首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retrogressive erosion, a widespread phenomenon of sediment transport in reservoirs, often impacts on both the reservoir capacity and the sedimentation in the downstream river channel. Based on field data from the Sanmenxia Reservoir and the Lower Yellow River over the past decades, three courses of ret-rogressive erosion with distinctive features were analyzed. The results indicate that retrogressive erosion, especially caused by rapid reduction in the water level till the reservoir is empty, often results in the serious siltation of the lower Yellow River and threatens the safety of the flood control in the Lower Yellow River. Unreasonable operation of the reservoir and incoming hyperconcentrated floods accom-panied by retrogressive erosion also aggravate the siltation of the main channel of the river. However, a reasonable operation mode of the reservoir so named"storing the clear (low sediment concentration) water in the non–flood season, and sluicing the muddy(high sediment concentration) water in the flood season" was found, which might mitigate the deposition in both the reservoir and the Lower Yellow River. This operation mode provides important experience for the design and operation of large reser-voirs in other large rivers carrying huge amounts of sediment.  相似文献   

2.
《国际泥沙研究》2020,35(1):97-104
The flood season is the main period of flow,sediment transport,and sedimentation in the lower Yellow River(LYR).Within the flood season,most of the flow,sediment transport,and sedimentation occurs during flood events.Because of the importance of floods in forming riverbeds in the LYR,the regularity of sediment transport and sedimentation during floods in the LYR was studied.Measured daily discharge and sediment transport rate data for the LYR from 1960 to 2006 were used.A total of 299 floods were selected;these floods had a complete evolution of the flood process from the Xiaolangdi to the Lijin hydrological stations.For five hydrological stations(Xiaolangdi,Huayuankou,Gaocun,Aishan,and Lijin),a correlation was first established for floods of different magnitudes between the average sediment transport rate at a given station and the average sediment concentration at the closest upstream station.The results showed that the sediment transport rate at the downstream station was strongly correlated with the inflow(upstream station) sediment concentration during a flood event.A relation then was established between sedimentation in the LYR and the average sediment concentration at the Xiaolangdi station during a flood event.From this relation,the critical sediment concentrations were obtained for absolute erosion,sedimentation equilibrium,and absolute deposition during floods of different magnitudes in the LYR.The results of the current study contri b ute to a better understanding of the mechanisms of sediment transport and the regularity of sedimentation in the LYR during floods,and provide technical support to guide the joint operation of reservoirs and the regulation of the LYR.  相似文献   

3.
Abstract

The new Swedish guidelines for the estimation of design floods for dams and spillways are presented, with emphasis on high-hazard dams. The method is based on a set of regional design precipitation sequences, rescaled for basin area, season and elevation above sea level, and a full hydrological model. A reservoir operation strategy is also a fundamental component of the guidelines. The most critical combination of flood generating factors is searched by systematically inserting the design precipitation sequence into a ten year climatological record, where the initial snowpack has been replaced by a statistical 30-year snowpack. The new guidelines are applicable to single reservoir systems as well as more complex hydroelectric schemes, and cover snowmelt floods, rain floods and combinations of the two. In order to study the probabilities of the computed floods and to avoid regional inconsistencies, extensive comparisons with observed floods and frequency analyses have been carried out.  相似文献   

4.
基于长江中下游一、二维耦合水动力学模型,以1954和1998年洪水为典型,模拟了三峡水库调蓄前后洞庭湖区的洪水过程,定量分析了三峡水库对洞庭湖区防洪的贡献.结果表明:在长江发生1954和1998年全流域大洪水期间,三峡水库实施兼顾对城陵矶河段的防洪补偿调度,可有效缓解荆南三口河系及湖区的防洪压力,减少荆南三口 1.58...  相似文献   

