首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We present a new diagnostic diagram based on ISOCAMspectra (5-16 m) to distinguish the emission inducedby the active galactic nucleus (AGN) from that associated with thestar formation activity. This diagnostic based on the mid-IRcontinuum and the Unidentified Infrared Band (UIB) intensity allowsus to estimate the relative importance of the three components (HIIregions, diffuse/photo-dissociation regions (PDRs), and AGN) contained ingalaxy mid-infrared emission. In AGN spectra, we confirm the absenceof UIBs presumably photodissociated by the X-UV radiation field. Inaddition, a non-negligible continuum below 9 m commonlyassociated with emission from hot dust is present in AGNs. Adiagnostic diagram derived from these two results can be used fordetecting obscured AGNs embedded in a large concentration of dust.  相似文献   

2.
We explore whether our models for starbursts, quiescent star-forming galaxies and for active galactic nuclei (AGN) dust tori are able to model the full range of Spitzer Infrared Spectrograph (IRS) spectra measured with Spitzer . The diagnostic plot of 9.7 μm silicate optical depth versus 6.2 μm polycyclic aromatic hydrocarbon (PAH) equivalent width, introduced by Spoon and coworkers in 2007, gives a good indication of the age and optical depth of a starburst, and of the contribution of an AGN dust torus. However, there is aliasing between age and optical depth at later times in the evolution of a starburst, and between age and the presence of an AGN dust torus. Modelling the full IRS spectra and using broad-band 25–850 μm fluxes can help to resolve these aliases. The observed spectral energy distributions require starbursts of a range of ages with initial dust optical depth ranging from 50–200, optically thin dust emission ('cirrus') illuminated by a range of surface brightnesses of the interstellar radiation field, and AGN dust tori with a range of viewing angles.  相似文献   

3.
We present a quantitative estimate of the relative active galactic nucleus (AGN)/starburst content in a sample of 59 nearby  ( z < 0.15)  infrared bright ultraluminous infrared galaxies (ULIRGs) taken from the 1-Jy sample, based on infrared L -band (3–4 μm) spectra. By using diagnostic diagrams and a simple deconvolution model, we show that at least 60 per cent of local ULIRGs contain an active nucleus, but the AGN contribution to the bolometric luminosity is relevant only in  ∼15–20  per cent of the sources. Overall, ULIRGs appear to be powered by the starburst process, responsible for >85 per cent of the observed infrared luminosity. The subsample of sources optically classified as low-ionization nuclear emission-line regions (LINERs; 31 objects) shows a similar AGN/starburst distribution as the whole sample, indicating a composite nature for this class of objects. We also show that a few ULIRGs, optically classified as starbursts, have L -band spectral features suggesting the presence of a buried AGN.  相似文献   

4.
Based on optical–NIR spectra, we discuss the nebular properties and stellar populations of starburst nuclei. Starbursts are found to have higher electron densities and higher excitations than HII nuclei. The emission lines have been used to estimate the nebular oxygen abundances, ionization parameter and radiation softness parameter. From a study of the Hα emission-line equivalent widths and the CaII triplet absorption line equivalent widths, we infer the ages and stellar content of the starburst regions. Most of the nuclei show evidence for a composite population – a young, ionizing population co-existing with evolved, non-ionizing stars of about 5–7 Myr, which are evolving towards the peak of RSG distribution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The availability of new observing facilities both from ground and space such as the Keck 10m telescope and the Hubble Space Telescope is casting new light on the spectroscopic investigation of emission line galaxies. In particular, it is now possible to detect spectra with a significantly improved signal to noise ratio in a very wide wavelength range, from the ultraviolet to the near infrared (HST, Keck) and beyond (ISO is unveiling the far infrared domain). As we move to high redshifts, however, it is more likely that the observed spectra are given by the contribution of different components in the galaxy: in particular, this may be the case if an Active Galactic Nucleus (AGN hereafter) emitting a power-law continuum is surrounded by regions with strong star formation activity. The identification of the source which ionizes the line emitting regions is then complicated by the fact that we are observing the integrated spectrum from regions which are ionized by different sources. In this paper we wish to review which line ratios may be used in order to discriminate between photoionization by young stars and power-law continuum in the wavelength range from 1200 Å to 100 μm. To this aim we used the photoionization code Cloudy (Ferland 1996) to present a series of diagnostic diagrams showing the dependence of emission line ratios on the main input parameters of photoionization models in the case of one component models with gaseous clouds ionized by (1) a stellar continuum typical of an HII region and (2) a power-law continuum typical of an AGN: these line ratios are plotted as isoratio maps for different values of the hydrogen density, ionization parameter and slope of the power-law continuum. We then show how the results may be affected by more realistic assumptions about the environment of the ionized gas: to this aim, we show the effects on selected line ratios of (a) the presence of two populations of clouds with different densities and (b) an AGN surrounded by regions with strong star formation activity.  相似文献   

