首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deformation experiments have been carried out to investigate the effect of dynamic recrystallisation on crystallographic preferred orientation (CPO) development. Cylindrical samples of natural single crystals of quartz were axially deformed together with 1 vol.% of added water and 20 mg of Mn2O3 powder in a Griggs solid medium deformation apparatus in different crystallographic orientations with compression direction: (i) parallel to <c>, (ii) at 45° to <c> and 45° to <a> and (iii) parallel to <a>. The experiments were performed at a temperature of 800 °C, a confining pressure of 1.2 GPa, a strain rate of  10− 6 s− 1, to bulk finite strains of  14–36%. The deformed samples were analysed in detail using optical microscopy, electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Two different microstructural domains were distinguished in the deformed samples: (i) domains with undulatory extinction and deformation lamellae, and (ii) domains with new recrystallised grains. Within the domains of undulatory extinction, crystal-plastic deformation caused gradual rotations of the crystal lattice up to  30° away from the host orientation. New recrystallised grains show a strong CPO with c-axis maxima at  45° to the compression direction. This is the case in all experiments, irrespective of the initial crystallographic orientation. The results show that c-axes are not continuously rotated towards the new maxima. The new grains thus developed through a mechanism different from subgrain rotation recrystallisation. New grains have a subeuhedral shape and numerous microcavities, voids, fluid channels and fluid inclusions at their grain boundaries. No host control is recorded in misorientation axes across their large angle grain boundaries. New grains might have been created by nucleation from solution in the μm-scale voids and microfractures. The CPO most likely developed due to preferred growth of the freshly precipitated grains with orientations suitable for intracrystalline deformation at the imposed experimental conditions.  相似文献   

2.
Serpentinites and talc-carbonate rocks of El Ideid-El Sodmein District (ISD), central Eastern Desert, Egypt, contain variably altered chrome-spinels. Back-scattered electron images and electron microprobe analyses of chrome-spinels and associated silicates are made to evaluate their textural and compositional variations with metamorphism. In most cases the chrome-spinel crystals are concentrically zoned with unaltered cores through transitional zone of ferritchromit to Cr-magnetite toward the rims. In talc-carbonate rocks chrome-spinels are extensively altered to Cr-magnetite. Compared to cores, the metamorphic rims are enriched in Cr# (0.83–1.0 vs. 0.58–0.63 for rims and cores, respectively) and impoverished in Mg# (0.05–0.29 vs. 0.57–0.63), due to Mg–Fe and Al(Cr)–Fe3+ exchange with the surrounding silicates during regional metamorphism rather than serpentinization process. Textural and compositional features of the chrome-spinels suggest transitional greenschist-amphibolite up to lower amphibolite facies metamorphism (at 500–600 °C), which is isofacial with the country rocks. The common preservation of unaltered chrome-spinel cores in the serpentinites, contrary to talc-carbonate rocks, implies that full equilibration has not been attained due to small metamorphic fluid–rock ratio. Microprobe analyses profile across a concentrically zoned grain confirms the presence of two compositional (miscibility?) gaps; one between chrome-spinel core and ferritchromit zone; and another one between ferritchromit zone and Cr-magnetite outer rim.Chrome-spinel cores do not appear to have re-equilibrated completely with the metamorphic spinel rims and surrounding silicates, indicating relic magmatic composition not affected by metamorphism. Core compositions suggest an ophiolitic origin and derivation by high degrees of melting of reduced, depleted harzburgite to dunite mantle peridotites in an oceanic supra-subduction zone (marginal-basin) tectonic environment.  相似文献   

3.
Solubility and dissolution rate of silica in acid fluoride solutions   总被引:1,自引:0,他引:1  
We performed 57 batch reactor experiments in acidic fluoride solutions to measure the dissolution rate of quartz. These rate data along with rate data from published studies were fit using multiple linear regression to produce the following non-unique rate law for quartz
where 10−5.13 < aHF < 101.60, −0.28 < pH < 7.18, and 298 < T < 373 K. Similarly, 97 amorphous silica dissolution rate data from published studies were fit by multiple linear regression to produce the following non-unique rate law for amorphous silica
where 10−2.37 < aHF < 101.61, −0.32 < pH < 4.76 and 296 < T < 343 K. Regression of the rates versus other combinations of solution species, e.g.  + H+, F + H+, HF + , HF + F, or  + F, produced equally good fits. Any of these rate laws can be interpreted to mean that the rate-determining step for silica dissolution in fluoride solutions involves a coordinated attack of a Lewis acid, on the bridging O atom and a Lewis base on the Si atom. This allows a redistribution of electrons from the Si–O bond to form a O–H group and a Si–FH group.  相似文献   

