首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 771 毫秒
1.
The effect of barotropic shear on baroclinic instability has been investigated using both a linear quasi-geostrophic β-plane channel model and a multilevel primitive equation model on the sphere when a nonmodal disturbance is used as the initial perturbation condition. The analysis of the initial value problem has demonstrated the existence of a rapid transient growth phase of the most unstable mode. The inclusion of a linear barotropic shear reduces initial rapid transient growth, although at intermediate times the transient growth rates of the sheared cases can be larger than in the unsheared case owing to downgradient eddy momentum fluxes. Certain disturbances can amplify by factors of 4.5–60 times (for the L2 norm), or 3–30 times (for the perturbation amplitude maximum), as large as disturbances based on the linear normal modes. However, linear horizontal shear always reduces the amplification factors. The mechanism is that the shear confines the disturbance meriodionally and therefore limits the energy conversion from the zonal available potential energy to eddy energy. The effect of barotropic shear on the transient growth is not changed much in the presence of either thermal damping or Ekman pumping. Nonmodal integrations of baroclinic wave lifecycles show that the energy level reached by eddies is not very sensitive to the structure of the initial disturbance if the amplitude of the initial disturbance is small. Although in some cases the eddy kinetic energy level reached by the wave integrated from nonmodal disturbance can be 25–150% larger than the normal mode integrations, barotropic shear, characterized by large shear vorticity with small horizontal curvature, always reduces the eddy kinetic energy level reached by the wave, confirming the results of normal mode studies.  相似文献   

2.
在构建大涡结构理论模型的基础上,采用局部喷入和吸出的结构来模拟局部粗糙壁面诱导的感应扰动场,数值研究局部粗糙对大涡结构之间非线性作用的影响问题。数值结果表明,局部粗糙壁面诱导的感应扰动改变了原平均速度剖面的稳定性特性及感应扰动流场的三维性对激励大涡结构的快速增长起了关键性的作用。  相似文献   

3.
Based on a non-frictional and non-divergent nonlinear barotropic vorticity equation and its solutions oftravelling waves,the criteria for linear and nonlinear barotropic instability are gained respectively at an equilibriumpoint of the equation on a phase plane.The linear and nonlinear analytical solutions to instability waves arealso found.The computational results show that if their amplitudes are equal at the initial time,the amplitudeincrements of nonlinear instable barotropic wave are always less than those of linear instable barotropic wave.The nonlinear effects can slow down the exponential growth of linear instability.The time needed for makingthe amplitude double that of initial time by instabilities,is about 6h for linear instability and about 18h fornonlinear instability,the latter is in agreement with the observations in the real atmosphere.  相似文献   

4.
The nonlinear interaction of vorticity driven coastal currents and eddies with topography is studied. The topography is either a semi-infinite escarpment perpendicular to the coast (such that topographic waves propagate toward the coast) or a semi-circular canyon or seamount attached to the coast. Assuming a piecewise constant potential vorticity distribution, the quasigeostrophic equations are solved using contour dynamics. Offshore propagating dipole eddies occur, whenever a coastal current or eddy interacts with escarpment and canyon topographies. The size and frequency at which dipoles form are found to depend on the vorticity of the current and amplitude of the topography. However, for a seamount, little eddy shedding is observed and the coastal current or eddy skirts around topography.  相似文献   

5.
线性和非线性正压不稳定   总被引:4,自引:0,他引:4  
陆维松 《气象学报》1987,45(3):274-281
本文从无摩擦的、无辐散的非线性正压涡度方程出发,利用行波解,在相平面上对方程的平衡点分别导得线性和非线性正压不稳定判据,与传统的不稳定判据作了比较分析。还求得了线性和非线性不稳定波的解析解,计算结果表明,若初始时刻两者波幅相等,则以后非线性不稳定波幅的增长值总小于线性不稳定波幅的增长值。非线性效应有使线性不稳定指数型增长减缓的作用。不稳定使得振幅比初始时刻增大一倍所需要的时间,对于线性不稳定大约是6h,对于非线性不稳定大约是18h,后者与实际大气中的观测事实是一致的。  相似文献   

