首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spheroidal carbonaceous fly-ash particles (SCPs) are produced by the high temperature combustion of fossil-fuels such as coal and oil. They are not produced by any natural processes and therefore are unambiguous indicators of atmospheric deposition from power generation and other industrial sources. In lake sediments, SCP concentration profiles are robust, replicable and often regionally characteristic such that the main profile features can be used for sediment dating. Previous work in the UK provided dates for the three main SCP profile features for Scotland, North Wales and Northern Ireland and also highlighted the lack of information for the rest of the UK. In this study, archived SCP data and new SCP concentration profiles were compiled from 80 radionuclide-dated sediment cores from across the whole of the UK in order to determine the regional coherence of temporal trends. Using SCP cumulative percentage profiles, with the SCP concentration peak set as 100%, dates for each 10% were produced for each core. Comparing these dates, eight distinct regions were found within the UK and dated cumulative profiles, with errors, were determined for each. Despite this regionality, the whole of the UK showed the same date for the start of the record (1850±25 years) and for the 40- and 50% (1940±15 and 1955±15, respectively). The national coherence of the former is thought to be due to the large confidence limits in the radionuclide dates for this period, whilst the latter is thought to be due to the impact from the major increase in electricity demand following the Second World War and the widespread introduction and use of cheap fuel-oil. Since the 1960s the trend has been one of increasing regionalisation resulting from the introduction of particle arrestor technology, the decline of heavy industry, the move to fewer and larger sources, particularly power stations, and an increase in accuracy for the dates of recent horizons. Regional trends are seen to compare well with industrial development in the UK and in some western areas influenced by emissions from Ireland. Areas of uncertainty remain in South Wales and the northern isles. A cumulative percentile was also calculated for each region for 1963 in order that this can be compared with the 241Am and 137Cs peaks.  相似文献   

2.
A whole-basin, mass-balance approach to paleolimnology   总被引:1,自引:0,他引:1  
Lake sediments record the flux of materials (nutrients, pollutants, particulates) through a lake system both qualitatively, as changes in the composition of geochemical and biological tracers, as well as quantitatively, through changes in their rate of burial. Burial rates provide a direct link to contemporary (neo-) limnological studies as well as management efforts aimed at load reductions, but are difficult to reconstruct accurately from single cores owing to the spatial and temporal variability of sediment deposition in most lakes. The accurate determination of whole-lake burial rates from analysis of multiple cores, though requiring more effort per lake, can help resolve such problems and improve our understanding of sediment heterogeneity at multiple scales. Partial solutions to these problems also include focusing corrections based on 210Pb flux, co-evaluation of concentration profiles, trend analysis using multiple lakes, and trend replication based on a small number of cores from the same lake. Recent multi-core studies demonstrate that no single core site faithfully records the whole-lake time-resolved input of materials, but that as few as five well-placed cores can provide a reliable record of whole-lake sediment flux for morphometrically simple basins. Lake-wide sediment fluxes can be coupled with reconstructed outflow losses to calculate historical changes in watershed and atmospheric loading of nutrients, metals, and other constituents. The ability of paleolimnology to accurately assess the sedimentary flux and extend the period of reference into the distant past represents an important contribution to the understanding of biogeochemical processes and their response to human and natural disturbance.  相似文献   