4.
Summary Among the oxides, spinels are relatively abundant constituents of stardust, as has been inferred from studies of presolar grains in meteorites. Up to now, only pure Mg–Al-spinels have been considered as a possible stardust component. However, cosmically abundant transition metals such as iron or chromium may well be incorporated in spinels in the process of their formation in stellar atmospheres. We have produced synthetic Cr-doped spinels in order to study their UV, visible and IR spectra. Mass absorption coefficients (MACs) have been derived from transmission spectroscopy over a large wavelength range. For a Cr content of 5%, a maximum MAC in the UV (close to 200 nm) of 1000 cm2/g was found. For a Cr content of 10%, the maximum UV-MAC of spinel exceeds the maximum IR-MAC of 2000 cm2/g. The MIR bands of Cr-doped spinels are shifted to longer wavelengths with increasing Cr content, namely by ∼0.1 μm per 5% Cr in the range covered by our measurements. We conclude that a Cr content of spinel amounting to a few percents (<10%) is compatible with astronomical observations of spinel-bearing dusty environments, while a larger chromium content of spinels is not consistent with the presently available astronomical data.  相似文献   

5.
Low concentrations of Th and Fe in the Yamato (Y)-86032 bulk meteorite support earlier suggestions that Y-86032 comes from a region of the moon far distant from the Procellarum KREEP Terrain (PKT), probably from the lunar farside. 39Ar–40Ar, Rb–Sr, Sm–Nd, and Sm-isotopic studies characterize the chronology of Y-86032 and its precursors in the mega regolith. One of the rock types present in a light gray breccia lithology is an anorthosite characterized by plagioclase with An 93, i.e., more sodic than lunar FANs, but with very low 87Rb/86Sr and 87Sr/86Sr similar to those of FANs. (FAN stands for Ferroan Anorthosite). This “An93 anorthosite” has Nd-isotopic systematics similar to those of nearside norites. A FAN-like “An97 anorthosite” is present in a second light-colored feldspathic breccia clast and has a more negative εNd value consistent with residence in a LREE-enriched environment as would be provided by an early plagioclase flotation crust on the Lunar Magma Ocean (LMO). This result contrasts with generally positive values of εNd for Apollo 16 FANs suggesting the possibility of assymetric development of the LMO. Other possible explanations for the dichotomy in εNd values are advanced in the text. The Y-86032 protolith formed at least 4.43 ± 0.03 Ga ago as determined from a Sm–Nd isochron for mineral fragments from the breccia clast composed predominantly of An93 anorthosite and a second clast of more varied composition. We interpret the mineral fragments as being predominatly from a cogenetic rock suite. An 39Ar–40Ar age of 4.36–4.41 ± 0.035 Ga for a third clast composed predominantly of An97 anorthosite supports an old age for the protolith. Initial 143Nd/144Nd in that clast was −0.64 ± 0.13 ε-units below 143Nd/144Nd in reservoirs having chondritic Sm/Nd ratios, consistent with prior fractionation of mafic cumulates from the LMO. A maximum in the 39Ar–40Ar age spectrum of 4.23 ± 0.03 Ga for a second sample of the same feldspathic breccia clast probably reflects some diffusive 40Ar loss. Lack of solar wind and lunar atmosphere implanted Ar in the light gray breccia clast allows determination of an 39Ar/40Ar age of 4.10 ± 0.02 Ga, which is interpreted as the time of initial brecciation of this litholgy. After correction for implanted lunar atmosphere 40Ar, impact melt and dark regolith clasts give Ar ages of 3.8 ± 0.1 Ga implying melt formation and final breccia assembly 3.8 Ga ago. Some breccia lithologies were exposed to thermal neutron fluences of 2 × 1015 n/cm2, only about 1% of the fluence experienced by some other lunar highlands meteorites. Other lithologies experienced neutron fluences of 1 × 1015 n/cm2. Thus, Y-86032 spent most of the time following final brecciation deeply buried in the megaregolith. The neutron fluence data are consistent with cosmogenic 38Arcos cosmic ray exposure ages of 10 Ma. Variations among differing lithologies in the amount of several regolith exposure indicators, including cosmogenic noble gas abundances, neutron capture induced variations in Sm isotopic abundances, and Ir contents, are consistent with a period of early (>3.8 Ga ago) lunar regolith exposure, subsequent deep burial at >5 m depth, and ejection from the moon 7–10 Ma ago.  相似文献   

