首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
在分析旱地麦田土壤水分时空变化的基础上,指出土壤水分的时间变化可分为3个时期,即缓慢失墒期、急剧蒸发失墒期和收墒期;垂直变化可分为水分速变层、活跃层、过渡层、稳定少变层。同时还分析了冬小麦生育期间土壤降水蒸散差。  相似文献   

2.
宝鸡地区农田土壤水分周年变化特征及冬小麦干旱指标   总被引:2,自引:0,他引:2  
从北到南分别选取陇县、凤翔、渭滨、太白4县(区)气象站1986--2005年的土壤水分资料分析,得出宝鸡市年平均土壤湿度为17.1%,年变化幅度较大,最小值为13.3%,最大值为21.7%。土壤水分周年变化划分为冬春内部调整期、春季初夏失墒期、雨季恢复补充期、秋季缓慢失墒期4个阶段。土壤水分的垂直变化主要在0~50cm,愈往下层,变化愈小。确定了3个干旱区域和冬小麦干旱土壤水分指标。  相似文献   

3.
陕北丘陵区陡坡柠条林地与荒坡的土壤水分变化研究   总被引:1,自引:0,他引:1  
通过定点土壤水分测定与对比分析,研究陕北丘陵区陡坡柠条林地与荒坡土壤水分亏缺状况、年际内动态变化规律、干燥化特征及其自然降水的补偿能力。结果表明:柠条林地0~10m土层贮水量仅相当于田间持水量的26.2%~41.2%。荒坡地0~10m土层贮水量相当于田间持水量的39.8%~41.2%。土壤贮水量的分布是阳坡〈半阳坡〈阴坡,上坡位〈下坡位。年际间土壤水分的变异程度随土壤深度的增加而减弱,土壤贮水量的变化主要发生在2m以上土层内。土壤贮水量具有明显的季节变化特征,但滞后于降雨量变化。生长季内,柠条地与荒坡土壤平均贮水量差异显著(P〈0.05),土壤越深,其含水量变化越小。两种利用方式的土壤剖面都产生不同程度的干化层。柠条林地深层土壤干燥化强度明显大于荒坡地。丰水年柠条林雨水补偿的深度仅为1.0m,荒坡也仅为1.2m。柠条林丰水年的雨水补偿的深度比干旱年可增加60cm以上,5m土层贮水增量增加3倍以上。  相似文献   

4.
2008年的湛江土壤湿度特征   总被引:1,自引:0,他引:1  
对湛江地面气象观测站2008年0~50 cm土壤湿度、降水及蒸发皿蒸发资料进行了分析。结果表明,湛江土壤湿度的垂直分布形态为垂直均匀型;按土壤湿度随时间的变化规律,可将其划分为春季相对稳定期、夏季增墒期和秋季迅速下降期3个时段。对0~10 cm、10~30 cm与30~50 cm土层土壤湿度进行回归分析,表明土壤湿度与降水量、蒸发皿蒸发量存在线性关系,除春季30~50 cm土壤湿度的预报值明显偏低外,其余回归方程的预报结果均较好。同一土壤类型、不同时段,或同一时段、不同的土壤层次,拟合的方程不同,反映出土壤湿度时间和空间分布的复杂性。  相似文献   

5.
2017—2018年在晋南4个不同海拔高度的麦田,开展了土壤水分变化特征及对水分利用效率的研究。结果表明:不同海拔麦田不同土层的成熟期土壤贮水量均低于播种期土壤贮水量,在0~100、100~200、0~200 cm土层深度不同海拔麦田成熟期土壤贮水量占播种期土壤贮水量的比例分别为47. 28%~45. 46%、42. 49%~77. 50%、45. 06%~60. 96%,其中0~200、100~200 cm深度所占比例均随海拔高度的上升而上升;播种期至成熟期0~100、100~200 cm土壤耗水量占该阶段0~200 cm土壤耗水量的比例分别为51. 53%~72. 12%、27. 88%~48. 47%,其中0~100 cm深度所占比例随海拔高度上升而上升,而100~200 cm则表现为随海拔高度上升而下降;播种期至成熟期0~100、100~200、0~200 cm土层耗水量占播种期同一土层贮水量的比例分别为52. 72%~54. 54%、22. 50%~57. 51%、39. 04%~54. 94%,其中100~200、0~200 cm随海拔高度的上升而下降,最高海拔(1008 m)麦田0~100、100~200 cm土层及其他3个海拔麦田不同土层深度在不同生育阶段土壤耗水量与其初始土壤贮水量均呈正相关;不同海拔麦田的全生育期平均气温与其全生育期不同土层的土壤耗水量均呈现正相关;水分利用效率基本随海拔高度的升高在提高。  相似文献   