6.
INERTIAL THEORY FOR OCEANIC CROSS-EQUATORIAL JET   总被引:2,自引:0,他引:2       下载免费PDF全文
In this paper, a theory for inertial boundary layer is developed to study the northward forcedand the southward induced cross-equatorial jets by easterlies in the Southern Hemisphere in westand east boundaries respectively. The solutions of the nonlinear potential vorticity equation and theBernoulli equation show that subtle changes of the physical parameters can produce different equi-librium states and the velocity of these jets all can reach 10°m/s which are comparable to observa-tions. Simulations show that the induced current in the east boundary is very important to the for-mation of the local eastward equatorial current in the east boundary. This can be used to study thecharacteristics of the local surface eastward equatorial current during E1 Nino periods,  相似文献   

7.
The purpose of this paper is to analyze diapycnal mixing induced by the breaking of an internal gravity wave — the primary wave — either standing or propagating. To achieve this aim we apply two different methods. The first method consists of a direct estimate of vertical eddy diffusion from particle dispersion while the second method relies upon potential energy budgets [Winters, K.B., Lombard, P.N., Riley, J.J., D’Asaro, E.A., 1995. J. Fluid Mech. 289, 115–128; Winters, K.B., D’Asaro, E.A., 1996. J. Fluid Mech. 317, 179–193]. The primary wave we consider is of small amplitude and is statically stable, a case for which the breaking process involves two-dimensional instabilities. The dynamics of the waves have been previously analyzed by means of two-dimensional direct numerical simulations [Bouruet-Aubertot, P., Sommeria, J., Staquet, C., 1995. J. Fluid Mech. 285, 265–301; Bouruet-Aubertot, P., Sommeria, J., Staquet, C., 1996. Dyn. Atmos. Oceans 29, 41–63; Koudella, C., Staquet, C., 1998. In: Davis, P. (Ed.), Proceedings of the IMA Conference on Mixing and Dispersion on Stably-stratified Flows, Dundee, September 1996. IMA Publication]. High resolution three-dimensional calculations of the same wave are also reported here [Koudella, C., 1999].A local estimate of mixing is first inferred from the time evolution of sets of particles released in the flow during the breaking regime. We show that, after an early evolution dominated by shear effects, a diffusion law is reached and the dispersion coefficient is fairly independent of the initial seeding location of the particles in the flow.The eddy diffusion coefficient, K, is then estimated from the diapycnal diffusive flux. A good agreement with the value inferred from particle dispersion is obtained. This finding is of particular interest regarding the interpretation of in situ estimates of K inferred either from tracer dispersion or from microstructure measurements. Computation of the Cox number, equal to the ratio of eddy diffusivity to molecular diffusivity, shows that the Cox number varies within the interval [9, 262], which corresponds to the range of vertical eddy diffusivity measured in the interior of the ocean. The Cox number is found to depend on the turbulent Froude number squared.We show eventually that mixing results in a weak distortion of the initial density profile and we relate this result to observations made at small scale in the ocean.Comparisons between the analysis of the two-dimensional and high resolution (2563) three-dimensional direct numerical simulations of the primary wave were also conducted. We show that the energetics and the amount of mixing are very close when the primary wave is of small amplitude. This results from the fact that, for a statically stable wave, the dynamics of the initially two-dimensional primary wave remains mostly two-dimensional even after the onset of wavebreaking.  相似文献   

8.
王辉  伍荣生 《气象学报》1989,47(4):402-411
本文用参数化方法研究积云凝结加热对海陆风的作用。第一部分是线性理论,在静力稳定度参数和湍流扩散系数为常数时,加热使风场的结构发生很大的变化。积云加热还起到修正静力稳定度的作用。第二部分是数值模拟,加热作用的主要贡献是使垂直速度增大,若海陆风是暴雨的触发机制,则积云凝结加热使这一机制加强。比较两部分结果,它们之间有一定的差异,但在风场的变化与加热场分布的对应关系上,两者是一致的。  相似文献   

9.
Previous numerical studies have focused on the combined effect of momentum and scalar eddy diffusivity on the intensity and structure of tropical cyclones. The separate impact of eddy diffusivity estimated by planetary boundary layer(PBL) parameterization on the tropical cyclones has not yet been systematically examined. We have examined the impacts of eddy diffusion of moisture on idealized tropical cyclones using the Advanced Research Weather Research and Forecasting model with the Yonsei University PBL scheme. Our results show nonlinear effects of moisture eddy diffusivity on the simulation of idealized tropical cyclones. Increasing the eddy diffusion of moisture increases the moisture content of the PBL, with three different effects on tropical cyclones:(1) an decrease in the depth of the PBL;(2) an increase in convection in the inner rain band and eyewall; and(3) drying of the lowest region of the PBL and then increasing the surface latent heat flux. These three processes have different effects on the intensity and structure of the tropical cyclone through various physical mechanisms. The increased surface latent heat flux is mainly responsible for the decrease in pressure. Results show that moisture eddy diffusivity has clear effects on the pressure in tropical cyclones, but contributes little to the intensity of wind. This largely influences the wind–pressure relationship, which is crucial in tropical cyclones simulation. These results improve our understanding of moisture eddy diffusivity in the PBL and its influence on tropical cyclones, and provides guidance for interpreting the variation of moisture in the PBL for tropical cyclone simulations.  相似文献   