6.
Equilibrium 2H/1H fractionation factors (αeq) for various H positions in alkanes, alkenes, ketones, carboxylic acids, esters, alcohols, and ethers were calculated between 0 and 100 °C using vibrational frequencies from ab initio QM calculations (B3LYP/6-311G**). Results were then corrected using a temperature-dependent linear calibration curve based on experimental data for Hα in ketones (Wang et al., 2009). The total uncertainty in reported αeq values is estimated at 10–20‰. The effects of functional groups were found to increase the value of αeq for H next to electron-donating groups, e.g. OR, OH or O(CO)R, and to decrease the value of αeq for H next to electron-withdrawing groups, e.g. (CO)R or (CO)OR. Smaller but significant functional group effects are also observed for Hβ and sometimes Hγ. By summing over individual H positions, we estimate the equilibrium fractionation relative to water to be −90‰ to −70‰ for n-alkanes and around −100‰ for pristane and phytane. The temperature dependence of these fractionations is very weak between 0 and 100 °C. Our estimates of αeq agree well with field data for thermally mature hydrocarbons (δ2H values between −80‰ and −110‰ relative to water). Therefore the observed δ2H increase of individual hydrocarbons and the disappearance of the biosynthetic δ2H offset between n-alkyl and linear isoprenoid lipids during maturation of organic matter can be confidently attributed to H exchange towards an equilibrium state. Our results also indicate that many n-alkyl lipids are biosynthesized with δ2H values that are close to equilibrium with water. In these cases, constant down-core δ2H values for n-alkyl lipids cannot be reliably used to infer a lack of isotopic exchange.  相似文献   

7.
We utilize regional GPS velocities from Luzon, Philippines, with focal mechanism data from the Harvard Centroid Moment Tensor (CMT) Catalog, to constrain tectonic deformation in the complex plate boundary zone between the Philippine Sea Plate and Eurasia (the Sundaland block). Processed satellite imagery and digital elevation models are used with existing gravity anomaly, seismicity, and geologic maps to define a suite of six elastic blocks. Geodetic and focal mechanism data are inverted simultaneously to estimate plate rotations and fault-locking parameters for each of the tectonic blocks and faults comprising Luzon. Major tectonic structures that were found to absorb the plate convergence include the Manila Trench (20–100 mm yr− 1) and East Luzon Trough ( 9–15 mm yr− 1)/Philippine Trench ( 29–34 mm yr− 1), which accommodate eastward and westward subduction beneath Luzon, respectively; the left-lateral strike-slip Philippine Fault ( 20–40 mm yr− 1), and its northward extensions, the Northern Cordillera Fault ( 17–37 mm yr− 1 transtension), and the Digdig Fault ( 17–27 mm yr− 1 transpression). The Macolod Corridor, a zone of active volcanism, crustal thinning, extension, and extensive normal and strike-slip faulting in southwestern Luzon, is associated with left-lateral, transtensional slip of  5–10 mm yr− 1. The Marikina Fault, which separates the Central Luzon block from the Southwestern Luzon block, reveals  10–12 mm yr− 1 of left-lateral transpression. Our analysis suggests that much of the Philippine Fault and associated splays are locked to partly coupled, while the Manila and Philippine trenches appear to be poorly coupled. Luzon is best characterized as a tectonically active plate boundary zone, comprising six mobile elastic tectonic blocks between two active subduction zones. The Philippine Fault and associated intra-arc faults accommodate much of the trench-parallel component of relative plate motion.  相似文献   

8.
The Alaknanda and Bhagirathi Rivers originate in the mountainous regions of the Himalayas (Garhwal) and result in high sediment yields causing flood hazards downstream of the Ganga River and high sediment flux to the Bay of Bengal. The rivers are perennial, since runoff in these rivers is controlled by both precipitation and glacial melt. In the present study, three locations in the upper reaches of the Ganga River were monitored for 1 yr (daily observations of, more than >1000 samples) for suspended sediment concentrations. In addition, more than one hundred samples were collected from various locations of the Alaknanda and Bhagirathi Rivers at different periods to observe spatial and temporal variations in river suspensions. Further, multi-annual data (up to 40 yrs) of water flow and sediment concentrations were used for inferring the variations in water flow and sediment loads on longer time scales. In most previous studies of Himalayan Rivers, there has been a general lack of long term water flow and sediment load data. In the present study, we carried out high frequency sampling, considered long term discharge data and based on these information, discussed the temporal and spatial variations in water discharge and sediment loads in the rivers in the Himalayan region. The results show that, >75% of annual sediment loads are transported during the monsoon season (June through September). The annual physical weathering rates in the Alaknanda and Bhagirathi River basins at Devprayag are estimated to be 863 tons km−2 yr−1 (3.25 mm yr−1) and 907 tons km−2 yr−1 (3.42 mm yr−1) respectively, which are far in excess of the global average of 156 tons km−2 yr−1 (0.58 mm yr−1).  相似文献   