6.
利用线性趋势估计、Mann—Kendall检验等方法对1981—2010年郑州市夏玉米生育期内土壤湿度的年际及垂直变化特征进行了分析,结果表明:近30a来郑州地区夏玉米生长季土壤水分呈显著的下降趋势,0—40cm、40—100am下降速率分别为-3.34%/10a和-5.94%/10a;0—40em在1986年形成一个突变点,40一100CIYI在1998年形成一个突变点,突变点后土壤湿度下降明显;夏玉米生育期内,土壤湿度随生育进程的推进不断增加,到乳熟期后维持在较高水平,同一生育阶段由浅及深各层土壤湿度变异系数逐步减小;各层次土壤湿度的垂直分布基本呈现上干下湿的状态,各生育阶段各层土壤湿度多表现为乳熟期的〉抽雄期的〉拔节期的〉出苗期的。  相似文献   

7.
甘肃省东部旱作区土壤水分变化规律的研究   总被引:13,自引:1,他引:13  
仇化民  邓振镛 《高原气象》1996,15(3):334-341
甘肃省东部旱作区的气候条件,降水补给作用及作物生长发育状况的特殊性,导致土壤水分具有独特的时空分布规律,麦田2m土层水分的周年变化呈一峰一谷型,可划分为旱季失墒消耗阶段和雨季蓄墒贮水阶段;其垂直变化呈“S”型,可划分为水分多变层、过渡层及稳定层。  相似文献   

8.
通过对高产旱地不同肥力条件下土壤水分连续三年的系统观测,基本摸清了旱地土壤水分变化规律。土壤水分动态可分为春季失墒缺水期,夏季初秋增墒蓄水期和秋冬季缓失保水期。因此,保墒工作应主要放在春季失墒期。土壤肥力高的地块,供水条件好,抗旱力强,因此培肥地力,对旱作农业具有重要的意义。  相似文献   

9.
利用吉林省西部10个自动土壤水分观测站数据与人工取土烘干法实测土壤湿度数据,制作吉林省西部土壤墒情监测及干旱预报模型.结果表明:不同气候背景下在作物不同生育期、土壤不同深度、不同初始湿度下的土壤湿度的变化趋势大致相同,但在相同的无降水日数或降水量时,不同台站不同深度的土壤湿度变化率却有一定的差异.各站农田土壤初始湿度越大,无降水时初期墒情下降速率越明显;而土壤湿度初始值越低,则失墒速率越慢.土壤不同深度均是开始时间失墒较快,后期变化逐渐趋于减弱状态.土壤深度越深则水分变化速率越缓,降水量越大,0~50 cm土壤湿度变化曲线整体越接近一致,直到从上而下几层土壤湿度全部达到饱和.通过对2017—2019年吉林省西部玉米农田土壤湿度预报结果和实测值进行对比检验,基于自动土壤水分观测数据的吉林省西部干旱模型预报的准确率超过80%.  相似文献   

10.
利用门源气象站1982~2005年农业气象观测资料,经统计分析得出:0~50cm土壤贮水量对油菜产量的形成所产生影响为负效应;1982~2005年间土壤贮水量以14.8mm/10a的速率下降;气候变化使油菜生育期内0~50cm土壤贮水量缓慢减少,有利于油菜产量形成,从而有利于门源地区油菜基地的发展。  相似文献   

11.
根据1991~1996年郑州冬小麦播种前0~200 cm的土壤水分观测资料,应用3次多项式模拟了底墒的垂直分布。结果表明土壤水分随土层深度增加的变化趋势,0~50 cm土壤水分与0~200 cm的底墒相关达到0.01显著水平,可以用0~50 cm土壤水分推算0~200 cm土层底墒。  相似文献   