6.
We present mid-infrared images and spectra of Arp 10 and Arp 118, two collisional ring galaxies observed as part of the ISOCAM GT program CAMACTIV (P.I.: I.F. Mirabel). The observations reveal the distribution of hot dust in the galaxies and enable us to probe the mechanisms responsible for the heating of the ISM. Unlike the peculiar mid-infrared colours recently discovered in the Cartwheel, the prime example of a collisional ring, Arp 10 has colours typical of those found inspiral arms of late type spirals. Similarly for Arp 118 (NGC 1144),the mid-infrared emission is associated with the regions of star formation in the ring. Moreover, a hot continuum in the 5.1–6.7 μmrange, which is a typical mid-infrared signature of an AGN, is clearly detected from the Seyfert 2 nucleus of the galaxy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
We are addressing the issue of whether there exists an evolutionaryconnection between starburst and AGN in luminous infrared galaxies. We are combining theoretical modelling with optical, radio and infrared data from IRAS for a large sample of 285 infrared galaxies with a range ofluminosities. In this paper, we present a comparison between the optical spectroscopic data with the incidence of compact radio cores for a subsample of these galaxies. We find 90% of AGN type galaxies contain compact radio cores, while 37% of starburst galaxies contain compact radio cores. The compact radio cores in the starburst galaxies have a minimum brightness temperature of 3 × 105 K, higher than those of standard extended HII regions and may be obscured AGN or complexes of extremely luminous supernovae such as that seen in Arp 220.  相似文献   

8.
W51 is a giant radio complex lying along the tangent to the Sagitarius arm at a distance of about 7 kpc from the Sun, with an extension of about 1° in the sky. It is divided into three components A, B, C where W51A and W51B consist of many compact HII regions while W51C is a supernova remnant. We have made continuum radio observations of these HII regions of the W51 complex at 240, 610, 1060 and 1400 MHz using GMRT with lower resolution (20″ × 15″) at the lowest frequency. The observed spectra of the prominent thermal subcomponents of W51 have been fitted to a free-free emission spectrum and their physical properties like electron temperatures and emission measures have been estimated. The electron temperatures from continuum spectra are found to be lower than the temperatures reported from radio recombination line (RRL) studies of these HII regions indicating the need for a filling factor even at this resolution. Also, the observed brightness at 240 MHz is found to be higher than expected from the best fits suggesting the need for a multicomponent model for the region.  相似文献   

9.
Continuum radiation from active galactic nuclei   总被引:1,自引:0,他引:1  
Summary Active galactic nuclei (AGN) can be divided into two broad classes, where the emitted continuum power is dominated either by thermal emission (radio-quiet AGN), or by nonthermal emission (blazars). Emission in the 0.01–1 m range is the primary contributor to the bolometric luminosity and is probably produced through thermal emission from an accretion disk, modified by electron scattering and general relativistic effects. The 1–1000 m continuum, the second most important contributor to the power, is generally dominated by thermal emission from dust with a range of temperatures from 40 K to 1000–2000 K. The dust is probably reemitting 0.01–0.3 m continuum emission, previously absorbed in an obscuring cone (or torus) or an extended disk. The 1–10 keV X-ray emission is rapidly variable and originates in a small region. This emission may be produced through Compton scattering by hot thermal electrons surrounding an accretion disk, although the observations are far from being definitive. The weak radio emission, which is due to the nonthermal synchrotron process, is usually elongated in the shape of jets and lobes (a core may be present too), and is morphologically distinct from the radio emission of starburst galaxies.In the blazar class, the radio through ultraviolet emission is decidedly non-thermal, and apparently is produced through the synchrotron process in an inhomogeneous plasma. The plasma probably is moving outward at relativistic velocities within a jet in which the Lorentz factor of bulk motion (typically 2–6) increases outward. This is inferred from observations indicating that the opening angle becomes progressively larger from the radio to the optical to the X-ray emitting regions. Shocks propagating along the jet may be responsible for much of the flux variability. In sources where the X-ray continuum is not a continuation of the optical-ultraviolet synchrotron emission, some objects show variability consistent with Compton scattering by relativistic electron in a large region (in BL Lacertae), while other objects produce their X-ray emission in a compact region, possibly suggesting pair production.When orientation effects are included, all AGN may be decomposed into a radio-quiet AGN, a blazar, or a combination of the two. Radio-quiet AGN appear to have an obscuring cone or torus containing the broad emission line clouds and an ionizing source. Most likely, the (non-relativistic) directional effects of this obscuring region give rise to the difference between Seyfert 1 and 2 galaxies or narrow and broad line radio galaxies. For different orientations of the nonthermal jet, relativistic Doppler boosting can produce BL Lacertae objects or FR I radio galaxies, or at higher jet luminosities, flat-spectrum high-polarization quasars or FR II radio galaxies.  相似文献   