9.
Cleats and fractures in southwestern Indiana coal seams are often filled with authigenic kaolinite and/or calcite. Carbon- and oxygen-stable isotope ratios of kaolinite, calcite, and coalbed CO2 were evaluated in combination with measured values and published estimates of δ18O of coalbed paleowaters that had been present at the time of mineralization. δ18Omineral and δ18Owater values jointly constrain the paleotemperature of mineralization. The isotopic evidence and the thermal and tectonic history of this part of the Illinois Basin led to the conclusion that maximum burial and heat-sterilization of coal seams approximately 272 Ma ago was followed by advective heat redistribution and concurrent precipitation of kaolinite in cleats at a burial depth of < 1600 m at  78 ± 5 °C. Post-Paleozoic uplift, the development of a second generation of cleats, and subsequent precipitation of calcite occurred at shallower burial depth between  500 to  1300 m at a lower temperature of 43 ± 6 °C. The available paleowater in coalbeds was likely ocean water and/or tropical meteoric water with a δ18Owater  − 1.25‰ versus VSMOW. Inoculation of coalbeds with methanogenic CO2-reducing microbes occurred at an even later time, because modern microbially influenced 13C-enriched coalbed CO2 (i.e., the isotopically fractionated residue of microbial CO2 reduction) is out of isotopic equilibrium with 13C-depleted calcite in cleats.  相似文献   

10.
With a new type of ion microprobe, the NanoSIMS, we determined the oxygen isotopic compositions of small (<1μm) oxide grains in chemical separates from two CM2 carbonaceous meteorites, Murray and Murchison. Among 628 grains from Murray separate CF (mean diameter 0.15 μm) we discovered 15 presolar spinel and 3 presolar corundum grains, among 753 grains from Murray separate CG (mean diameter 0.45 μm) 9 presolar spinel grains, and among 473 grains from Murchison separate KIE (mean diameter 0.5 μm) 2 presolar spinel and 4 presolar corundum grains. The abundance of presolar spinel is highest (2.4%) in the smallest size fraction. The total abundance in the whole meteorite is at least 1 ppm, which makes spinel the third-most abundant presolar grain species after nanodiamonds (if indeed a significant fraction of them are presolar) and silicon carbide. The O-isotopic distribution of the spinel grains is very similar to that of presolar corundum, the only statistically significant difference being that there is a larger fraction of corundum grains with large 17O excesses (17O/16O > 1.5 × 10−3), which indicates parent stars with masses between 1.8 and 4.5 M.  相似文献   

11.
The geomorphic origin and evolution of the tectonically unique interior highland of southern Africa, the Kalahari Plateau, and its flanking low-lying coastal planes, remain largely unresolved because of a lack of regional quantitative analyses of its uplift and erosion history. Here we focus on the southern Cape, South Africa and link onshore denudation, based on new apatite fission track thermochronology results, to offshore sediment accumulation, using abundant well data and a seismic reflection profile. We attempt to relate source and sink in order to resolve some first order issues concerning timing of the exhumation and development of the topographic features of southern Africa. The volume of sediment accumulated off South Africa's south coast is calculated using 173 wells and a seismic reflection profile. A total, uncompacted, sediment volume of 268,500 km3 accumulated off South Africa's south coasts since  136 Ma, in the Outeniqua and Southern Outeniqua Basins. Accumulation volumes and rates were highest in the early Cretaceous (48,800 × 104 km3 at  8150 km3/Ma from  136 to 130 Ma, and 57,500 × 104 km3 at 5750 km3/Ma from  130 to 120 Ma) and mid–late Cretaceous (83,700 × 104 km3 at 3200 km3/Ma from  93 to 67 Ma). Volumes and accumulation rates were lowest for the early–mid-Cretaceous (47,400 × 104 km3 at 1750 km3/Ma from  120 to 93 Ma) and the Cenozoic (31,200 × 104 km3 at 450 km3/Ma from  67 to 0 Ma). Although our analysis shows that the accumulated volume of offshore sediments does not match the calculated volume of onshore erosion, as quantified through apatite fission track thermochronology (e.g. Tinker, J.H., de Wit, M.J., Brown, R., 2008. Mesozoic exhumation of the 439 southern Cape, South Africa, quantified using apatite fission track thermochronology. Tectonophysics, doi: 10.1016/j.tecto.2007.10.009), the timing of increased sediment accumulation closely matches the timing of increased onshore denudation. This suggests that the greatest volumes of material were transported from source to sink during two distinct Cretaceous episodes, and that the processes driving onshore denudation decreased by an order of magnitude during the Cenozoic.  相似文献   