3.
We measured variability in the composition of diatom and chrysophyte assemblages, and the pH inferred from these assemblages, in sediment samples from Big Moose Lake, in the Adirondack Mountains of New York. Replicate samples were analyzed from (1) a single sediment core interval, (2) 12 different intervals from each of 3 separate cores, and (3) 10 widely spaced surface sediment samples (0–1 cm). The variability associated with sample preparation (subsampling, processing, and counting) was relatively small compared to between-core and within-lake variability. The relative abundances of the dominant diatom taxa varied to a greater extent than those of the chrysophyte scale assemblages. Standard deviations of pH inferences for multiple counts from the same sediment interval from diatom, chrysophyte, and diatom plus chrysophyte inference equations were 0.04 (n=8), 0.06 (n=32), and 0.06 (n=8) of a pH unit, respectively. Stratigraphic analysis of diatoms and chrysophytes from three widely spaced pelagic sediment cores provided a similar record of lake acidification trends, although with slight differences in temporal rates of change. Average standard deviations of pH inferences from diatom, chrysophyte and diatom plus chrysophyte inference equations for eight sediment intervals representing similar time periods but in different cores were 0.10, 0.20, and 0.09 pH unit, respectively. Our data support the assumption that a single sediment core can provide an accurate representation of historical change in a lake. The major sources of diatom variability in the surface sediments (i.e., top 1.0 cm) were (1) differences in diatom assemblage contributions from benthic and littoral sources, and (2) the rapid change in assemblage composition with sediment depth, which is characteristic of recently acidified lakes. Because scaled chrysophytes are exclusively planktonic, their spatial distribution in lake sediments is less variable than the diatom assemblages. Standard deviations of pH inferences for 10 widely spaced surface sediment samples from diatom, chrysophyte and diatom plus chrysophyte inference equations were 0.21, 0.09, and 0.16 of a pH unit, respectively.  相似文献   

4.
Diatom analyses were undertaken of sediment cores covering a range of water depths in a small eutrophic lake (Lough Augher, Co. Tyrone, N. Ireland). The significance of between-core variability in diatom relative frequency stratigraphy was assessed by Canonical Correspondence Analysis (CCA) where the ordination axes were constrained to external environmental variables (sediment depth, core location coordinates, water depth, effective fetch, distance-from-shore and distance-from-inflow). After the removal of the effect of sediment age by partialling it out, the resultant first two axes from the partial-CCA were significantly correlated with water depth and distance-from-shore, indicating non-uniform diatom stratigraphies across the lake. Despite this variability, all cores show the same succession of species and, therefore, record the eutrophication of the lake. Diatom-inferred total phosphorus (DI-TP) was inferred for six cores using weighted averaging regression and calibration. Apart from considerable differences of DI-TP in surficial sediment samples, there was good between-core repeatability of DI-TP profiles. These data support the use of DI-TP for establishing background nutrient concentrations for lakes, and associated implications for lake restoration schemes using single cores. Comparisons of DI-TP profiles and total diatom accumulation rate data for the individual cores indicate that diatom production peaked prior to the maximum TP concentrations in the lake.  相似文献   

5.
Spatial and temporal patterns of spheroidal carbonaceous particles (SCP) extracted from lake sediments provide an unambiguous record of the distributions of fossil-fuel derived pollutants. When applied to sediment cores taken from Lake Baikal spatial patterns show good agreement with the distribution of industry, with the highest concentrations found in the southern basin nearest to Irkutsk. SCP were found to occur in all cores from all areas of the lake in contrast to metal results where anthropogenically enhanced deposition was only demonstrable in the southern basin. SCP distribution within the sediments of Lake Baikal is seen to be distinctly regional and therefore long distance transport is not thought to be an important pathway for these pollutants. Temporal patterns of SCP show trends that reflect the development of industry in the area since the 1940s. Settling rates in the 1600 m water column suggest that the SCP sediment record may be approximately an order of magnitude more sensitive to depositional changes than that of trace metals.  相似文献   

6.
The variability of diatom distribution in an acidified, upland wind-stressed lake (Loch Fleet, Galloway, S. W. Scotland) was assessed by analysis of 28 surface sediment samples and 11 cores. Correspondence analysis (CA) and cluster analysis were used to illustrate the variability of the surface sediment and core samples. There was reasonable uniformity of taxa in most of the surface sediment samples, although 7 samples, as indicated by both CA and cluster analyses were atypical. Most cores recorded clearly the acidification of the lake, although percentages of individual taxa varied up to 20% between cores. Two cores had old, preacidification diatom assemblages (of indeterminate age) close to the sediment surface. These old sediments were probably the source of the re-worked diatoms found in the atypical surface sediment assemblages. Diatom trends, as CA ordinations and pH profiles, were less variable than the surface sediment assemblages. It is argued that non-uniform sediment accumulation rates and diatom deposition cause variability in surface sediment diatom samples. This variability may be reduced in core profiles by homogenization during further resuspension/deposition cycles and burial. Cores, and the associated time component they offer, may be useful in assessing the variability of surface sediment assemblages.  相似文献   