5.
《水文科学杂志》2013,58(5):974-991
Abstract

The aim is to build a seasonal flood frequency analysis model and estimate seasonal design floods. The importance of seasonal flood frequency analysis and the advantages of considering seasonal design floods in the derivation of reservoir planning and operating rules are discussed, recognising that seasonal flood frequency models have been in use for over 30 years. A set of non-identical models with non-constant parameters is proposed and developed to describe flows that reflect seasonal flood variation. The peak-over-threshold (POT) sampling method was used, as it is considered to provide significantly more information on flood seasonality than annual maximum (AM) sampling and has better performance in flood seasonality estimation. The number of exceedences is assumed to follow the Poisson distribution (Po), while the peak exceedences are described by the exponential (Ex) and generalized Pareto (GP) distributions and a combination of both, resulting in three models, viz. Po-Ex, Po-GP and Po-Ex/GP. Their performances are analysed and compared. The Geheyan and the Baiyunshan reservoirs were chosen for the case study. The application and statistical experiment results show that each model has its merits and that the Po-Ex/GP model performs best. Use of the Po-Ex/GP model is recommended in seasonal flood frequency analysis for the purpose of deriving reservoir operation rules.  相似文献   

6.
7.
Reservoirs are the most important constructions for water resources management and flood control. Great concern has been paid to the effects of reservoir on downstream area and the differences between inflows and dam site floods due to the changes of upstream flow generation and concentration conditions after reservoir’s impoundment. These differences result in inconsistency between inflow quantiles and the reservoir design criteria derived by dam site flood series, which can be a potential risk and must be quantificationally evaluated. In this study, flood frequency analysis (FFA) and flood control risk analysis (FCRA) methods are used with the long reservoir inflow series derived from a multiple inputs and single output model and a copula-based inflow estimation model. The results of FFA and FCRA are compared and the influences on reservoir flood management are also discussed. The Three Gorges Reservoir (TGR) in China is selected as a case study. Results show that the differences between the TGR inflow and dam site floods are significant which result in changes on its flood control risk rates. The mean values of TGR’s annual maximum inflow peak discharge and 3 days flood volume have increased 5.58 and 3.85% than the dam site ones, while declined by 1.82 and 1.72% for the annual maximum 7 and 15 days flood volumes. The flood control risk rates of middle and small flood events are increased while extreme flood events are declined. It is shown that the TGR can satisfy the flood control task under current hydrologic regime and the results can offer references for better management of the TGR.  相似文献   

8.
Abstract

A procedure to identify sets of operational rules for gated spillways for optimal flood routing management of artificial reservoirs is proposed. The flood retention storage of a dam having a gated flood spillway is divided into 15 sub-storages whose surface elevations are identified as critical levels. The most suitable operation set for the downstream conditions and for the dam can be chosen from many derived operation sets. The spillway gates are operated in an optimum way for any floods from very small magnitudes to the probable maximum flood (PMF), without having to forecast the actual magnitude of the incoming flood hydrograph. Decision floods are formed by dividing the PMF into 15 sub-hydrographs by 5 and 10% increments in the ranges 5–50% and 50–100% of the PMF, respectively. Many potential spillway gate openings from closed to fully open are chosen initially. As a result of a series of routing simulations of 15 decision floods, a set of 15 gate openings is determined such that all floods from very small magnitudes to the PMF may be routed without overtopping the dam crest. Next, a few more 15-stage operation rules are determined such that the gate openings of the initial stages are decreased as their critical levels are increased stepwise, with the objective of attenuating smaller floods more effectively and releasing higher outflows for larger floods close to and including the PMF. The developed model is applied to the Catalan and Aslantas dams in Turkey, both of which serve for flood mitigation as well as hydropower generation.

Citation Haktanir, T., Citakoglu, H., and Acanal, N., 2013. Fifteen-stage operation of gated spillways for flood routing management through artificial reservoirs. Hydrological Sciences Journal, 58 (5), 1013–1031.

Editor Z.W. Kundzewicz; Associate editor A. Montanari  相似文献   

9.
High‐magnitude floods across Europe within the last decade have resulted in the widespread reassessment of flood risk; this coupled with the introduction of the Water Framework Directive (2000) has increased the need for a detailed understanding of seasonal variability in flood magnitude and frequency. Mean day of flood (MDF) and flood seasonality were calculated for Wales using 30 years of gauged river‐flow records (1973–2002). Noticeable regional variations in timing and length of flood season are evident, with flooding occurring earlier in small catchments draining higher elevations in north and mid‐west Wales. Low‐altitude regions in West Wales exposed to westerly winds experience flooding during October–January, while large eastern draining catchments experience later flooding (January–February). In the northeast and mid‐east regions December–January months experience the greatest number of floods, while the southeast has a slightly longer flood season (December–February), with a noticeable increase in January floods. Patterns obtained from MDF data demonstrate their effectiveness and use in analysing regional patterns in flood seasonality, but catchment‐specific determinants, e.g. catchment wetness, size and precipitation regime are important factors in flood seasonality. Relatively strong correlations between precipitation and flood activity are evident in Wales, with a poorer relationship between flooding and weather types and the North Atlantic Oscillation (NAO). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Abstract