12.
The late Quaternary paleoclimate of eastern Beringia has primarily been studied by drawing qualitative inferences from vegetation shifts. To quantitatively reconstruct summer temperatures, we analyzed lake sediments for fossil chironomids, and additionally we analyzed the sediments for fossil pollen and organic carbon content. A comparison with the δ18O record from Greenland indicates that the general climatic development of the region throughout the last glaciation–Holocene transition differed from that of the North Atlantic region. Between  17 and 15 ka, mean July air temperature was on average 5°C colder than modern, albeit a period of near-modern temperature at  16.5 ka. Total pollen accumulation rates ranged between  180 and 1200 grains cm− 2 yr− 1. At  15 ka, approximately coeval with the Bølling interstadial, temperatures again reached modern values. At  14 ka, nearly 1000 yr after warming began, Betula pollen percentages increased substantially and mark the transition to shrub-dominated pollen contributors. Chironomid-based inferences suggest no evidence of the Younger Dryas stade and only subtle evidence of an early Holocene thermal maximum, as temperatures from  15 ka to the late Holocene were relatively stable. The most recognizable climatic oscillation of the Holocene occurred from  4.5 to 2 ka.  相似文献   

13.
Exposure of the ca. 6 Ma Taitao ophiolite, Chile, located 50 km south of the Chile Triple Junction, allows detailed chemical and isotopic study of rocks that were recently extracted from the depleted mantle source of mid-ocean ridge basalts (DMM). Ultramafic and mafic rocks are examined for isotopic (Os, Sr, Nd, and O), and major and trace element compositions, including the highly siderophile elements (HSE). Taitao peridotites have compositions indicative of variable extents of partial melting and melt extraction. Low δ18O values for most whole rock samples suggest some open-system, high-temperature water–rock interaction, most likely during serpentinization, but relict olivine grains have δ18O values consistent with primary mantle values. Most of the peridotites analyzed for Nd–Sr isotopes have compositions consistent with estimates for the modern DMM, although several samples are characterized by 87Sr/86Sr and 143Nd/144Nd indicative of crustal contamination, most likely via interactions with seawater. The peridotites have initial 187Os/188Os ratios that range widely from 0.1168 to 0.1288 (γOs = −8.0 to +1.1), averaging 0.1239 (γOs = −2.4), which is comparable to the average for modern abyssal peridotites. A negative correlation between the Mg# of relict olivine grains and Os isotopic compositions of whole rock peridotites suggests that the Os isotopic compositions reflect primary mantle Re/Os fractionation produced by variable extents of partial melting at approximately 1.6 Ga. Recent re-melting at or near the spatially associated Chile Ridge further modified these rocks, and Re, and minor Pt and Pd were subsequently added back into some rocks by late-stage melt–rock or fluid–rock interactions.In contrast to the peridotites, approximately half of the mafic rocks examined have whole rock δ18O values within the range of mantle compositions, and their Nd and Sr isotopic compositions are all generally within the range of modern DMM. These rocks have initial 187Os/188Os ratios, calculated for 6 Ma, that range from 0.126 (γOs = −1) to as high as 0.561 (γOs = +342). The Os isotopic systematics of each of these rocks may reflect derivation from mixed lithologies that include the peridotites, but may also include pyroxenites with considerably more radiogenic Os than the peridotites. This observation supports the view that suprachondritic Os present in MORB derives from mixed mantle source lithologies, accounting for some of the worldwide dichotomy in 187Os/188Os between MORB and abyssal peridotites.The collective results of this study suggest that this >500 km3 block of the mantle underwent at least two stages of melting. The first stage occurred at 1.6 Ga, after which the block remained isolated and unmixed within the DMM. A final stage of melting recently occurred at or near the Chile Ridge, resulting in the production of at least some of the mafic rocks. Convective stirring of this mantle domain during a >1 Ga period was remarkably inefficient, at least with regard to Os isotopes.  相似文献   