7.
The geochemistry of lake (Renstradträsket) and estuarine (Pieni Pernajanlahti Bay) sediment was investigated in a medium sized watershed draining to the Gulf of Finland, Baltic Sea. Catchment land-use types were compared and found similar. Sediment cores were dated using 210Pb- and 137Cs-chronologies and analyzed for Al, K, Cu, Zn, Fe, Mn, phosphorus fractions, TN, TC and biogenic silica (BSi). Differences between the sediment cores were studied by using linear regression analysis and principal components analysis (PCA). Despite similarities in catchment land-use and history, the sediment geochemical profiles of the sites varied significantly. Some of the differences could be related to differences in chemical sedimentation environment (lacustrine versus estuarine). TP concentration was found to be positively correlated with sediment iron content in estuarine sediment but negatively correlated with Fe in lake sediment. In the estuarine core sedimentary iron was not correlated to lithogenic potassium and aluminum but in the lake core the iron seemed to be lithogenic in origin, as suggested by the strong positive correlations (r 2 = 0.95–0.96) between these three variables. Most similarities among the cores were found in Al concentrations. Estuarine nutrient profiles appeared relatively monotonous compared to the lake core. This is probably due to more vigorous mixing of the sediments that may ensure more rapid and complete consumption of the organic matter deposited on the bottom of the estuary. Therefore the lake sediment appeared to preserve the historical record of eutrophication better. Biologically less active and more particle-bound materials like the trace metals Cu and Zn seemed to retain good records of anthropogenic impact also in the estuarine core. The study highlights the need to take the sedimentation environment into account when interpreting geochemical record.  相似文献   

8.
Spheroidal carbonaceous particles (SCP) from combustion of oil and coal have been quantified in cores from top sediments of Danish shallow lakes. Chronologies were provided by 210Pb-dating supplemented by measurements of other radionuclides (137Cs, 134Cs, 241Am). All cores show indications of sediment mixing but most still retain a characteristic SCP record. Deposition rates of SCP were low until the 1920s, increased strongly after World War II, reached maximum levels around 1970 and decreased thereafter. These results were used to infer a new chronology for a sediment core from a shallow lake, from which a 210Pb chronology had previously been published.SCP inventories are positively correlated with 210Pb inventories and dry matter accumulated since 1900, suggesting that absolute SCP accumulation rates may be more influenced by sedimentary processes than by atmospheric fluxes. The concentrations of SCP in surface sediments of the six lakes do, however, correlate with regional SO2 emissions.  相似文献   

9.
Lake sediments can be significantly impacted by industrial activities. These impacts vary among sites and include both local point sources and atmospherically-derived pollution. Here we present results of a lake sediment pollution record from Ullswater, UK, where lead mining activities have taken place within the catchment since 1690, although large-scale mining did not begin until 1840. Metal concentration data from 12 cores taken along a lake bed transect illustrate that lead mining at Greenside Mine had a significant impact on the lake sediments. High Pb concentrations were identified throughout Ullswater, and exhibited a spatial gradient from south to north, with concentrations decreasing with greater distance from the main source of input at Glenridding. Furthermore, inter-element correlations exhibit spatial variation that reflects the processes by which they are incorporated into the lake sediment record. Together, these observations illustrate potential shortcomings in palaeoenvironmental reconstructions and pollution studies based on single cores from large and morphologically variable lakes. Sedimentation rates were estimated by matching this pollution record with the historical record of mining activities. Within Ullswater, sedimentation rates from 1840 to the present varied from 0.67 to 2.33 mm year−1 with a mean of 1.4 mm year−1; highest sedimentation rates were observed in the deepest section of the lake and close to the main inputs, and lowest sedimentation rates were observed in the northern part of the lake, furthest from the main input. Despite the considerable changes in mining techniques and production, there is little evidence to suggest significant changes in sedimentation rates over time.  相似文献   