Seasonal design floods which consider information on seasonal variation are very important for reservoir operation and management. The seasonal design flood method currently used in China is based on seasonal maximum (SM) samples and assumes that the seasonal design frequency is equal to the annual design frequency. Since the return period associated with annual maximum floods is taken as the standard in China, the current seasonal design flood cannot satisfy flood prevention standards. A new seasonal design flood method, which considers dates of flood occurrence and magnitudes of the peaks (runoff), was proposed and established based on copula function. The mixed von Mises distribution was selected as marginal distribution of flood occurrence dates. The Pearson Type III and exponential distributions were selected as the marginal distribution of flood magnitude for annual maximum flood series and peak-over-threshold samples, respectively. The proposed method was applied at the Geheyan Reservoir, China, and then compared with the currently used seasonal design flood methods. The case study results show that the proposed method can satisfy the flood prevention standard, and provide more information about the flood occurrence probabilities in each sub-season. The results of economic analysis show that the proposed design flood method can enhance the floodwater utilization rate and give economic benefits without lowering the annual flood protection standard.

Citation Chen, L., Guo, S. L., Yan, B. W., Liu, P. & Fang, B. (2010) A new seasonal design flood method based on bivariate joint distribution of flood magnitude and date of occurrence. Hydrol. Sci. J. 55(8), 1264–1280.  相似文献   

11.

The assessment of flood risk under climate change impacts is necessary for sustainable flood management strategies at national level. Referring to the aforesaid statement, this research aims to evaluate the potential impacts of climate change on reservoir operations in the Huong River Basin, Vietnam. To enable further representation of climate change impacts, the HadGEM3-RA Regional Climate Model (RCM) under Representative Concentration Pathways (RCPs) 8.5 climate change scenario was used in this study. For assessing the level of flood risk posed to the study area, a coupled HEC-HMS hydrologic model and HEC-RAS hydrodynamic model was used to represent the behaviour of flow regimes under climate change impacts in the Huong River Basin. The key results demonstrated that the mean temperature and mean annual rainfall would be increased in the future from 0.2–0.8°C, and 4.8–6.0%, respectively. Consequently, the mean annual runoff and mean water level would also be increased from 10–30%, and 0.1–0.3 m above mean sea level, respectively. Moreover, the proposed reservoir operation rules corresponding to flood control warning stages was also derived to reduce peak flows downstream during the rainy season. Finally, the main findings of this study can be a good example for future planning of flood control reservoir systems in Vietnam.

  相似文献   

12.
Abstract

A six-stage operation policy for routing of flood hydrographs of return periods from 1.01 year up to the Probable Maximum Flood (PMF) for any dam having a gated spillway is proposed. The gate opening rules are determined depending on the recent pool level. Regardless of the size and timing of any incoming floods, the fixed rules of the six-stage operation policy will provide optimum routing for all, which are classified into six different groups based on their return periods. 10-, 100-, 1000-, 10 000- 100 000-year floods, and PMF are the upper limits for the six groups. Next, an Incremental Dynamic Programming programme is developed to optimize both the firm and secondary energies of hydroelectric generation at monthly periods. First, the six-stage flood routing programme is applied sequentially to three dams, all on the Seyhan River in Turkey, for 18 combinations resulting from different active storages, and optimum flood operation policies for all three dams for all 18 combinations are determined. Second, the Dynamic Programming programme is applied to these three dams, and optimum hydroelectricity generation policies for all 18 combinations are computed. Finally, the optimum active and flood retention storages for the three dams are determined so as to maximize the net probability-weighted present worth of hydroelectricity benefits minus flood damage costs.  相似文献   

