首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. A thermal history model for the Earth is described in which the energetically important effects of convection are parameterized through the Nusselt number. The validity of the resulting quasi-steady-state thermal model is shown to depend upon the separation of two time-scales—a dynamic time-scale associated with the overturn time for an assumed mantle-wide convective circulation, and a thermal time-scale associated with the cooling of the planet. Provided the initial thermal state of the Earth was 'hot', the assumption of a time-scale separation can be shown under certain conditions, to be valid throughout the Earth's history. In this connection, the temperature-dependent mantle rheology plays a key role in regulating the thermal history. It is shown that the present-day, gross thermal structure of the Earth can be understood within the context of a quasi-steady-state model which is driven mainly by primordial heat. The notion of whole-mantle convection is shown to be consistent with several additional observational constraints, including the observed mean lithospheric thickness and the mean plate velocities. We briefly consider the extension of the parameterized thermal model to Venus.  相似文献   

2.
Plates are an integral part of the convection system in the fluid mantle, but plate boundaries are the product of brittle faulting and plate motions are strongly influenced by the existence of such faults. The conditions for plate tectonics are studied by considering brittle behaviour, using Byerlee's law to limit the maximum stress in the lithosphere, in a mantle convection model with temperature-dependent viscosity.
When the yield stress is high, convection is confined below a thick, stagnant lithosphere. At low yield stress, brittle deformation mobilizes the lithosphere which becomes a part of the overall circulation; surface deformation occurs in localized regions close to upwellings and downwellings in the system. At intermediate levels of the yield stress, there is a cycling between these two states: thick lithosphere episodically mobilizes and collapses into the interior before reforming.
The mobile-lid regime resembles convection of a fluid with temperature-dependent viscosity and the boundary-layer scalings are found to be analogous. This regime has a well defined Nusselt number–Rayleigh number relationship which is in good agreement with scaling theory. The surface velocity is nearly independent of the yield stress, indicating that the 'plate' motion is resisted by viscous stresses in the mantle.
Analysis suggests that mobilization of the Earth's lithosphere can occur if the friction coefficient in the lithosphere is less than 0.03–0.13—lower than laboratory values but consistent with seismic field studies. On Venus, the friction coefficient may be high as a result of the dry conditions, and brittle mobilization of the lithosphere would then be episodic and catastrophic.  相似文献   

3.
Summary. A simple, analytical model for mantle convection with mobile surface plates is presented. Our aim is to determine under what conditions free convection can account for the observed plate motions, and to evaluate the thermal structure of the mantle existing under these conditions. Boundary layer methods are used to represent two-dimensional cellular convection at large Rayleigh and infinite Prandtl numbers. The steady-state structure consists of cells with isentropic interiors enclosed by thermal boundary layers. Lithospheric plates are represented as upper surfaces on each cell free to move at a uniform speed. Buoyancy forces are concentrated in narrow rising and decending thermal plumes; torques imparted by these plumes drive both the deformable mantle and overlying plate. Solutions are found for a comprehensive range of cell sizes. We derive an expression for the plate speed as a function of its length, the mantle viscosity and surface heat flux. Using mean values for these parameters, we find that thermal convection extending to 700 km depth can move plates at 1 cm yr-1, while convection through the whole mantle can move plates at 4–5 cm yr-1. Analysis of the steady-state temperature field, for the case of heating from below, shows that the upper thermal boundary layer develops a complex structure, including an 'asthenosphere' defined by a local maximum in the geotherm occurring at depths of 50–150 km.  相似文献   

4.
Summary. Models of shallow, global mantle circulation due to the accretion and subduction of lithospheric plates are formulated as potential theory problems on a sphere. Subducting and accreting plate boundaries represent sources and sinks respectively for the sublithospheric flow. Solutions, which are obtained by finite difference approximations, give the instantaneous flow velocities within the asthenosphere compatible with plate boundaries and relative plate motions. Results are presented for present-day plate boundaries and relative plate motions for the case of a uniform viscosity asthenosphere and for that of a low viscosity zone at the base of the lithosphere. These results are discussed in terms of available geophysical data. Some of the implications of a shallow, mantle-wide circulation are also considered.  相似文献   