10.
The irregular galaxy M82 is known as the archetypal starburst galaxy. Its proximity (3.5 Mpc) makes this galaxy an ideal laboratory for studying the properties of its starburst. The detailed morphology of the [FeII] 1.644 μm and emission Paα (at 1.87 μm) is revealed by the NICMOS images. The peak of the 2.2 μm continuum brightness(evolved population) lies very close to the dynamical centre. Most of the Paα emission (which traces the young population) is distributed in a ring of star formation (with a `hole' lacking line emission at the centre of the galaxy). These observations support the scenario in which the starburst in M82 is propagating outwards. It has long been suggested that the [FeII] emission in starburst galaxies can be used as a measure of supernova (SN) activity. M82 shows a large number of radio supernova remnants (SNRs), approximately 50, lying in the plane of the galaxy. The comparison of the positions of the bright compact [FeII] emitting regions with the location of the radio SNRs shows that there is no one-to-one spatial correspondence between the two emissions, suggesting that the radio and [FeII] emissions trace two populations of SNRs with different ages. Young (a few hundred years) SNRs are best traced by their radio emission, whereas the [FeII] stage lasts for at least a few 104 yr. The compact [FeII] sources contribute only some 20 % of the total [FeII] emission observed in M82. However, much of the remaining unresolved [FeII] emission in the plane of the galaxy may arise from SNRs that expanded and merged into a general interstellar medium within a few 104 yr. Presumably, as much as 70% of the total extinction-corrected [FeII]1.644 μm in M82 is associated with SNRs. The extended and diffuse [FeII] component in M82 seems to be related with the superwind above and below the disc of the galaxy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
We have obtained wide-field thermal infrared (IR) images of the Carina nebula, using the SPIREX/Abu telescope at the South Pole. Emission from polycyclic aromatic hydrocarbons (PAHs) at 3.29 μm, a tracer of photodissociation regions (PDRs), reveals many interesting well-defined clumps and diffuse regions throughout the complex. Near-IR images  (1–2 μm)  , along with images from the Midcourse Space Experiment ( MSX ) satellite  (8–21 μm)  have been incorporated to study the interactions between the young stars and the surrounding molecular cloud in more detail. Two new PAH emission clumps have been identified in the Keyhole nebula, and have been mapped in  12CO(2–1)  and  (1–0)  using the Swedish–ESO Submillimetre Telescope (SEST). Analysis of their physical properties reveals that they are dense molecular clumps, externally heated with PDRs on their surfaces and supported by external pressure in a similar manner to the other clumps in the region. A previously identified externally heated globule containing IRAS 10430−5931 in the southern molecular cloud shows strong 3.29-, 8- and 21-μm emission, the spectral energy distribution (SED) revealing the location of an ultracompact (UC) H  ii region. The northern part of the nebula is complicated, with PAH emission intermixed with mid-IR dust continuum emission. Several point sources are located here, and through a two-component blackbody fit to their SEDs we have identified three possible UC H  ii regions as well as a young star surrounded by a circumstellar disc. This implies that star formation in this region is ongoing and not halted by the intense radiation from the surrounding young massive stars.  相似文献   

12.
Molecular line emission is a useful tool for probing the highly obscured inner kpc of starburst galaxies and buried AGNs. Molecular line ratios serve as diagnostic tools of the physical conditions of the gas—but also of its chemical properties. Both provide important clues to the type and evolutionary stage of the nuclear activity. While CO emission remains the main tracer for molecular distribution and dynamics, molecules such as HCN, HNC, HCO+, CN and HC3N are useful for probing the properties of the denser (n≳104 cm−3), star-forming gas. Here I discuss current views on how line emission from these species can be interpreted in luminous galaxies. HNC, HCO+ and CN are all species that can be associated both with photon dominated regions (PDRs) in starbursts—as well as X-ray dominated regions (XDRs) associated with AGN activity. HC3N line emission may identify galaxies where the starburst is in the early stage of its evolution.  相似文献   