14.
The release of irradiation-produced noble gas isotopes (38ArCl, 80KrBr, 128XeI and 39ArK) during in vacuo crushing scapolite has been investigated and is compared to quartz. Three thousand crushing strokes released 98% of fluid inclusion-hosted noble gas from quartz. In comparison, 3000 crushing strokes released only 4% of the lattice-hosted 38ArCl from a scapolite gem. In vacuo crushing released lattice Ar preferentially relative to lattice Kr or Xe and prolonged crushing released 88% of the lattice-hosted noble gas in 96,000 crushing strokes. We suggest fast diffusion pathways generated by crushing are an important noble gas release mechanism and we demonstrate two applications of prolonged in vacuo crushing on irradiated scapolite.Firstly, scapolite molar Br/Cl and I/Cl values are shown to vary over a similar range as crustal fluids. The Cl-rich scapolite gem from Hunza, Pakistan has Br/Cl of 0.5–0.6 × 10−3 and I/Cl values of 0.3–2 × 10−6, that are similar to fluids that have dissolved evaporites. In contrast, three out of four skarn-related scapolites from the Canadian Grenville Province have molar Br/Cl values of 1.5–2.4 × 10−3, and I/Cl values of 11–24 × 10−6, that are broadly consistent with skarn formation by magmatic fluids. The fourth Grenvillian scapolite, with only 0.02 wt% Cl, has an exceptionally elevated molar Br/Cl value of up to 54 × 10−3 and I/Cl of 284 × 10−6. It is unclear if these values reflect the composition of fluids formed during metamorphism or preferential incorporation of Br and I in Cl-poor meionitic scapolite.Secondly, the Grenvillian scapolites give plateau ages of between 830 Ma and 400 Ma. The oldest ages post-date regional skarn formation by 200 Myr, but are similar to feldspar cooling ages in the Province. The age variation in these samples is attributed to a combination of factors including variable thermal history and the presence of mineral sub-grains in some of the samples. These sub-grains control the release of 39ArK, 38ArCl and 40Ar* during in vacuo crushing as well as the samples 40Ar* retentivity in nature. Scapolite is suggested as a possible analogue for K-feldspar in thermochronologic studies.  相似文献   

15.
Carbon biogeochemistry of the Betsiboka estuary (north-western Madagascar)   总被引:1,自引:0,他引:1  
Madagascar’s largest estuary (Betsiboka) was sampled along the salinity gradient during the dry season to document the distribution and sources of particulate and dissolved organic carbon (POC, DOC) as well as dissolved inorganic carbon (DIC). The Betsiboka was characterized by a relatively high suspended matter load, and in line with this, low DOC/POC ratios (0.4–2.5). The partial pressure of CO2 (pCO2) was generally above atmospheric equilibrium (270–1530 ppm), but relatively low in comparison to other tropical and subtropical estuaries, resulting in low average CO2 emission to the atmosphere (9.1 ± 14.2 mmol m−2 d−1). Despite the fact that C4 vegetation is reported to cover >80% of the catchment area, stable isotope data on DOC and POC suggest that C4 derived material comprises only 30% of both pools in the freshwater zone, increasing to 60–70% and 50–60%, respectively, in the oligohaline zone due to additional lateral inputs. Sediments from intertidal mangroves in the estuary showed low organic carbon concentrations (<1%) and δ13C values (average −19.8‰) consistent with important inputs of riverine imported C4 material. This contribution was reflected in δ13C signatures of bacterial phospholipid derived fatty acids (i + a15:0), suggesting the potential importance of terrestrial organic matter sources for mineralization and secondary production in coastal ecosystems.  相似文献   