5.
An 11 m long sediment core ftorn Lama Lake, Northern Siberia, has been subjected to intense sedimentological, geochemical and rock magnetic analyses. According to a palynologic investigation the recovered sediments cover the whole Holocene and the late Pleistocene reaching back to about 17 ka. IRM acquisition experiments, hysteresis loop and back field as well as thermomagnetic measurements revealed magnetite in the pseudo-single domain range as the only remanence carrier. Sharp rock magnetic boundaries occur at 20 and 745 cm sub-bottom depth that are clearly linked to shifts in the median grain size of the magnetite. These boundaries are close to the present boundaries that bracket an anoxic zone between the subrecent and a late Pleistocene oxic section of the sediments. Within the anoxic section, magnetites are characterized by significantly larger median grain sizes but within a very narrow grain size range. The shift from fine grained magnetite within the oxic sediments to coarse grained magnetite is interpreted as the result of dissolution of the finest magnetite grains within the anoxic sediments. A significant shift of the Ti/Fe-ratio of the bulk sediment at a sub-bottom depth of 735 cm does not correspond to thermomagnetic properties, i.e. Curie-temperatures do not follow the variable Ti-content of the sediment.  相似文献   

6.
Summary. Numerical convection models are presented in which plates are simulated by imposing piecewise constant horizontal velocities on the upper boundary. A 4 × 1 box of constant viscosity fluid and two-dimensional (2-D) flow is assumed. Four heating modes are compared: the four combinations of internal or bottom heating and prescribed bottom temperature or heat flux. The case with internal heating and an isothermal base is relevant to lower mantle or whole mantle convection, and it yields a lower thermal boundary layer which is laterally variable and can be locally reversed, corresponding to heat flowing back into the core locally. When scaled to the whole mantle, the surface deflections and gravity and geoid perturbations calculated from the models are comparable to those observed at the Earth's surface. For models with migrating ridges and trenches, the flow structure lags well behind the changing surface 'plate'configurations. This may help to explain the poor correlation between the main geoid features and plate boundaries. Trench migration substantially affects the dip of the cool descending fluid because of induced horizontal shear in the vicinity of the trench. Such shear is small for whole mantle convection, but is large for upper mantle convection, and would probably result in the Tonga Benioff zone dipping to the SE, opposite to the observed dip, for the case of upper mantle convection.  相似文献   

7.
A power-law non-Newtonian fluid is usually assumed to model slow flows in the mantle and, in particular, convective flows. However, the power-law fluid has no memory, in contrast to a real material. A new non-linear integral (having a memory) model is proposed to describe the rheology of rocks. The model is consistent with the theory of simple fluids with fading memory and with laboratory studies of rock creep. The proposed model reduces to the power-law fluid model for stationary flows and to the Andrade model for flows associated with small strains. Stationary convection beneath continents has been studied by Fleitout & Yuen (1984 ), who used the power-law fluid model and obtained the cold immobile boundary layer (continental lithosphere). In a stability analysis of this layer, the Andrade model must be used. The analysis shows that the lithosphere is overstable (the period of oscillation is about 200  Ma). In the present study, it is suggested that these thermoconvective oscillations of the lithosphere are a mechanism for sedimentary basin formation. The vertical crustal movement in sedimentary basins can be considered as a slow subsidence on which small-amplitude oscillations are superimposed. The longest period of oscillatory crustal movement is of the same order of magnitude as the period of convective oscillation of the lithosphere found in the stability analysis. Taking into account the difference between depositional and erosional transport rates we can explain the permanent subsidence as well as the oscillations.  相似文献   

8.
Recent studies on the relationship between the Nusselt ( Nu ) and Rayleigh ( Ra ) numbers for base-heated convection in a spherical shell with a constant viscosity show that the power-law index is around 1/4, which is different from the value of 1/3 predicted by a simple boundary layer theory. We show that such a difference may be caused by the flow pattern due to the geometry. The flow pattern of the convection in a spherical shell at relatively low Ra , at least, less than 106, is characterized by narrow upwelling and broad downwelling, which is similar to the opposite flow pattern of internally heated convection. Convection in the internally heated case predicts the power-law index of 1/4. We demonstrate this relationship based on the concept of 'local' Rayleigh ( Ra1 ) and Nusselt ( Nu1 ) numbers  相似文献   