10.
Analysis of fly-ash particles in lake sediments has become increasingly important in studies of environmental pollution and lake acidification history. Most fly-ash studies have concerned black spheroidal carbonaceous particles (SCP)(>5 m) produced from oil and coal combustion. This review paper provides a summary of this technique and its application, and focusses on our investigations in Sweden between 1979 and 1993. It consists of five parts: i) preparation and analysis methods, ii) historical trends in atmospheric deposition, iii) geographical surveys of atmospheric deposition, iv) sediment dating, and v) studies of sedimentation processes in lakes. Methods for preparation and analyses of SCP have been developed and applied to investigations using sediment, soil and snow samples. Stratigraphic trends of SCP concentrations in lake-sediment cores reflect the consumption history of fossil fuels. A characteristic temporal SCP pattern, with a marked concentration increase beginning after the 1940's and a peak in the early 1970's, has been recognized in most Swedish lakes and elsewhere in Europe. A survey of SCP concentrations in surface sediments of >100 lakes covering Sweden demonstrated that polluted areas in southern Sweden had >100 times higher SCP concentrations than clean areas in the north. The spatial distribution of SCP over Sweden is similar to the deposition pattern of long-range transported airborne pollutants, such as excess sulphate monitored by network stations. SCP also accumulate in soils, and soil analyses can be used for determining the integrated historical deposition of SCP at the local or regional scale. Finally, SCP have been used for indirect dating of sediment cores and as a marker to assess sediment distribution patterns within lake basins.  相似文献   

11.
Fly-ash particles comprising spheroidal carbonaceous particles (SCP) and inorganic ash spheres (IAS), produced from industrial fossil-fuel combustion, are found in lake sediments throughout the world where they provide an historical record of atmospheric pollutant deposition. These particles have been widely used to assess the temporal and spatial distribution of industrial atmospheric pollution in both freshwater and terrestrial environments in Europe and the USA. However, there have been very few palaeolimnological fly-ash studies undertaken in Japan and none in Japanese mountain lakes. Here, we present the historical SCP and IAS records from a radiometrically dated sediment core taken from Lake Akagi-konuma (36°31′ 54″N, 139°11′ 32″E; elevation 1,470 m) located 100 km north-west of Tokyo. Meteorological data and back trajectory analyses confirm potential sources both within Japan and further afield in China and South Korea. SCP contamination began in the 1950s and increased rapidly to a peak in the mid-1980s. It is thought this represents contamination of Japanese origin, principally oil-fired power stations within 150 km of the lake. The profile of IAS, almost solely coal-derived, shows a rapid increase in the 1970s, in contrast to the record of coal consumption in Japan. The IAS record is therefore thought to reflect long-range transport from coal combustion sources in eastern China which started to expand in the 1970s. This raises concerns over the potential impact on Japanese mountain areas from recent rapid increases in, and predicted acceleration of, emissions from this industrial process. The scale of SCP contamination recorded in Lake Akagi-konuma is equivalent to moderately impacted mountain lakes in Europe, but is at the upper end of the range for remote lakes in the western United States.  相似文献   

12.
We report here on the first detailed ostracode stratigraphic record to be obtained from late Holocene sediments of Lake Tanganyika. We analyzed four cores, three from the northern lake region and a fourth from a more southern lake locality, that collectively record ostracode assemblages under a variety of disturbance regimes. These cores provide a stratigraphic record of ostracode abundance and diversity, as well as depositional changes over time periods of decades to millennia. We have investigated the fossil ostracodes in these cores by looking at temporal changes of species diversity and population structure for the species present. All four cores provided distinct patterns of ostracode diversity and abundance. BUR-1, a northern lake core obtained close to the Ruisizi River delta, yielded a sparse ostracode record. Karonge #3, another northern core from a site that is closely adjacent to a river delta with high sediment loading, yielded almost no ostracodes. The third core 86-DG-14, taken from a somewhat less disturbed area of the lake, suggests that there have been recent changes in ostracode populations. Through most of the lower portion of this core, ostracode abundance is low and species richness is relatively constant. Above 7 cm there is a marked increase in ostracode abundance and a corresponding decrease in species richness, probably signaling the onset of a major community disturbance, perhaps due to human activities. The southernmost core, 86-DG-32, is from a site that is well removed from influent rivers. Ostracode abundance varies erratically throughout the core, whereas species richness is relatively constant and high throughout the core. The temporal variation evident in ostracode community makeup both within and between the studied cores may be a result of naturally patchy distributions among ostracodes, coupled with local extinctions and recolonizations, or it may reflect inadequate sampling of these high diversity assemblages. In either case, these cores illustrate the potential to obtain high resolution ostracode records from the rich, endemic fauna of Lake Tanganyika that can be used to address questions about the history of community structure and human impacts in this lake.  相似文献   