10.
We explore the horizontal stirring of a passive tracer field in the vicinity of an isolated, finite amplitude, quasigeostrophic, β-plane eddy. We consider stirring in the presence of a uniform background gradient of tracer concentration as well as cases in which the tracer anomaly is initially contained within the eddy.This paper reports a survey of phenomenology based upon numerical experiments. We explore the sensitivity of results to physical parameters and to various aspects of the numerical simulation.Under the joint effects of β and of non-linearity, the eddy center migrates. Time dependent effects in a radiated wake provide important stirring mechanisms for the background tracer field. An unexpected, persistent result is a tendency to propel a tendril of tracer westward from near the launch latitude of the eddy. In some cases, the westward penetration of the tendril is even further than the migration of the eddy center.Tracer properties characteristics of the launch site of the eddy tend to be captured and carried with the eddy. However, tracer leaks from the eddy, due to both explicit diffusion-like effects and eddy interaction with background flow features, can result in drawing off of secondary tracer patches.We also calculate trajectories of Lagrangian particles launched in and around the eddy.  相似文献   

11.
We investigate the impact of 1/8°, 1/16°, 1/32°, and 1/64° ocean model resolution on model–data comparisons for the Gulf Stream system mainly between the Florida Straits and the Grand Banks. This includes mean flow and variability, the Gulf Stream pathway, the associated nonlinear recirculation gyres, the large-scale C-shape of the subtropical gyre and the abyssal circulation. A nonlinear isopycnal, free surface model covering the Atlantic from 9°N to 47°N or 51°N, including the Caribbean and Gulf of Mexico, and a similar 1/16° global model are used. The models are forced by winds and by a global thermohaline component via ports in the model boundaries. When calculated using realistic wind forcing and Atlantic model boundaries, linear simulations with Munk western boundary layers and a Sverdrup interior show two unrealistic mean Gulf Stream pathways between Cape Hatteras and the Grand Banks, one proceeding due east from Cape Hatteras and a second one continuing northward along the western boundary until forced eastward by the regional northern boundary. The northern pathway is augmented when a linear version of the upper ocean global thermohaline contribution to the Gulf Stream is added as a Munk western boundary layer. A major change is required to obtain a realistic pathway in nonlinear models. Resolution of 1/8° is eddy-resolving but mainly gives a wiggly version of the linear model Gulf Stream pathway and weak abyssal flows except for the deep western boundary current (DWBC) forced by ports in the model boundaries. All of the higher resolution simulations show major improvement over the linear and 1/8° nonlinear simulations. Additional major improvement is seen with the increase from 1/16° to 1/32° resolution and modest improvement with a further increase to 1/64°. The improvements include (1) realistic separation of the Gulf Stream from the coast at Cape Hatteras and a realistic Gulf Stream pathway between Cape Hatteras and the Grand Banks based on comparisons with Gulf Stream pathways from satellite IR and from GEOSAT and TOPEX/Poseidon altimetry (but 1/32° resolution was required for robust results), (2) realistic eastern and western nonlinear recirculation gyres (which contribute to the large-scale C-shape of the subtropical gyre) based on comparisons with mean surface dynamic height from the generalized digital environmental model (GDEM) oceanic climatology and from the pattern and amplitude of sea surface height (SSH) variability surrounding the eastern gyre as seen in TOPEX/Poseidon altimetry, (3) realistic upper ocean and DWBC transports based on several types of measurements, (4) patterns and amplitude of SSH variability which are generally realistic compared to TOPEX/Poseidon altimetry, but which vary from simulation to simulation for specific features and which are most realistic overall in the 1/64° simulation, (5) a basin wide explosion in the number and strength of mesoscale eddies (with warm core rings (WCRs) north of the Gulf Stream, the regional eddy features best observed by satellite IR), (6) realistic statistics for WCRs north of the Gulf Stream based on comparison to IR analyses (low at 1/16° resolution and most realistic at 1/64° resolution for mean population and rings generated/year; realistic ring diameters at all resolutions), and (7) realistic patterns and amplitude of abyssal eddy kinetic energy (EKE) in comparison to historical measurements from current meters.  相似文献   