9.
Non-linear elastic behaviour of damaged rocks   总被引:1,自引:0,他引:1  
The pervasive damage of rocks by microcracks and voids strongly affects their macroscopic elastic properties. To evaluate the damage effects, we derive here the macroscopic stress-strain relations for a 3-D elastic solid with non-interacting cracks embedded inside a homogeneous matrix. The cracks considered are oriented either perpendicular to the maximum tension axis, or perpendicular to the maximum compression axis. In the first case they dilate during loading and in the second case they contract during loading. We derive a solution for the elastic energy of this rock following the self-consistent scheme of Budiansky & O'Connell (1976). The solution describes the stress-strain relations in terms of Λd and μd, which are the modified Lame constants, and an additional parameter Λ. The latter accounts for the non-linear behaviour of the solid and is related to crack density. The solution predicts a non-linear elastic rheology even for an infinitesimal strain of ɛ < 0.001, and abrupt change in the elastic moduli when the loading reverses from uniaxial compression to uniaxial tension.
We use the derived solution to analyse rock-mechanics experiments in which beams of Indiana limestone were deformed under four-point loading. This configuration provides simultaneously the apparent tensile and compressive moduli for small strains. The apparent moduli fit the effective elastic moduli calculated with the present damage model well, including the differences between tensile and compressive moduli.  相似文献   

10.
Finite deformation during fluid flow   总被引:6,自引:0,他引:6  
Summary. Typical upper mantle circulations obtained by solving Stokes' equation produce finite deformations which differ in important ways from those produced by pure or simple shear. Finite strain, defined by the ratio of the long to the short axis of the deformation ellipse, in most cases shows a steady increase with superimposed oscillations. Similarity solutions for the flow near plate boundaries demonstrate that the observed seismic anisotropy in the oceanic lithosphere can be produced by the finite deformation beneath the ridge axes. The same mechanism should give rise to strong anisotropy in the mantle above sinking slabs. Such anisotropy has not yet been detected, perhaps because the observed high velocities have been attributed to thermal effects. Convection in the mantle remote from plate boundaries produces complicated deformation which varies rapidly with position and will therefore be difficult to map seismically. The fabrics of nodules in lavas and kimberlites suggest that large strains can occur in the mantle under stresses which are too small to produce dislocation movement. The large and complicated finite deformation produced by the convective circulation in the mantle also affects closed geochemical systems, and leads to thorough mixing of any convecting region.  相似文献   

11.
Summary. Equations governing non-linear and finite-amplitude convection in a heterogeneous planetary interior are developed. Using spherical harmonic expressions of variables, together with Green's function of Laplacian operator in a spherical coordinate, the equations are reduced to one-dimensional integro-differential equations and their numerical solutions are obtained by a finite-difference scheme. The theory is then applied to several lunar models and the following conclusions are obtained.
(1) The mean temperatures and velocities of convecting zones of variable viscosity models are higher than those of constant viscosity ones. This is due to the development of lithospheres with 400–500 km thicknesses in the former models, which reduce heat loss considerably.
(2) Molten regions are continuous shells in variable viscosity models whereas they become discontinuous and localized in a constant viscosity model. The continuous molten shells decrease lateral variations of temperature significantly and tend to stabilize convection.
(3) Lateral variations of viscosity have negligible effects on the thermal evolution of the models considered.  相似文献   

12.
The thermal evolution of the Earth is controlled by radioactive elements whose heat production rate decays with time and whose spatial distribution depends on chemical segregation processes.
We present a 2-D and finite-difference Boussinesq convection model with temperature-dependent viscosity and time- and space-dependent radioactive heat sources. We used Newtonian rheology, boxes of aspect ratio 3, and heating from within. Starting from the geochemical results of Hofmann (1988), it is assumed that the radioactive heat sources of the mantle were initially distributed homogeneously. In a number of calculations, however, higher starting abundances of radioactive sources were assumed in the upper mantle. For the present geological situation, this also results in a depleted upper mantle. It was assumed that, if the viscosity falls below a certain critical value, chemical segregation will take place. In this way, model continental crust develops, leaving behind areas of a depleted mantle. We obtained the heat source, flow line, temperature, viscosity and heat-flow distribution as a function of time with realistic values, especially for the present time. The present viscosity of the upper mantle is approximately at the standard value obtained for postglacial uplift modelling; the deeper-mantle viscosity is considerably higher. The time dependence of the computed mean of the kinetic energy of mantle convection bears a resemblance to that of the magmatic and orogenetic activity of the Earth. We assumed that the 670 km discontinuity cannot be penetrated by the flow.  相似文献   