13.
Fossil invertebrates from cores collected in Lake Tanganyika provide a record of probable nearshore ecological response to recent watershed deforestation and sediment erosion in several East African watersheds. We compared paleoecological profiles (primarily from ostracodes) from watersheds spanning a range of sizes and present-day deforestation disturbance levels to understand the timing and magnitude of faunal changes, and their relationship in time to terrestrially-derived disturbance indicators. Profiles from the Lubulungu and Nyasanga/Kahama Rivers (Tanzania) provide a record of faunal variability in watersheds that are currently undisturbed with respect to deforestation. These records indicate continuous faunal turnover through time. However, this pattern of turnover is accompanied by relatively high levels of diversity throughout the record, with no wholesale extinction events. Ostracode taphonomic data and other fossil abundance data from the Lubulungu area provide strong evidence in support of at least two episodes of lower lake levels, associated with episodes of Late Holocene aridity. Records from deltas of disturbed watersheds at the Kabesi River (Tanzania) and those of Northern Burundi all show a combination of profound and abrupt faunal turnover, in some cases accompanied by local extinction and establishment of a few dominant taxa. At the Mwamgongo River delta, fed from a very small, disturbed watershed, species turnover was subtler. In disturbed watershed cores showing abrupt faunal changes the transitions mostly occurred in the late 19th to early 20th centuries, predating the major mid-20th century increase in sediment mass accumulation rates, with the latter only correlated with changing fossil abundance and flux. However, the earlier faunal community changes are contemporaneous with both palynological and geochemical changes in the core profiles indicative of changing land-use patterns. This suggests that lacustrine ecosystem response to deforestation was a two-stage process, with an earlier phase of response to changing quality of sediments or dissolved matter being discharged from the watershed, and a subsequent phase responding to increased quantity of sediment.  相似文献   

14.
There is an important volume of published information on Lac Dufault (Québec) which describes the history of metal inputs over 70 years and the changes that occurred in the lake as a result of this contamination. We used this abundant source of chronological markers to test the hypothesis that lake sediments can provide true historical records of trace metal loading from metal mining. Sediment cores were obtained from the deepest zone of the lake (19 m). The sediments were dated using 210Pb and 137Cs and they were analyzed for total elemental concentrations (Ca, Cd, Cu, Fe, P, Pb, S, Zn). Metal profiles in the sediment core preserved the distinct signatures of different mine exploitations documented in the lake watershed. In particular, the core recorded: the beginning of industrialization in 1926; increasing sedimentation rates associated with perturbations in the lake watershed; the maximum of sediment [Cu] and the contemporary exploitation of ore bodies rich in Cu; the maximum of sediment [Fe] and the contemporary production of pyrite by a mining operation; the low sediment [Cu] and [Zn] in the 1950s and the low contemporary production of these metals by mining operations; the maximum of sediment [Cd] and the contemporary production of Cd by a subsequent mining operation. Anomalies in the distribution of 214Pb activities in sediments reflected the intensity of acid mine drainage (AMD). There is good evidence that the lake resisted acidification from this AMD for the last thirty years. Overall, our results support the thesis that profiles of sedimentary Cd, Cu, Zn, Pb and Fe levels reflect the past history of metal input to Lac Dufault.  相似文献   