16.
We developed a 238U–206Pb and 207Pb206Pb zircon dating method using a Cameca NanoSIMS NS50 ion microprobe. A 7-to 9-nA O primary beam was used to sputter a 15-μm crater, and secondary positive ions were extracted for mass analysis using the Mattauch–Herzog geometry. The multicollector system was modified to detect 90Zr+, 204Pb+, 206Pb+, 238U16O+, and 238U16O2+ ions simultaneously. A mass resolution of about 4000 at 10% peak height and with a flat peak top was attained, and the sensitivity of Pb was about 4 cps·nA− 1·ppm− 1. A multicrystal zircon standard (QGNG) from South Australia with a U–Pb age of 1842 Ma was used as a reference for Pb+/UO+–UO2+/UO+ calibration, and on the basis of the positive correlation between these ratios, we determined the sample 206Pb/238U ratios. 207Pb/206Pb ratios were measured by magnetic scanning in single-collector mode. The standard zircons 91500, from Canada, and SL13, from Sri Lanka, were analyzed against QGNG. Observed 238U–206Pb and 207Pb206Pb ages agreed well with published ages within experimental error. Then, 16 zircon grains in a metamorphic rock from Nagasaki, Japan, were analyzed. Observed ages were compatible with SHRIMP ages, suggesting that the NanoSIMS with a 15-μm probe diameter is suitable for ion microprobe U–Pb zircon dating.  相似文献   

17.
Diffusion of helium has been characterized in natural zircon and apatite. Polished slabs of zircon and apatite, oriented either normal or parallel to c were implanted with 100 keV 3He at a dose of 5 × 1015 3 He/cm2. Diffusion experiments on implanted zircon and apatite were run in Pt capsules in 1-atm furnaces. 3He distributions following experiments were measured with Nuclear Reaction Analysis using the reaction 3He(d,p)4He. For diffusion in zircon we obtain the following Arrhenius relations:
Although activation energies for diffusion normal and parallel to c are comparable, there is marked diffusional anisotropy, with diffusion parallel to c nearly 2 orders of magnitude faster than transport normal to c. These diffusivities bracket the range of values determined for He diffusion in zircon in bulk-release experiments, although the role of anisotropy could not be directly evaluated in those measurements.In apatite, the following Arrhenius relation was obtained over the temperature range of 148–449 °C for diffusion normal to c:
In contrast to zircon, apatite shows little evidence of anisotropy. He diffusivities obtained in this study fall about an order of magnitude lower than diffusivities measured through bulk release of He through step-heating, and within an order of magnitude of determinations where ion implantation was used to introduce helium and He distributions measured with elastic recoil detection.Since the diffusion of He in zircon exhibits such pronounced anisotropy, helium diffusional loss and closure cannot be modeled with simple spherical geometries and the assumption of isotropic diffusion. A finite-element code (CYLMOD) has recently been created to simulate diffusion in cylindrical geometry with differing radial and axial diffusion coefficients. We present some applications of the code in evaluating helium lost from zircon grains as a function of grain size and length to diameter ratios, and consider the effects of “shape anisotropy”, where diffusion is isotropic (as in the case of apatite) but shapes of crystal grains or fragments may depart significantly from spherical geometry.  相似文献   

18.
Timpanogos Cave, located near the Wasatch fault, is about 357 m above the American Fork River. Fluvial cave sediments and an interbedded carbonate flowstone yield a paleomagnetic and U–Th depositional age of 350 to 780 ka. Fault vertical slip rates, inferred from calculated river downcutting rates, range between 1.02 and 0.46 mm yr− 1. These slip rates are in the range of the 0–12 Ma Wasatch Range exhumation rate ( 0.5–0.7 mm yr− 1), suggesting that the long-term vertical slip rate remained stable through mid-Pleistocene time. However, the late Pleistocene (0–250 ka) decelerated slip rate ( 0.2–0.3 mm yr− 1) and the accelerated Holocene slip rate ( 1.2 mm yr− 1) are consistent with episodic fault activity. Assuming that the late Pleistocene vertical slip rate represents an episodic slowing of fault movement and the long-term (0–12 Ma) average vertical slip rate, including the late Pleistocene and Holocene, should be  0.6 mm yr− 1, there is a net late Pleistocene vertical slip deficit of  50–75 m. The Holocene and late Pleistocene slip rates may be typical for episodes of accelerated and slowed fault movement, respectively. The calculated late Pleistocene slip deficit may mean that the current accelerated Wasatch fault slip rate will extend well into the future.  相似文献   