13.
Radio imaging of ULIR galaxies is ideal to explore the connection between the starburst and the AGN phenomenon since it is unaffected by dust obscuration, and provides the required high angular resolution to distinguish between an AGN and starburst emission. We have made combined 18 cm radio continuum, EVN and MERLIN observations of 13 ULIRGs that have the parsec and deci-parsec scale resolution necessary to distinguish between an AGN and supernovae remnants at the centres of these galaxies, and assess the contribution of each to the total energy distribution. Images of three galaxies are presented here.  相似文献   

14.
We describe improved modelling of the emission by dust in a toroidal-like structure heated by a central illuminating source within active galactic nuclei (AGNs). We have chosen a simple but realistic torus geometry, a flared disc, and a dust grain distribution function including a full range of grain sizes. The optical depth within the torus is computed in detail taking into account the different sublimation temperatures of the silicate and graphite grains, which solves previously reported inconsistencies in the silicate emission feature in type 1 AGNs. We exploit this model to study the spectral energy distributions (SEDs) of 58 extragalactic (both type 1 and type 2) sources using archival optical and infrared data. We find that both AGN and starburst contributions are often required to reproduce the observed SEDs, although in a few cases they are very well fitted by a pure AGN component. The AGN contribution to the far-infrared luminosity is found to be higher in type 1 sources, with all the type 2 requiring a substantial contribution from a circumnuclear starburst. Our results appear in agreement with the AGN unified scheme, because the distributions of key parameters of the torus models turn out to be compatible for type 1 and type 2 AGNs. Further support to the unification concept comes from comparison with medium-resolution infrared spectra of type 1 AGNs by the Spitzer observatory, showing evidence for a moderate silicate emission around 10 μm, which our code reproduces. From our analysis we infer accretion flows in the inner nucleus of local AGNs characterized by high equatorial optical depths  ( AV ≃ 100)  , moderate sizes  ( R max < 100 pc)  and very high covering factors (   f ≃ 80  per cent) on average.  相似文献   

15.
We describe an observational programme aimed at understanding the radio emission from distant, rapidly evolving galaxy populations. These observations were carried out at 1.4 and 8.5 GHz with the VLA, centred on the Hubble Deep Field, obtaining limiting flux densities of 40 and 8 μJy respectively. The differential count of the radio sources is marginally sub-Euclidean to the completeness limits(γ = − 2.4 ± 0.1) and fluctuation analysis suggests nearly 60 sources per arcmin2 at the 1 μJy level. Using high-resolution 1.4 GHz observations obtained with MERLIN, we resolve all radio sources detected in the VLA complete sample and measure a median angular size for the microjansky radio population of 1-2". This clue, coupled with the steep spectral index of the 1.4 GHz selected sample, suggests diffuse synchrotron radiation in z ∼ 1 galactic discs. The wide-field HST and ground-based optical exposures show that the radio sources are identified primarily with disc systems composed of irregulars, peculiars, interacting/merging galaxies and a few isolated field spirals. Only 20% of the radio sources can be attributed to AGN – the majority are probably associated with starburst activity. The available redshifts range from 0.1 to 3, with a mean of about 0.8. We are plrobably witnessing a major episode of starburst activity in these luminous (L > L *) systems, occasionallyaccompanied by an embedded AGN.About 20% of the radio sources remain unidentified to I = 26-28 inthe HDF and flanking fields. Several of these objectshave extremely red counterparts. We suggestthat these are high-redshift dusty protogalaxies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Bellucci  G. 《Earth, Moon, and Planets》1997,78(1-3):305-311
Previous analysis of imaging spectroscopy data in the 0.4–1 μm spectral range of comet Hale-Bopp, have shown the presence of two regions on the sunward and antisunward sides of the nucleus exhibiting different continuum emission (Bellucci, 1998, hereafter paper I). In this work we present the modeling of the continuum emission in terms of size distribution and composition of the dust grains. The spectra are fitted by micron sized olvine grains. A mechanism to explain the spatial gradient is also proposed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
We present spatially resolved 10-μm spectra of the nucleus of IC 5063 that are near-diffraction-limited. The observations were obtained with T-ReCS, the mid-infrared (mid-IR) imager and spectrometer on the 8.1-m Gemini South telescope, with the slit aligned at a position angle on the sky along the direction of the cone of narrow-line emission. The spectra cover the nucleus and the inner reaches of the ionization cones at a spatial resolution of approximately 0.4 arcsec (90 pc). Individual spectra, extracted in steps in the spatial direction along the slit, reveal variations in continuum slope and silicate feature profile and depth on subarcsecond scales, illustrating in unprecedented detail the complexity of the circumnuclear regions of this galaxy at mid-IR wavelengths. The dust population in the vicinity of the narrow-line region, north-west of the nuclear position, is significantly warmer than that to the south-east of the nucleus. This is consistent with an observation of the cooler dust associated with the outer reaches of the postulated torus that obscures the type 1 nucleus in this object.  相似文献   