15.
Inorganic ash particles are formed by the fusing of inorganic material present during the high temperature combustion of fossil fuels. As they accumulate in lake sediments, they record the history of atmospheric contamination produced from such sources. A technique has been developed for concentrating these particles from lake sediments involving the stepwise removal of unwanted components of the sediment, including organic material and biogenic silica.When applied to a sediment core taken from Loch Tinker, central Scotland, a particle concentration profile, very similar to that of the carbonaceous particle profile (the other component of fossil-fuel combustion ash) is produced. The concentration of the inorganic ash spheres in the sediment is approximately an order of magnitude higher than the carbonaceous particles and there appears to be a continuous pre-industrial background value. This seems to imply a similar source (i.e. coal combustion rather than oil) for both inorganic ash and carbonaceous particles. This method has also been used with success on peat cores.  相似文献   

16.
A 40-cm sediment core from Big Moose Lake (Adirondack Mountains, New York, U.S.A.) was analyzed for recent changes in chrysophyte composition of chrysophyte species to assess if legislated reductions of sulphur emissions have resulted in changes in biological composition and inferred lakewater pH in this lake. This core, taken in September 1994, had a record of stratigraphic changes in chrysophyte assemblages remarkably similar to those in 210Pb-dated sediment cores taken in 1983 and 1988. Abrupt changes in chrysophyte stratigraphy were used to date the newest sediment core by stratigraphic correlation. We observed relatively constant composition of chrysophyte species and inferred-pH values in post-1970 sediments, which suggests that there has been little change in lakewater pH values despite the reductions in sulfate deposition since 1970 in the Adirondacks. These results are consistent with recent monitoring measurements in the Adirondacks. Further research is necessary to ascertain the applicability of these findings to other lakes in the Adirondacks and to determine the reasons for the lack of recovery.  相似文献   

17.
A combined mineral magnetic and scaled chrysophyte study of lake sediments from Lake Lacawac and Lake Giles in northeastern Pennsylvania was conducted to determine the effects of land-use and sediment source changes on the variation of pH, conductivity, and alkalinity inferred from biotic changes. Ten 30–40 cm long gravity cores were collected from Lake Lacawac and three from Lake Giles. Isothermal remanent magnetizations (IRMs) were given to the lake sediments in a 1.3 T magnetic field to measure magnetic mineral concentration variations. IRM acquisition experiments were conducted to identify magnetic mineralogy. The bedrock, soils and a peat bog on the shores of Lake Lacawac were also sampled for magnetic analysis to determine possible lake sediment sources. The top 10 cm of sediment collected from Lakes Lacawac and Giles was two to four times more magnetic than deeper sediment. 210Pb dating suggests that this intensity increase commenced circa 1900. SEM images of magnetic extracts from the highly magnetic sediments indicates the presence of magnetic fly ash microspheres from fossil fuel burning electric power generation plants. The similarity in magnetic coercivity in the top 8 cm lake sediments and in the peat bog supports an atmospheric source for some of the magnetic minerals in the youngest lake sediments. The highly magnetic sediments also contain an antiferromagnetic mineral in two cores closest to Lake Lacawacs southeastern shore. This magnetic mineral is only present deep in the soil profile and would suggest erosion and significant land-use changes in the Lacawac watershed as another cause for the high magnetic intensities (concentrations) in the top 10 cm of the lake sediments. The most significant changes in the scaled chrysophyte flora occurred immediately above the 10 cm level and were used to infer a doubling of the specific conductivity between circa 1910 and 1929. These variations also support land-use changes in the Lacawac catchment at this time. A similar shift in the scaled chrysophte flora was not observed in the top of Lake Giles, however, distinct changes were found in the deeper sections of the core coupled with a smaller peak in magnetic concentration. Fourier analysis of the 210Pb-dated lake sediment magnetics indicates the presence of a 50 year period, low amplitude variation in the Lake Lacawac, Lake Giles, and Lake Waynewood (Lott et al., 1994) magnetic concentration records. After removal of the land-use/fly ash magnetic concentration peak by Gaussian filtering, the 50 year variation correlates strongly from lake to lake even though the lakes are in different watersheds separated by up to 30 km. When this magnetic variation is compared with Gaussian-filtered rainfall variations observed in New York City and Philadelphia over the past 120–250 years there is a strong correlation suggesting that magnetic concentration variations can record regional rainfall variations with an approximately 50 year period. This result indicates that magnetics could be used to document regional variations in climatic change.  相似文献   