13.
《水文科学杂志》2013,58(3):582-595
Abstract

This paper explores the potential for seasonal prediction of hydrological variables that are potentially useful for reservoir operation of the Three Gorges Dam, China. The seasonal flow of the primary inflow season and the peak annual flow are investigated at Yichang hydrological station, a proxy for inflows to the Three Gorges Dam. Building on literature and diagnostic results, a prediction model is constructed using sea-surface temperatures and upland snow cover available one season ahead of the prediction period. A hierarchical Bayesian approach is used to estimate uncertainty in the parameters of the prediction model and to propagate these uncertainties to the predictand. The results show skill for both the seasonal flow and the peak annual flow. The peak annual flow model is then used to estimate a design flood (50-year flood or 2% exceedence probability) on a year-to-year basis. The results demonstrate the inter-annual variability in flood risk. The predictability of both the seasonal total inflow and the peak annual flow (or a design flood volume) offers potential for adaptive management of the Three Gorges Dam reservoir through modification of the operating policy in accordance with the year-to-year changes in these variables.  相似文献   

14.
A 7-year sediment transport monitoring on the Upper Niger rivers was used to study the relationship between suspended sediment concentration and river discharge. During annual floods, these relationships show positive hysteresis. This paper presents the results of two models that estimate the time evolution of suspended sediment concentration using water discharge data only. The first model is based on a statistical approach using two relationships, one for the rising stage period of the flood and one for the recession period of the annual flood; the second model is a lumped conceptual one; it supposes that the sediment flux observed in the river comes from two different sources of sediment and that these two sources may be regarded as two different reservoirs. The erosion of the first reservoir represents hillslope erosion observed during the runoff season. Sediment supply from this ‘reservoir’ is limited in time because depletion occurs during the runoff season. The second reservoir is unlimited in time and quantity and its erosion represents contributions coming from bank erosion and mobilisation of deposits in the channel network.

Both of the models are compared with a simple rating curve based model. The model results show that the conceptual model has the highest efficiency to reproduce from weekly discharge only the time evolution of weekly suspended sediment concentrations, the time evolution of weekly sediment fluxes, and the global annual sediment yields.  相似文献   


15.
Abstract

The segmentation of flood seasons has both theoretical and practical importance in hydrological sciences and water resources management. The probability change-point analysis technique is applied to segmenting a defined flood season into a number of sub-seasons. Two alternative sampling methods, annual maximum and peaks-over-threshold, are used to construct the new flow series. The series is assumed to follow the binomial distribution and is analysed with the probability change-point analysis technique. A Monte Carlo experiment is designed to evaluate the performance of proposed flood season segmentation models. It is shown that the change-point based models for flood season segmentation can rationally partition a flood season into appropriate sub-seasons. China's new Three Gorges Reservoir, located on the upper Yangtze River, was selected as a case study since a hydrological station with observed flow data from 1882 to 2003 is located 40 km downstream of the dam. The flood season of the reservoir can be reasonably divided into three sub-seasons: the pre-flood season (1 June–2 July); the main flood season (3 July–10 September); and the post-flood season (11–30 September). The results of flood season segmentation and the characteristics of flood events are reasonable for this region.

Citation Liu, P., Guo, S., Xiong, L. & Chen, L. (2010) Flood season segmentation based on the probability change-point analysis technique. Hydrol. Sci. J. 55(4), 540–554.  相似文献   