13.
On analysis and forecasting of surges on the west coast of Great Britain   总被引:1,自引:0,他引:1  
Summary. Surges are analysed by the regression technique. On the west coast of Britain surges are strongly correlated with meteorological variables such as barometric pressure and winds. The north—south component of wind is more effective than the east-west component in the generation of surges at Fish-guard and Portpatrick. The surge elevations at these ports are linearly proportional to the wind velocity. This pattern changes near Liverpool where the east—west component of wind dominates the development of surges. Here the surges are related to the square of the wind velocity. Moreover, the north-south component of wind over St George's Channel is marginally more effective than the north—south component of wind in the local area of the port, which suggests that a component of the surge near Liverpool is transported through St George's Channel. Spatial correlations of Fishguard, Holyhead and Liverpool surges also support this result. However, it is found that the forrnulation of a regression equation with simultaneous input of meteorological variables and spatial surges is ill-conditioned. Non-linearity resulting from surge-tide interaction is negligible at Fishguard and Portpatrick. The development of non-linearity starts when surges progress from Fishguard to Holy-head. The non-linear component is small near Holyhead but becomes a significant part of surges observed at Liverpool. The non-linear component may be represented as a modulation of the tide by a slow time-varying component of the surge. The component of surge variance which can be estimated by the regression model is over 70 per cent for Liverpool, 60 per cent for Holyhead and 50 per cent for Fishguard.  相似文献   

14.
邵喜武  周杨  吴佩蓉 《地理科学》2022,42(5):831-840
采用空间计量模型,立足于粮食主产区,并引入非主产区作为对照,通过评估主产区与非主产区粮食增产对农业生态污染的影响,探讨粮食增产与农业生态变化关系。结果表明:① 粮食产量与农业生态污染均存在显著的空间相关性,且两个变量的空间相关性在时间上存在异质性,这就意味着空间同质性假说不再适用,传统的关于粮食增产影响生态污染的研究可能存在局限性;② 粮食增产并未加剧农业生态恶化。粮食主产区的设立本是为了保障粮食安全,其结果是不仅在一定程度上扭转了“非粮化”的趋势,还削弱了对农业生态环境的污染;③ 粮食增产并未加剧农业生态恶化的原因在于,粮食生产规模比重的增加所产生的规模效应和一系列行之有效的政策措施降低了粮食主产区的化肥施用强度,而农业机械化投入对农业生态污染的影响存在一定的门槛效应,大中型农机跨区服务可能有利于减少主产区农业生产对生产环境的污染程度。上述结论意味着粮食安全与生态保护之间不存在不可调和的矛盾;未来在农业适度规模经营过程中应激发农业机械化抑制农业生态恶化的潜能;考虑到空间效应的影响,应建立邻近区域农业污染治理联动机制。  相似文献   

15.
While most research on quartz weathering has focused primarily on surface textures and morphologies, very little is known about the internal weathering of quartz. This study demonstrates that internal weathering is ubiquitous in quartz. Internal weathering is measured in terms of porosity, which represents mass loss from the quartz grain, hence silica lost through dissolution. Mass loss calculated from porosity suggests higher-than-expected rates of quartz dissolution in the terrestrial environment. Internal weathering occurs through various grain defects, and is classified into several forms (in decreasing order of frequency): fractures, enlarged grain boundaries, holes, and networks. These features may be distinguished from occasional artifact voids left by laboratory procedures. The most intensely weathered grains exhibit large fractures and extensive networks, and occasionally contain secondary weathering products within the void areas. The presence of internal weathering in quartz supports field and laboratory observations of particle comminution in sediment transport systems, and can account for at least part of the production of silt- and clay-sized quartz. Given the potentially large surface area afforded by these internal defects, internal weathering plays an important role in the generation of quartz particles and dissolved silica, and presents a new avenue of study for the generation of secondary porosity in detrital sediments. [Key words: geomorphology, quartz, silica, weathering.]  相似文献   

16.
Summary. Palaeomagnetic data relating to secular variation, westward drift, non-dipole field scatter, field intensities and polarity transitions are considered together in an attempt to improve our understanding of the geodynamo. An attempt is then made to interpret these data in the light of magnetohydrodynamic theory. It is suggested that polarity transitions are not characterized by significant periods of convection stasis but that dynamic processes appear to be acting throughout. Phenomena such as variable westward drift rates are explained in terms of non-linear effects relating to the magnetic field intensity. Several lines of evidence suggest that the Lorentz force is a significant body force within the Earth's core and cannot be treated as a perturbation. However, it is also suggested that the Lorentz force may become insignificant during polarity transitions, particularly during that part of a transition when the intensity is reduced and the magnetic field is predominantly non-dipolar.  相似文献   