18.
A composite record of varve sedimentation is presented from high arctic meromictic Lake C2. The combination of a short runoff and sediment transport season with the strong density stratification of the lake lead to the formation of annual sediment couplets. This conclusion was confirmed by 210Pb determinations. High intra-lake correlation of the varves allowed the construction of a composite record of varve sedimentation from overlapping segments of multiple sediment cores. Cross-dating between core segments isolated counting errors in individual cores, that could be attributed to minor sediment disturbances and vague structures. Resolving counting errors by cross-dating reduced the chronological error of the composite series to an estimated ±57 years.The Lake C2 series is the first non-ice cap, high resolution late-Holocene environmental record from the Canadian high arctic. The composite varve series compares favorably with other high resolution proxies from the arctic, in particular with the ice core records from Devon Island and Camp Century, Greenland. A general correspondence between the varve record and other North American proxies for the little Ice Age period (1400–1900 AD) suggests that the Lake C2 record is sensitive to large-scale synoptic changes.This is the tenth in a series of papers published in this issue on the Taconite Inlet Lakes Project. These papers were collected by Dr R. S. Bradley.  相似文献   

19.
Multiple cores from Lake Pumoyum Co, southern Tibet, provide an improved understanding of the spatial distribution of lake sediments, and how well they represent the paleo-climate. Comparative study of these cores using AMS 14C dating and environmental proxies clarified their relationships with environmental changes. Our work focused on understanding the spatial similarities among cores covering different time scales, and evaluating variations in sedimentary processes across sites. The four studied cores demonstrate different sedimentation rates, but environmental proxies help synchronize the timing of environmental variations. Sediment variables such as total organic carbon (TOC), inorganic carbon (IC), and grain size in different cores correlate well and corroborate changing trends over the past 10,000 cal years. Differences in sedimentation rates and facies among core sites probably result largely from differences in water depth. The core from the deepest site displays the highest average sedimentation rates and the highest accumulation rates of TOC, but lowest content of IC. Two cores from somewhat shallower sites have plant residues in their lower sections and record similar variations in both the number of layers and their depositional ages. Our results do not indicate any significant variation in sedimentation pattern or its related factors among the three sites. A single core from the deepest site could adequately represent the total lake environment over the time span covered. But cores from somewhat shallower sites might reveal important shifts in the environment over a longer time period.  相似文献   

20.
Recent environmental change research in Lake Baikal is introduced together with an overview of several interrelated papers published concurrently in this issue of Journal of Paleolimnology. Five themes are tackled by analysis of recent Baikal sediment cores, dating, geochemistry, particulate pollutants, magnetism and diatoms. The concurrent papers focus on the first four themes in some detail and summary results of diatom analysis (from Mackay et al., 1998) are given here. Taken together these studies provide a time-space framework for recent environmental change in Lake Baikal not previously available.There are significant shifts in species composition of the endemic planktonic diatom assemblages in uppermost sediments collected from throughout the lake. However, these changes usually precede the sediment record of low level but widespread contamination by industrial products. The most clear sign of industrial contamination is the presence of particles from fossil fuel combustion in sediment post dating the 1930s.Although evidence for widespread biostratigraphic changes by pollution is lacking, radionuclide, diatom, lithostratigraphic and magnetic stratigraphies indicate two main features, (i) it is possible to make stratigraphic correlations within and between basins using recent sediment cores, (ii) that turbidite deposits, from several to tens of cm thick, are frequently encountered in recent sediments.Turbidite deposits occur in 210Pb dated and pre-210Pb sediment core sections and are undoubtedly a major macro-disturbance feature in many deep water locations in Lake Baikal. If profiles are to be used as direct proxy records of climate variability, then screening of cores for turbidites is a pre-requisite for quality assurance in future paleoenvironmental studies.On-going international research including Swiss, Russian and British joint paleoenvironmental studies on the distribution and biological formation of recent sediments will hopefully lead to better interpretation of Holocene and pre-Holocene sediment records in Lake Baikal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号