12.
根据 1 997~ 1 998年观测资料 ,从热量平衡角度出发 ,论述了土壤深松保墒增墒的物理基础 ,初步探讨了深松条件下田间土壤有效水动态变化规律和保墒作用 .深松改变了近地层水热状况 ,导致土壤水分蒸发减少、土壤孔隙度增大 ,可接纳的天然降水增加 ,30~ 50 cm土层含水量比对照提高 2 0 %以上 ,产量平均提高 2 0 %~ 30 % .  相似文献   

13.
本研究旨在分析黑土区(黑龙江)土壤有效水分贮存量对大豆产量构成因素的影响,以期为大豆生产防灾减灾提供科学依据。利用1994—2017年黑龙江省大豆主产区的发育期、土壤水分、产量结构资料分析了大豆不同发育阶段土壤有效水分贮存量的时空分布规律、基于土壤相对湿度指数(Rsm)的干旱等级划分规律及有效水分贮存量对大豆不同发育阶段产量结构各因素的影响。结果表明:1994—2017年研究区各发育阶段平均有效水分贮存量在14—18 mm之间变化,共发生干旱82站次,其中轻旱77站次,中旱5站次,没有发生重旱和特旱,其中开花—结荚期、结荚—鼓粒期发生干旱频次较高,且1994—2017年研究区域发生干旱的频次是逐年降低的。大豆的气象产量、株结实粒数、株籽粒重与不同发育期的各层次的土壤有效水分贮存量相关性不大;百粒重与三叶至开花期的20—50 cm土层、结荚—鼓粒期的0—20 cm土壤有效水分贮存量相关性较大;茎秆重与播种至出苗期的30—50 cm土壤有效水分贮存量呈显著正相关;播种至开花期土壤中的有效水分贮存量尤其是深层土壤在一定范围内越多,株荚数越多;空秕荚率与播种至出苗期的0—20 cm和30—40 cm、出苗至三叶期的30—40 cm土壤有效水分贮存量相关性较大。  相似文献   

14.
通过互助1997~2002年中子仪和烘干法测定的土壤0~50cm贮水量变化规律的对比分析得出:在同一气候背景下地形地势相同的不同地段或同一地段的不同田间工作地段测定的土壤贮水量变化特征是一致的;两种方法测定的0~50cm贮水量经过相关性检测,建立回归关系式后可相互代替应用;0~50cm土壤贮水量变化特征,中子仪测定的为上年11月~下年2月(一般为土壤封冻期)贮水量保持在25~27mm间,变化较平稳.6~7月处于谷值阶段,为24mm。3~4月初和9月处于的峰值,为28mm;烘干法测定的土壤封冻期未测定,3~4月初处于最大峰值阶段.为33mm,7月处于谷值阶段,为21mm,9月达次峰值阶段,为25mm。  相似文献   

15.
通过青海省互助县1997~2002年大气观测场和春小麦地测定的0~50 cm土壤贮水量变化规律的对比分析得出:同一气候背景下,地形地势相同的不同场地不同植被0~50 cm土壤贮水量变化特征基本一致。大气观测场11月至次年2月(一般为土壤封冻期)土壤贮水量保持在25~27 mm间,变化较平稳,6~7月处于谷值阶段,为24 mm,3月至4月初和9月处于峰值阶段,为28 mm,年变化似呈"M"形。春小麦地在土壤封冻期未测定,3月至4月初处于最大峰值阶段,为33 mm,7月处于谷值阶段,为21 mm,9月达次峰值阶段,为25 mm,年变化似呈"M"形。在同一气候背景下,大气观测场中子仪测定和春小麦地烘干法测定的0~50 cm贮水量经过相关性检验,建立回归关系式后可相互代替应用。  相似文献   

16.
利用内蒙古锡林浩特气象站2013—2015年生长季自动土壤水分逐时观测数据及逐日降水量数据,分析北方典型草原降雨过程前后各层土壤水分的变化特征。结果表明,随着雨量的增加,各层土壤水分变化规律不同。0—10 cm、10—20 cm土层土壤水分增量与降雨量之间存在二项式回归关系,要使这两层土壤水分稳定增加,至少分别需要约10.0 mm、17.0 mm的降雨量;25.5 mm的降雨过程才能引起20—30 cm土层土壤水分的稳定增加;29.0 mm以上的降雨过程能使30—40 cm土层的土壤水分稳定增加;极端降水过程(70.2 mm)能引起40 cm以下土层土壤水分的稳定增加。对5.0 mm以上降水过程的统计分析表明,随着土层的加深,各层平均土壤水分增量呈减少趋势,60 cm以下土层土壤水分受天然降水的影响较小。  相似文献   