12.
本文利用线性化的能量方程和交叉谱方法分别研究了准两周振荡和准40天振荡的能量来源及其转换过程。发现:在热带对流层中,对于低频振荡过程来说,来自中高纬度的侧向强迫作用和水汽凝结的加热作用是非常重要的,为扰动的产生和维持提供了重要能源。而正、斜压不稳定作用对扰动发展的作用是极小的。并且指出,在东亚热带对流层上部,准两周振荡通过与平均气流的相互作用为基本气流提供许多能量,对于维持这里的高空东风急流有重要作用。准40天振荡向平流层输送能量,对平流层平均环流的演变可能有重要贡献。   相似文献   

13.
The barotropic, quasi-geostrophic vorticity equation describing large scale, rotating flows over zonal relief supports nonlinear permanent form solutions, namely nonlinear topographic Rossby waves. Through an analytical theory, these solutions have been shown to be neutrally stable to infinitesimal perturbations.Numerical algorithms, which necessarily truncate the infinite number of degrees of freedom of any continuum model to a finite number, are capable of reproducing the numerical equivalent of these form-preserving solutions. Moreover, these numerical solutions are shown to preserve their shape throughout the numerical experiment not only in the limit of small amplitude, but also for high amplitude (Rossby number → O(1)).Through numerical simulation, the stability analysis is carried far beyond the analytical limit of infinitesimal perturbations. The solutions maintain their stability in agreement with the analytical theory, up to perturbations having intensities almost of the same order as the solutions themselves. For higher-amplitude perturbations, the solutions break up and typical turbulent behavior ensues. The passage from wave-like to turbulent behavior, upon surpassing a critical perturbation value, can be observed in the sudden loss of phase locking of the permanent solution Fourier modes.  相似文献   

14.
Based on diagnostic analysis of reanalysis data for 58-year, the distribution characteristics of decadal variability in diabatic heating, transient eddy heating and transient eddy vorticity forcing related to the sea surface temperature (SST) anomalies over the North Pacific, as well as their relationship with anomalous atmospheric circulation have been investigated in this paper. A linear baroclinic model(LBM) was used to investigate atmospheric responses to idealized and realistic heat and vorticity forcing anomalies, and then to compare relative roles of different kinds of forcing in terms of geopotential height responses. The results illustrate that the responses of atmospheric height fields to the mid-latitude heating can be either baroclinic or barotropic. The response structure is sensitive to the relative horizontal location of heating with respect to the background jet flow, as well as to the vertical profile of heating. The response to the idealized deep heating over the eastern North Pacific, mimicking the observed heating anomaly, is baroclinic. The atmospheric response to the mid-latitude vorticity forcing is always barotropic, resulting in a geopotential low that is in phase with the forcing. The atmospheric responses to the realistic heat and vorticity forcing show the similar results, suggesting that diabatic heating, transient eddy heating and transient eddy vorticity forcing can all cause atmospheric anomalies and that the vorticity forcing plays a relatively more important role in maintaining the equivalent-barotropic structure of geopotential height anomalies.  相似文献   

15.
Based on diagnostic analysis of reanalysis data for 58-year,the distribution characteristics of decadal variability in diabatic heating,transient eddy heating and transient eddy vorticity forcing related to the sea surface temperature(SST)anomalies over the North Pacific,as well as their relationship with anomalous atmospheric circulation have been investigated in this paper.A linear baroclinic model(LBM)was used to investigate atmospheric responses to idealized and realistic heat and vorticity forcing anomalies,and then to compare relative roles of different kinds of forcing in terms of geopotential height responses.The results illustrate that the responses of atmospheric height fields to the mid-latitude heating can be either baroclinic or barotropic.The response structure is sensitive to the relative horizontal location of heating with respect to the background jet flow,as well as to the vertical profile of heating.The response to the idealized deep heating over the eastern North Pacific,mimicking the observed heating anomaly,is baroclinic.The atmospheric response to the mid-latitude vorticity forcing is always barotropic,resulting in a geopotential low that is in phase with the forcing.The atmospheric responses to the realistic heat and vorticity forcing show the similar results,suggesting that diabatic heating,transient eddy heating and transient eddy vorticity forcing can all cause atmospheric anomalies and that the vorticity forcing plays a relatively more important role in maintaining the equivalent-barotropic structure of geopotential height anomalies.  相似文献   

