes we have known that true emptiness cannot exist; ever since Einstein we have known that space and time are part of the stuff of our world. Efforts to determine the structure of particles go in parallel with the search for the structure of spacetime. Einstein gave us a geometrical answer regarding the structure of spacetime: a distance recipe (Lorentz-Minkowski) suffices. The theory boils down to a patching together of local Lorentz frames into a global whole, which gives it the form of a gauge field theory based on local Lorentz symmetry. On large scales, the Einstein Equation seems to work well. The structure of particles is described by a gauge field. too. On small scales the Standard Model seems to work very well.However, we know from Newtonian gravity that the presence of particles must be related to the structure of spacetime. Einstein made a conjecture for the form of this connection using the Newtonian limit of small speeds and weak fields. The right hand side of his equation for the bulk theory of matter (the energy-momentum tensor), is equated to the Einstein tensor from non-Euclidian geometry.But that connection is wrong. The structure of spacetime cannot be equated to the density of particles if we include the Standard Model in the matter tensor. In field theory a potential is not something that can be freely changed by adding an arbitrary scalar term; due to the local (as opposed to global) character of the fields, a potential becomes an entity in itself. Einstein's conjecture runs into profound trouble because the reality of potentials implies that the zero point energy of the vacuum must be included in the Einstein equation. The net result is the appearance of a term equivalent to a cosmological constant A of stupendous size, some 10118 times the critical cosmic density.The crisis due to the zero point fluctuations in the energy-momentum tensor is a clash of titans: Einstein's geometrical ideas on spacetime structure vs the behaviour of particles and the vacuum discribed by Dirac and followers. Someone, or everyone, is wrong. In my opinion the straightforward quantization of spacetime will always be impossible because the usual particle symmetries (U(1), SU(2), SU(3) and relatives) connect fermions and bosons, whereas relativistic analogies of these symmetries (the Lorentz symmetry) says something about spacetime and not about particles.  相似文献   

19.
The low-energy string gravitation is investigated for the case of reduction with a variable (in string units) inner space. A flat cosmological model of the corresponding four-dimensional theory is constructed. The model equations are analyzed qualitatively for a potential-dominated scalar field as the source. It is demonstrated that an extended inflation stage with one purely scalar dilaton field is possible here, in contrast with the case of a constant inner space. The pattern of cosmological evolution in various conformal representations is discussed.Translated from Astrofizika, Vol. 38, No. 1, pp. 99–119, January–March, 1995.  相似文献   

20.
Using the analytic extension method, we study Hawking radiation of an (n+4)-dimensional Schwarzschild-de Sitter black hole. Under the condition that the total energy is conserved, taking the reaction of the radiation of particles to the spacetime into consideration and considering the relation between the black hole event horizon and cosmological horizon, we obtain the radiation spectrum of de Sitter spacetime. This radiation spectrum is no longer a strictly pure thermal spectrum. It is related to the change of the Bekenstein-Hawking (B-H) entropy corresponding the black hole event horizon and cosmological horizon. The result satisfies the unitary principle. At the same time, we also testify that the entropy of de Sitter spacetime is the sum of the entropy of black hole event horizon and the one of cosmological horizon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号