首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
1991年3月24日磁暴期间南极地区地磁脉动的分析   总被引:2,自引:0,他引:2       下载免费PDF全文
重点分析了1991年3月24日在南极中山站和长城站观测到的丰富的地磁脉动现象,给出了各种地磁脉动发生的时间和主要特征,并对两站各种地磁脉动做了比较分析.这不仅可以认识磁暴期间南极地区向日面与背日面、高纬与中纬地磁脉动的不同表现,也帮助我们了解南极地区磁暴期间地磁脉动形态和磁暴过程的关系。  相似文献   

2.
本文利用低纬地磁台站的Pi1、Pi2地磁脉动(Pi1-2)资料和地球同步轨道的Pc5地磁脉动资料,对2004年1月到2006年12月38个磁暴事件的地磁脉动参数进行了统计分析.在此基础上,考虑相对论电子的局部加速机制,并加入损失机制,建立了一个初步的磁暴期间地球同步轨道相对论电子通量对数值的预报模型.利用该模型,我们对上述38个磁暴事件进行预报试验,最优化结果是:相对论电子通量对数值的预测值和观测值之间的线性相关系数为0.82,预报效率为0.67.这说明该模式具有较好的预报效果,也表明利用地磁脉动参数进行相对论电子通量预报是可行的.  相似文献   

3.
我们根据北京怀柔地磁脉动观测站在1982年6月至1983年5月的观测记录,分析了这时期发生的急始型磁暴中伴随SSC发生的瞬态地磁脉动。这种脉动的形态和地方时有关,白天有明显的衰减振荡,晚上则近似为非振荡的湾状扰动。我们分析了这种瞬态地磁脉动的振幅、持续时间、功率谱和急始形态的关系,并结合目前国外卫星的探测结果对这种脉动的形成和传播路径作了讨论。  相似文献   

4.
中低纬地区地磁脉动的研究   总被引:1,自引:0,他引:1  
近年来我们对中低纬地区地磁脉动进行了大量的观测和研究。本文不仅介绍了观测仪器的设计、台网设置及数据处理方法。而且还简要地介绍了一些主要科研成果,如低纬Pc3脉动特点,低纬Pi2脉动偏振特性。南极地区的地磁脉动观测结果,以及在磁暴和太阳耀斑期间在低纬地区观测的地磁脉动。这对于进一步认识中低纬地区地磁脉动是十分有益的。  相似文献   

5.
通过将廊坊、富克地磁台站数据与国内地磁台站十三陵、三亚台以及国际标准地磁台站MMB台的观测数据对比分析,发现各地磁台站数据变化幅度相近、相关性高,对地磁暴有明显响应,且磁暴期间各时段扰动幅度相近。同时,以高质量地磁数据为基础,采用快速傅里叶变换,对廊坊与富克地磁台站的地磁观测数据开展地磁脉动提取,研究发现,两个台站在地磁暴期间均能观测到明显的Pi1、Pi2、Pc5地磁脉动,且Pc5的持续时间、平均强度、变化幅度和Pi1的持续时间、变化幅度及Pi2的变化幅度均有明显增加,为今后开展地磁脉动与高能电子增强事件相关性研究奠定了基础。  相似文献   

6.
基于小波多分辨率分析的地磁脉动信号提取   总被引:1,自引:0,他引:1  
张平  山秀明  毛玉平 《地震研究》2007,30(2):179-181
2003年10月29日,云南通海地磁台记录到一次K=9的特大磁暴。运用本次强磁暴的数字化记录资料,探讨了用小波多分辫率分解Mallat塔式率算法在强磁暴信号水平上提取地磁脉动弱信号的方法。结果表明,该算法提取的地磁脉动信号频率成分清晰、基线平整、波型完好。  相似文献   

7.
北京数字化地磁脉动观测台网   总被引:1,自引:0,他引:1       下载免费PDF全文
周军成  韩克礼 《地震学报》1994,16(3):389-394
叙述了北京数字化地磁脉动观测台网的基本情况、特点以及在地震预报研究和地磁学科研究等方面的重要作用。该台网提供了磁暴、磁扰、地磁日变及地磁脉动等地磁事件的数字化观测资料。这些观测资料由于其精度高和动态范围大, 蕴含有极为丰富的信息, 分析处理更为方便。   相似文献   

8.
地磁场对1999年9月空间天气大事件的响应   总被引:1,自引:0,他引:1  
1999年9月22-25日发生一个大磁暴(Dst=-164nT).磁暴主相开始的头1小时伴随有丰富的Pc型地磁脉动,包括Pc2,Pc3,Pc4等。在行星际磁场Bz由北向转向南向后,磁暴主相开始,南向分量达到最大值后大约2小时,地磁H分量达到最小值,恢复相开始,并且,这次磁暴与太阳风各参数以及星际电场也存在一定的对应关系。  相似文献   