17.
We perform analytical and numerical studies of scaling relations of earthquakes and partition of elastic strain energy between seismic and aseismic components using a thermodynamically based continuum damage model. Brittle instabilities occur in the model at critical damage level associated with loss of convexity of the strain energy function. A new procedure is developed for calculating stress drop and plastic strain in regions sustaining brittle instabilities. The formulation connects the damage rheology parameters with dynamic friction of simpler frameworks, and the plastic strain accumulation is governed by a procedure that is equivalent to Drucker–Prager plasticity. The numerical simulations use variable boundary forces proportional to the slip-deficit between the assumed far field plate motion and displacement of the boundary nodes. These boundary conditions account for the evolution of elastic properties and plastic strain in the model region. 3-D simulations of earthquakes in a model with a large strike-slip fault produce scaling relations between the scalar seismic potency, rupture area, and stress drop values that are in good agreement with observations and other theoretical studies. The area and potency of the simulated earthquakes generally follow a linear log–log relation with a slope of 2/3, and are associated with stress drop values between 1 and 10 MPa. A parameter-space study shows that the area-potency scaling is shifted to higher stress drops in simulations with parameters corresponding to lower dynamic friction, more efficient healing, and higher degree of seismic coupling.  相似文献   

18.
位涡和Q矢量诊断在毛乌素沙地沙尘天气预报中的应用   总被引:1,自引:1,他引:0  
井喜  屠妮妮  井宇 《中国沙漠》2008,28(4):762-769
利用常规的天气图、卫星云图、湿位涡和Q矢量等,对2007年4月30日和2007年5月2日发生在毛乌素沙地的两次沙尘天气进行了综合分析\.结果表明:对流层低层MPV1<0中尺度对流不稳定区的生成,为干对流的发生提供了不稳定能量条件;来自上游对流层中高层的干侵入和扰动干侵入在沙尘天气发生过程中起着重要作用;对流层低层由Q矢量辐散、辐合激发生成的次级环流为沙尘天气发生、发展和维持提供了动力机制。在对毛乌素沙地中β尺度沙尘暴的预报预警过程中,同时应考虑下沉对流有效位能的作用。  相似文献   

19.
At convergent plate boundaries, the properties of the actual plate contact are important for the overall dynamics. Convergent plate boundaries both mechanically decouple and link tectonic plates and accommodate large amounts of strain. We investigate two fundamental physical states of the subduction contact: one based on a fault and the other based on a subduction channel. Using a finite element method, we determine the specific signatures of both states of the subduction contact. We pay particular attention to the overriding plate. In a tectonic setting of converging plates, where the subducting plate is freely moving, the subduction channel reduces compression relative to the fault model. In a land-locked basin setting, where the relative motion between the far field of the plates is zero, the subduction channel model produces tensile stress regime in the overriding plate, even though the amount of slab roll-back is small. The fault model shows a stronger development of slab roll-back and a compressive stress regime in the upper plate. Based on a consistent comparison of fault and channel numerical models, we find that the nature of the plate contact is one of the controlling factors in developing or not of backarc extension. We conclude that, the type of plate contact plays a decisive role in controlling the backarc state of stress. To obtain backarc extension, roll-back is required as an underling geodynamic process, but it is not always a sufficient condition.  相似文献   

20.
Summary A uniformly valid linear viscoelastic rheology is described which takes the form of a 'generalized' Burgers' body and which appears capable of reconciling the behaviour of the Earth's mantle across the complete spectrum of geodynamic time-scales. This spectrum is bracketed by the short time-scales of body wave and free oscillation seismology on which anelastic effects are dominant, and the long time-scale of mantle convection on which the Earth behaves viscously. The parameters of the model which control the viscous response are fixed by post-glacial rebound data whereas those which govern the anelasticity are to be determined by fitting the model to observations of seismic Q. The paper is concerned primarily with a discussion of the normal mode spectrum of the Earth as a generalized Burgers' body. Focusing upon the homogeneous model, it includes an initial analysis of the accuracy of first-order perturbation theory as a method of calculating the respective Q s of the elastic gravitational free oscillations. Also considered are the quasi-static modes of relaxation which only exact eigenanalysis can reveal. The importance of these modes is assessed within the context of a discussion of the effect of viscoelasticity upon the efficiency of Chandler wobble excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号