16.
热力强迫的非线性奇异惯性重力内波与高原低涡的联系   总被引:4,自引:0,他引:4  
刘晓冉  李国平 《高原气象》2007,26(2):225-232
利用相平面分析法,由非绝热大气运动方程组导出了与非线性惯性重力内波有关的KdV方程,然后用直接积分法得到两类有天气意义的孤立波解,重点分析了与青藏高原暖性低涡有联系的一类具有间断点的奇异孤立波解的特征,进而讨论了高原非绝热加热对高原低涡生成、移动及高原低涡暖心结构的作用。  相似文献   

17.
对45个冬季格陵兰以东区域海冰密集度场与北太平洋500 hPa位势高度滤波方差场作奇异值(SVD)分析.结果表明:SVD得到的第1对空间典型分布反映了冬季格陵兰以东区域海冰异常与北太平洋风暴轴异常变化密切相关.进一步的合成分析显示:海冰异常导致大气环流调整,气压梯度、急流、850 hPa天气尺度涡动热量经向通量和垂直通量、局地斜压性均发生改变,从而对北太平洋风暴轴的强度及中心位置位移造成影响.  相似文献   

18.
A 1D model, including a time variation of eddy viscosity and mixed layer depth, is applied to study Ekman spirals. It simulates a weak velocity in the atmosphere but a jet in the upper oceanic mixed layer during daytime; and a strong velocity in the atmosphere but a weak, uniform velocity in the ocean at night. The mean spirals in both atmosphere and ocean are close to the average spirals at midday and midnight, they are not flat as suggested by previous studies but consistent with the observations of Polton et al (2013). Our results also show shorter length scale for magnitude decay than for rotation of mean velocity as observed in the ocean, which comes from the combined effects of the diurnal variation of PBL and the Coriolis force. The latter becomes more important away from the surface. In the upper oceanic mixed layer, the mean velocity mainly comes from the strong jets in the late afternoon and early evening. Near and below the depth of Ekman depth, the weak velocities change with time and cancel out each other if averaged timing is longer than the inertia period. It results in diminishing of magnitude of the mean velocity, but the amplitude of individual parcel oscillating can still be quite large near the Ekman depth. Meanwhile, the change of velocity angle from the surface is near or less than 90 degree. Hence, shorter length scale for magnitude decay than for rotation of the mean velocity is not controlled by viscosity alone. Meanwhile, the model does not need two viscosities as suggested previously.The results also show that either the diurnal variation of surface stress or eddy viscosity alone can create a diurnal oscillation of velocity in the ocean. The interactions between PBL force and the Coriolis force can create a weak instability in the atmosphere and ocean at 30° and 90°. This weak instability may explain the observed nocturnal LLJ near 30 °N on the lee of the Rocky Mountains and the intensification of mesoscale circulation simulated by Sun and Wu (1992).  相似文献   

19.
The study of mean circulation fields requires evaluation of eddy foreings in the atmosphere.Due to the difficulty in calculating the eddy forcings on theory,the mean state equations including the eddy forcings were used mostly for diagnostic studies only.Using the geostrophic perturbation solutions obtained by McHall (1991a),we may deal with theoretically the eddy fluxes and their convergence.This allows us to employ the mean state equations for the study of mean circulation fields.It will be found that the time averaged zonal mean structure and circulation of the troposphere at middle and high latitudes can be reproduced basically in terms of the mass and momentum balances in geostrophic wave circulations.  相似文献   

20.
Nonlinear waves in barotropic model   总被引:2,自引:0,他引:2  
In this paper, from the system of equation describing a barotropic atmosphere using the method of Taylor expansion for the nonlinear terms, the periodic solutions of the nonlinear inertio-surface gravity waves and Rossby waves have been obtained.The finite-amplitude nonlinear inertio-surface gravity waves and Rossby waves with horizontal divergence satisfy all the KdV equation. The solutions are all the cnoidal function, i, e, the cnoidal waves which in-clude the linear waves and form the solitary waves under certain conditions. For the finite-amplitude Rossby waves with horizontal divergence, we find the new dispersive relation including both the wave number and the amplitude parameter. In case of small amplitude it is reduced to the Yeh formula. It is shown that the larger the amplitude and width, the faster the finite-amplitude inertio-surface gravity waves and the slower the finite-amplitude Rossby waves with horizontal divergence propagate. The blocking or cut-off system in which the amplitude and width are large may be considered as Rossby solitary waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号