16.
Suspended matter is an important indicator of water quality in freshwater systems. The flood‐induced turbidity current plays a dominant role in the seasonal dynamic of suspended matter in the Liuxihe Reservoir (23°45′50″N; 113°46′52″E), a large, stratified reservoir at the Tropic of Cancer in southern China. Field measurements show that loading and distribution of suspended matter in the reservoir differ in typical wet, dry and medium years, as a result of different discharge volumes and water level variation patterns. Using historical data and the practical demand for water supply and flood control, we generalized two feasible reservoir operational modes: flood impounding mode (drawing down the reservoir to a low level before flood events to impound inflow during the flooding season) and moderate level change mode (drawing down the reservoir to a moderate level before flood events, then keeping the level within the flood control level during runoff events). To examine the effects of different operational modes and outlet depths on the reservoir's flood‐induced turbidity current, a numerical simulation model was applied in three types of hydrological conditions. The results show that the mode with moderate drawdown and recharge processes can decrease loading of suspended matter in spring and promote turbidity current release during flood events, and upper withdrawal can improve the effects of turbid water release. We suggest that more attention should be focused on water quality management in the reservoir operation stage, severe artificial water level fluctuation being avoided and selective withdrawal becoming an optional management measure. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
In floodplains located in temperate regions, seasonal variations in temperature affect biological communities and these effects may overlap with those of the flood regime. In this study we explored if and how timing (with regard to temperature seasonality) influences the responses of planktonic and free-floating plants communities to floods in a warm temperate floodplain lake and assessed its relevance for determining state shifts. We took samples of zooplankton, phytoplankton, picoplankton, heterotrophic nanoflagellates and free-floating macrophytes at four sites of the lake characterized by the presence-absence of emergent or free-floating macrophytes along a 2-year period with marked hydrological fluctuations associated to river flood dynamics. We performed ANOVA tests to compare the responses of these communities to floods in cold and warm seasons and among sites. Planktonic communities developed high abundances in response to floods that occurred in the cold season, while the growth of free-floating macrophytes was impaired by low winter temperatures. Spring and summer floods favored profuse colonization by free-floating plants and limited the development of planktonic communities. The prolonged absence of floods during warm periods caused environmental conditions that favored Cyanobacteria growth, leading to a “low turbid waters” regime. The occurrence of floods early in the warm season caused phytoplankton dilution and promoted free-floating plant colonization and a shift towards a “high clear waters” state. Zooplankton:phytoplankton biomass ratio was very low during floods in warm seasons, thus zooplankton grazing on phytoplankton seemed to play a minor role in the maintenance of the clear regime.  相似文献   

18.
19.
Trends in the timing and magnitude of floods in Canada   总被引:2,自引:0,他引:2  
This study investigates trends in the timing and magnitude of seasonal maximum flood events across Canada. A new methodology for analyzing trends in the timing of flood events is developed that takes into account the directional character and multi-modality of flood occurrences. The methodology transforms the directional series of flood occurrences into new series by defining a new location of the origin. A test of flood seasonality (multi-modality) is then applied to identify dominant flood seasons. Floods from the dominant seasons are analyzed separately by a seasonal trend analysis. The Mann–Kendall test in conjunction with the method of pre-whitening is used in the trend analysis. Over 160 streamflow records from one common observation period are analyzed in watersheds with relatively pristine and stable land-use conditions. The results show weak signals of climate variability and/or change present in the timing of floods in Canada during the last three decades. Most of the significant trends in the timing of spring snowmelt floods are negative trends (earlier flood occurrence) found in the southern part of Canada. There are no significant trends identified in the timing of fall rainfall floods. However, the significance of the fall, rainfall-dominated flood season has been increasing in several analyzed watersheds. This may indicate increasing intensity of rainfall events during the recent years. Trends in the magnitude of floods are more pronounced than the trends in the timing of floods. Almost one fifth of all the analyzed stations show significant trends in the magnitude of snowmelt floods. Most of the significant trends are negative trends, suggesting decreasing magnitudes of snowmelt floods in Canada over the last three decades. Significant negative trends are found particularly in southern Ontario, northern Saskatchewan, Alberta and British Columbia. There are no significant trends in the magnitude of rainfall floods found in the analyzed streamflow records. The results support the outcomes of previous streamflow trend studies conducted in Canada.  相似文献   

20.
A low‐lying part of the Croatian capital, Zagreb, is exposed to flood risk from the Sava River. The biggest flood to data, with catastrophic consequences, occurred on 26 November 1964. To protect Zagreb from the Sava River floods, a flood control system was built and set in operation at the end of 1978. The Sava River's flood response changed over time as a result of this constructed system, as well as other anthropogenic and natural influences. The series of maximum annual Sava River stages and discharges measured at the Zagreb gauging station from 1926 to 2004 were analysed. Hydrological methods were used in order to assess Zagreb safety from the Sava River floods in the new conditions. This paper detects changes in high water occurrence in the Sava River near Zagreb. Long‐term stages and linear trends in discharges were examined. A simple technique for the conversion of stages to actual river channel morphology conditions was used. The technique presented in this paper enabled the recalculation of flood probabilities. It is stressed that for a complete understanding of floods, an examination should include the study of parameters of both maximum stages and maximum discharges. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号