19.
Despite the common belief that AuI complexes with hydrogen sulfide ligands (H2S/HS) are the major carriers of gold in natural hydrothermal fluids, their identity, structure and stability are still subjects of debate. Here we present the first in situ measurement, using X-ray absorption fine structure (XAFS) spectroscopy, of the stability and structure of aqueous AuI–S complexes at temperatures and pressures (T–P) typical of natural sulfur-rich ore-forming fluids. The solubility of native gold and the local atomic structure around the dissolved metal in S–NaOH–Na2SO4–H2SO4 aqueous solutions were characterized at temperatures 200–450 °C and pressures 300–600 bar using an X-ray cell that allows simultaneous measurement of the absolute concentration of the absorbing atom (Au) and its local atomic environment in the fluid phase. Structural and solubility data obtained from XAFS spectra, combined with quantum-chemical calculations of species geometries, show that gold bis(hydrogensulfide) Au(HS)2 is the dominant Au species in neutral-to-basic solutions (5.5  pH  8.5; H2O–S–NaOH) over a wide range of sulfur concentrations (0.2 < ΣS < 3.6 mol/kg), in agreement with previous solubility studies. Our results provide the first direct determination of this species structure, in which two sulfur atoms are in a linear geometry around AuI at an average distance of 2.29 ± 0.01 Å. At acidic conditions (1.5  pH  5.0; H2O–S–Na2SO4–H2SO4), the Au atomic environment determined by XAFS is similar to that in neutral solutions. These findings, together with measured high Au solubilities, are inconsistent with the predominance of the gold hydrogensulfide Au(HS)0 complex suggested by recent solubility studies. Our spectroscopic data and quantum-chemical calculations imply the formation of species composed of linear S–Au–S moieties, like the neutral [H2S–Au–SH] complex. This species may account for the elevated Au solubilities in acidic fluids and vapors with H2S concentrations higher than 0.1–0.2 mol/kg. However, because of the complex sulfur speciation in acidic solutions that involves sulfite, thiosulfate and polysulfide species, the formation of AuI complexes with these ligands (e.g., AuHS(SO2)0, Au(HS2O3)2, Au(HSn)2) cannot be ruled out. The existence of such species may significantly enhance Au transport by high T–P acidic ore-forming fluids and vapors, responsible for the formation of a major part of the gold resources on Earth.  相似文献   

20.
Recent experimental determinations of the solubility products of common rare earth minerals such as monazite and xenotime and stability constants for chloride, sulfate, carbonate and hydroxide complexes provide a basis to model quantitatively the solubility, and therefore the mobility, of rare earth elements (REE) at near surface conditions. Data on the mobility of REE and stabilities of REE complexes at near-neutral conditions are of importance to safe nuclear waste disposal, and environmental monitoring. The aim of this study is to understand REE speciation and solubility of a given REE in natural environments. In this study, a series of formation constants for La aqueous complexes are recommended by using the specific interaction theory (SIT) for extrapolation to infinite dilution. Then, a thermodynamic model has been employed for calculation of the solubility and speciation of La in soil solutions reacted with the La end-member of mineral monazite (LaPO4), and other La-bearing solid phases including amorphous lanthanum hydroxide (La(OH)3, am) and different La carbonates, as a function of various inorganic and organic ligand concentrations. Calculations were carried out at near-neutral pH (pH 5.5–8.5) and 25 °C at atmospheric CO2 partial pressure. The model takes account of the species: La3+, LaCl2+, , , , , , , , , La(OH)2+, LaOx+, , LaAc2+ and (where Ox2− = oxalate and Ac = acetate).The calculations indicate that the La species that dominate at pH 5.5–8.5 in the baseline model soil solution (BMSS) include La3+, LaOx+, , and in order of increasing importance as pH rises. The solubility of monazite in the BMSS remains less than 3 × 10−9 M, exhibiting a minimum of 2 × 10−12 M at pH 7.5. The calculations quantitatively demonstrate that the concentrations of La controlled by the solubility of other La-bearing solid phases are many orders of magnitude higher than those controlled by monazite in the pH range from 5.5 to 8.5, suggesting that monazite is likely to be the solubility-controlling phase at this pH range. The calculations also suggest that significant mobility of La (and other REE) is unlikely because high water–rock ratios on the order of at least 104 (mass ratio) are required to move 50% of the La from a soil. An increase in concentration of oxalate by one order of magnitude from that of the baseline model solution results in the dominance of LaOx+ at pH 5.5–7.5. Similarly, the increase in concentration of by one order of magnitude makes the dominant species at pH 5.5–7.5. Above pH 7.5, carbonate complexes are important. The increase in oxalate or concentrations by one order of magnitude can enhance the solubility of monazite by a factor of up to about 6 below neutral pH, in comparison with that in the baseline model soil solution. From pH 7.0 to 8.5, the solubility of monazite in the soil solutions with higher concentrations of oxalate or is similar, or almost identical, to that in the BMSS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号