17.
三江源地区土壤储水量动态变化规律   总被引:1,自引:0,他引:1  
根据三江源地区自东向西分布的河南、甘德、曲麻莱3个牧业气象试验站11~17a土壤资料和降水资料,采用Surfer、Excel等软件绘制了土壤储水量等值线图、距平图等,计算了降水量与土壤储水量之间的关系,并进一步展开分析,结果表明:三江源地区自东向西土壤储水量空间变化由湿到干,土壤储水量呈逐渐减小趋势;0~50cm土层土壤储水量垂直变化甘德、河南由表层向深层逐渐减小,曲麻莱表层、深层小,中层大;甘德土壤储水量季节变化比较稳定,河南、曲麻莱解冻后、封冻前2~3旬内旬变化幅度在9mm以内,其余时间在3mm以内;3站年平均储水量年际变化分2000年以前正负相间期、2000~2003年负距平居多期和2003年以后正距平期等3个阶段,其中年际变化河南站最大,曲麻莱站次之,甘德站最稳定;秋季降水与次年解冻期的土壤储水量、解冻期间降水量对封冻期储水量3站中有2站关系密切,解冻期间降水量与年平均储水量的相关性显著。求证了秋水春用的理论依据和三江源地区土壤水的补给主要来源于大气降水,因此进一步说明开展三江源地区人工增雨的必要性。  相似文献   

18.
济阳自动与人工土壤水分观测数据对比分析   总被引:1,自引:0,他引:1  
采用对比差值和相关系数分析等方法,利用济阳2010年2月23日至2010年12月8日期间,DZNl型自动土壤水分观测站与同地段人工观测的土壤相对湿度资料进行统计分析,结果表明:人工观测的数据反映的土壤水分变化波动较大,自动站观测的土壤水分相对平缓。在0~20cm土层一致性表现好,40~50cm土层表现较差。0~10cm,10~20cm,20~30cm土层和70~80cm,90~100cm土层人工观测值高于自动站测值,30~40cm,40~50cm,50~60cm土层人工观测值低于自动站测值。分析结果为评估DZNl型自动土壤水分观测仪的监测提供客观依据。  相似文献   

19.
基于自动土壤水分观测站数据建立本地土壤水分变化模型,通过人工取土烘干法观测的实际土壤湿度数值对自动土壤水分观测站数据进行修正和校订,再由修正过的自动土壤水分观测站数据作为当日的初始湿度,通过天气预报中无降水日数或降水日期及雨量大小做出未来一段时间内的失墒或增墒的模型,再通过不同的气象条件对增、失墒进行相关订正,做出相应的土壤墒情的预报,最后根据土壤墒情预报结果对照本地的土壤干旱量级指标,从而随时做出快速准确的本地旱情预报,为各级领导组织指挥农业生产、开展人影作业、指导农民进行田间管理等活动提供及时可靠的决策依据。本文通过此模型对2012年松原地区夏季干旱情况进行预报,再通过实际土壤墒情实况进行对比,预报结果基本正确。由于人工测值有一定随机性,所以人工观测值与自动站观测数据的对比只能做为参考而不可能完全吻合。但从长期数据应用情况来看,基于土壤自动水分观测站的土壤墒情监测及干旱预报模型方便稳定,反应水分变化趋势更有连续性。  相似文献   

20.
中国土壤湿度的垂直变化特征   总被引:24,自引:0,他引:24  
使用中国 57个站 1981~ 2 0 0 0年 0~ 10 0cm的土壤湿度资料 ,逐站进行了垂直方向土壤湿度的诊断分析 ,根据湿度的垂直分布形态归纳为 3种主要类型 :夏季均匀型、急剧变化型和季节差异型 ;分析土壤湿度的年际变化发现 :多数测站湿度的距平符号在垂直方向是一致的 ,变化趋势以长时间持续干和湿以及 3~ 4a振荡周期为主 ;进一步对干和湿期土壤湿度和降水量进行合成 ,发现湿期和干期的土壤湿度垂直分布多数情况下保持了气候态的基本特征 ,湿期减干期的土壤湿度差与降水差有很好的对应关系  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号