9.
本文分析了乌鲁木齐地磁台的急始型变化事件的资料,发现1983年乌鲁木齐地区发生的三次M≥5级的地震中,有两次与地磁短周期变化存在着联系。本文选取地磁变化周期为1—10分钟的磁暴急始(S_c)、急始脉冲(S_z)、磁脉动(P_c)  相似文献   

10.
参加我国南极考察队的中国科学院地球物理研究所贺长明同志于1985年1月至2月底在乔治岛中国南极长城站(62°13′S,58°57′W)进行了地磁与高空物理方面的观测,为我国获得了宝贵的第一批南极哨声、地磁脉动和磁暴观测资料。 观测是在低温、潮湿和暴风雪的恶劣环境中进行的。观测所用的哨声定向接收机和地磁脉动仪是我们自己研制的。这次收到的哨声种类丰富,频散值大,背景清洁,频次高;地磁脉动强度大,频带宽;此外,还用质子旋进磁力仪进行了地磁场的测量。这些资料不仅对研究高纬度和极区的地磁与高空物理现  相似文献   

11.
We investigate the features of the planetary distribution of wave phenomena (geomagnetic pulsations) in the Earth’s magnetic shell (the magnetosphere) during a strong geomagnetic storm on December 14–15, 2006, which is untypical of the minimum phase of solar activity. The storm was caused by the approach of the interplanetary magnetic cloud towards the Earth’s magnetosphere. The study is based on the analysis of 1-min data of global digital geomagnetic observations at a few latitudinal profiles of the global network of ground-based magnetic stations. The analysis is focused on the Pc5 geomagnetic pulsations, whose frequencies fall in the band of 1.5–7 mHz (T ~ 2–10 min), on the fluctuations in the interplanetary magnetic field (IMF) and in the solar wind density in this frequency band. It is shown that during the initial phase of the storm with positive IMF Bz, most intense geomagnetic pulsations were recorded in the dayside polar regions. It was supposed that these pulsations could probably be caused by the injection of the fluctuating streams of solar wind into the Earth’s ionosphere in the dayside polar cusp region. The fluctuations arising in the ionospheric electric currents due to this process are recorded as the geomagnetic pulsations by the ground-based magnetometers. Under negative IMF Bz, substorms develop in the nightside magnetosphere, and the enhancement of geomagnetic pulsations was observed in this latitudinal region on the Earth’s surface. The generation of these pulsations is probably caused by the fluctuations in the field-aligned magnetospheric electric currents flowing along the geomagnetic field lines from the substorm source region. These geomagnetic pulsations are not related to the fluctuations in the interplanetary medium. During the main phase of the magnetic storm, when fluctuations in the interplanetary medium are almost absent, the most intense geomagnetic pulsations were observed in the dawn sector in the region corresponding to the closed magnetosphere. The generation of these pulsations is likely to be associated with the resonance of the geomagnetic field lines. Thus, it is shown that the Pc5 pulsations observed on the ground during the magnetic storm have a different origin and a different planetary distribution.  相似文献   

12.
The dynamics of the Pc5 and Pi1 pulsation characteristics and relativistic electron fluxes at geostationary orbit were comparatively analyzed for three nine-day intervals, including quiet periods and periods of geomagnetic storms. It was shown that relativistic electron fluxes increase considerably when the power of global Pc5 pulsations and the index of midlatitude irregular Pi1 pulsations increase simultaneously. The correlation between the characteristics of Pi1 and Pc5 geomagnetic pulsations and the level of the relativistic electron flux at geostationary orbit during the magnetic storm recovery phase were studied. It was shown that the correlation coefficient of the relativistic electron maximal fluxes during the magnetic storm recovery phase with the parameter of midlatitude Pi1 pulsations is slightly higher than such a correlation coefficient with the solar wind velocity.  相似文献   