18.
We present the Wide-field Infrared Survey Explorer (WISE) photometric data of 158 Fermi-detected BL Lacs and investigate the nature of their mid-infrared (MIR) continuum emission. In the [3.4]-[4.6]-[12] μm color–color diagram, nearly all their colors lie within the WISE Blazar strip (WBS), which is an effective diagnostic tool to separate sources dominated by non-thermal radiation from those dominated by thermal radiation. This feature indicates that their MIR emission is predominantly non-thermal. This argument is further supported by the strong radio-MIR flux correlation. We derive their MIR spectral indices and compare them with the near-infrared (NIR) spectral indices. We find that there is a prevalent steepening from MIR spectrum to NIR spectrum. The low-frequency-peaked BL Lacs (LBLs) have on average a larger MIR spectral index and a higher MIR luminosity than the high-frequency-peaked BL Lacs (HBLs), and the intermediate-frequency-peaked BL Lacs (IBLs) appear to bridge them. The MIR-γ-ray flux correlation is highly significant. A strong positive correlation is also found between the MIR and γ-ray spectral indices. The γ-ray-MIR loudness is significantly correlated with the synchrotron peak frequency. Finally we propose that the γ-rays are highly associated with the MIR emission from the jet, and the γ-ray emission is likely from the synchrotron self-Compton process for the Fermi-detected BL Lacs in our sample.  相似文献   

19.
Optically very faint  ( R > 25.5)  sources detected by the Spitzer Space Telescope at 24 μm represent a very interesting population at redshift   z ∼ (1.5–3)  . They exhibit strong clustering properties, implying that they are hosted by very massive haloes, and their mid-infrared emission could be powered by either dust-enshrouded star formation and/or by an obscured active galactic nucleus (AGN). We report observations carried out with the Max Planck Millimetre Bolometer (MAMBO) array at the IRAM 30-m antenna on Pico Veleta of a candidate protocluster with five optically obscured sources selected from the 24-μm Spitzer sample of the First-Look Survey. Interestingly, these sources appear to lie on a high-density filament aligned with the two radio jets of an AGN. Four out of five of the observed sources were detected. We combine these measurements with optical, infrared and radio observations to probe the nature of the candidate protocluster members. Our preliminary conclusions can be summarized as follows: the spectral energy distributions (SEDs) of all sources include both AGN and starburst contributions; the AGN contribution to the bolometric luminosities ranges between 14 and 26 per cent of the total. Such a contribution is enough for the AGN to dominate the emission at 5.8, 8 and 24 μm, while the stellar component, inferred from SED fitting, prevails at 1.25 mm and at  λ < 4.5 μ  m. The present analysis suggests a coherent interplay at high z between extended radio activity and the development of filamentary large-scale structures.  相似文献   

20.
We present a 5–8 μm analysis of the Spitzer spectra of 71 ultraluminous infrared galaxies (ULIRGs) with redshift   z < 0.15  , devoted to the study of the role of active galactic nuclei (AGN) and starbursts (SBs) as the power source of the extreme infrared emission. Around ∼5 μm, an AGN is much brighter (by a factor of ≈30) than an SB of equal bolometric luminosity. This allows us to detect the presence of even faint accretion-driven cores inside ULIRGs: signatures of AGN activity are found in ∼70 per cent of our sample (50/71 sources). Through a simple analytical model, we are also able to obtain a quantitative estimate of the AGN/SB contribution to the overall energy output of each source. Although the main fraction of ULIRG luminosity is confirmed to arise from star formation events, the AGN contribution is non-negligible (∼23 per cent) and is shown to increase with luminosity. The existence of a rather heterogeneous pattern in the composition and geometrical structure of the dust among ULIRGs is newly supported by the comparison between individual absorption features and continuum extinction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号