13.
Spatial-temporal and spectral features of ground geomagnetic pulsations in the frequency range of 1–5 mHz at the initial phase of a strong magnetic storm of the 24th cycle of solar activity (August 5–6, 2011, with a Dst-variation in the storm maximum of ?110 nT) are analyzed. Large opposite in sign amplitudes of variations in IMF parameters (from ?20 to +20 nT) at a high velocity of the solar wind (~650 km/s) accompanied by intense bursts in solar-wind density (up to ~50 cm?3) were distinctive feature of interplanetary medium conditions causing the storm. Geomagnetic Pi3 pulsations global in longitude and latitude and in-phase in the middle and equatorial latitudes were found. The onset of pulsation generation was caused by a pulse of dynamic pressure of the solar wind (~20 nPa), i.e., by a considerable compression of the magnetosphere. The maximum (2–3 mHz) in the amplitude spectrum of near-equatorial pulsations coincided with the maximum of pulsations in the daytime polar cap. After the next jump of the dynamic pressure of the solar wind (~35 nPa), an additional maximum appeared in the pulsation spectrum in the frequency band of ~3.5–4.5 mHz. Global pulsations suddenly stopped after a sharp decrease in the solar-wind dynamic pressure and corresponding extension of the magnetosphere. The obtained results are compared with the time dynamics of the position and shape of the plasmapause.  相似文献   

14.
During an interaction of the Earth’s magnetosphere with the interplanetary magnetic cloud on October 18–19, 1995, a great magnetic storm took place. Extremely intense disturbances of the geomagnetic field and ionosphere were recorded at the midlatitude observatory at Irkutsk (Φ′≈45°, Λ′≈177°, L≈2) in the course of the storm. The most important storm features in the ionosphere and magnetic field are: a significant decrease in the geomagnetic field Z component during the storm main phase; unusually large amplitudes of geomagnetic pulsations in the Pi1 frequency band; extremely low values of critical frequencies of the ionospheric F2-layer; an appearance of intense Es-layers similar to auroral sporadic layers at the end of the recovery phase. These magnetic storm manifestations are typical for auroral and subauroral latitudes but are extremely rare in middle latitudes. We analyze the storm-time midlatitude phenomena and attempt to explore the magnetospheric storm processes using the data of ground observations of geomagnetic pulsations. It is concluded that the dominant mechanism responsible for the development of the October 18–19, 1995 storm is the quasi-stationary transport of plasma sheet particles up to L≈2 shells rather than multiple substorm injections of plasma clouds into the inner magnetosphere.  相似文献   

15.
An analysis of sampled 1-s observational data on geomagnetic pulsations within the Pc3 range on the INTERMAGNET network of near-equatorial and low-latitude observatories spaced over longitude during the initial phase of a moderate magnetic storm (April 5–7, 2010) was carried out for the first time. The obtained results were compared with magnetic observations at the low-latitude Chambon-la-Foret (CLF) and subauroral Kerguelen (PAF) observatories, as well as with observations at six Australian observatories located at low and middle latitudes. Two time intervals were studied in detail: the sudden commencement (SC) of the storm and the onset of the great global substorm. In the first interval, maximal amplitudes of near-equatorial pulsations were observed in the near-noon sector; in the second interval, in the near-midnight sector. The dynamics of the spectral structure of Pc3 pulsations in the considered events was shown to be different in spite of the fact that in both cases an amplification of waves was observed in two close spectral bands of the Pc3 spectrum: ~20–30 and ~30–40 mHz. The considered Pc3 pulsations were characterized by very small azimuthal wavenumbers (0.5 and less). Possible generation mechanisms for the observed Pc3 pulsations are discussed.  相似文献   

16.
The level of wave geomagnetic activity in the morning, afternoon, and nighttime sectors during strong magnetic storms with Dst varying from ?100 to ?150 nT has been statistically studied based on a new ULF wave index. It has been found out that the intensity of geomagnetic pulsations at frequencies of 2–7 mHz during the magnetic storm initial phase is maximal in the morning and nighttime sectors at polar and auroral latitudes, respectively. During the magnetic storm main phase, wave activity is maximal in the morning sector of the auroral zone, and the pulsation intensity in the nighttime sector is twice as low as in the morning sector. It has been indicated that geomagnetic pulsations excited after substorms mainly contribute to a morning wave disturbance during the magnetic storm main phase. During the storm recovery phase, wave activity develops in the morning and nighttime sectors of the auroral zone; in this case nighttime activity is also observed in the subauroral zone.  相似文献   

17.
Geomagnetism and Aeronomy - The features of daytime high latitude geomagnetic disturbances and geomagnetic pulsations during the recent strong magnetic storm on August 25–26, 2018, which...  相似文献   

18.
The results of magnetometric observations and radar studies of the lower ionosphere during the superstrong magnetic storm (geospace storm) of November 7–10, 2004, are presented and analyzed. An increase in the electron density and in the amplitudes of its aperiodic and quasi-periodic variations at high level of magnetic activity is detected. In individual time intervals, the relation of Pc5-6 magnetic pulsations to short-period (5–15 min) wave disturbances in the electron density in the lower ionosphere was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号