首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
《Sedimentology》2018,65(3):775-808
Fluvial systems in which peat formation occurs are typified by autogenic processes such as river meandering, crevasse splaying and channel avulsion. Nevertheless, autogenic processes cannot satisfactorily explain the repetitive nature and lateral continuity of many coal seams (compacted peats). The fluvial lower Palaeocene Tullock Member of the Fort Union Formation (Western Interior Williston Basin; Montana, USA ) contains lignite rank coal seams that are traceable over distances of several kilometres. This sequence is used to test the hypothesis that peat formation in the fluvial system was controlled by orbitally forced climate change interacting with autogenic processes. Major successions are documented with an average thickness of 6·8 m consisting of ca 6 m thick intervals of channel and overbank deposits overlain by ca 1 m thick coal seam units. These major coal seams locally split and merge. Time‐stratigraphic correlation, using a Cretaceous–Palaeogene boundary event horizon, several distinctive volcanic ash‐fall layers, and the C29r/C29n magnetic polarity reversal, shows consistent lateral recurrence of seven successive major successions along a 10 km wide fence panel perpendicular to east/south‐east palaeo‐flow. The stratigraphic pattern, complemented by stratigraphic age control and cyclostratigraphic tests, suggests that the major peat‐forming phases, resulting in major coal seams, were driven by 100 kyr eccentricity‐related climate cycles. Two distinct conceptual models were developed, both based on the hypothesis that the major peat‐forming phases ended when enhanced seasonal contrast, at times of minimum precession during increasing eccentricity, intensified mire degradation and flooding. In model 1, orbitally forced climate change controls the timing of peat compaction, leading to enhancement of autogenic channel avulsions. In model 2, orbitally forced climate change controls upstream sediment supply and clastic influx determining the persistence of peat‐forming conditions. At the scale of the major successions, model 2 is supported because interfingering channel sandstones do not interrupt lateral continuity of major coal seams.  相似文献   

2.
The paralic, Lower-Middle Jurassic Bagå Formation of the Island of Bornholm, Denmark, was deposited in a fault-bounded, subsiding, pull-apart basin. The formation is up to 400 m thick and contains more than 50 coal seams. Twelve of these have been investigated petrographically and geochemically to provide basic information on the composition of the relatively unknown Jurassic coals. The peat-forming environments represented by the seams and the associated siliciclastic sediments are interpreted.The seams represent three types of environments with organic matter deposition. Peat accumulation occurred in low-lying areas situated between river channels in a coastal plain environment undergoing overall transgression. The coals have a relatively uniform, huminite-rich petrographic composition, indicating that the precursor mires were dominated by persistent, water-saturated and anoxic conditions. The swamps were probably occupied by a small-statured flora with cellulose-rich tissues. Significant bacterial activity in the peat swamps is suggested by an abundance of hopanes. Influence from marine water was not common but occurred occasionally. During peat accumulation, the depositional conditions were stable and quiet. The small thicknesses of the seams (8–57 cm thick) indicate relatively short periods of peat formation (average c. 2300 yr), due to continued base-level rise, controlled by subsidence, and an overall eustatic rise, causing repeated changes in the sedimentary regimes. The coal seams are of low rank and were buried to a depth of 1100–1200 m before uplift, due to Late Cretaceous-early Tertiary basin inversion and Neogene uplift.  相似文献   

3.
华北晚古生代成煤环境与成煤模式多样性研究   总被引:23,自引:2,他引:23  
华北晚古生代聚煤盆地存在活动体系成煤环境和废弃体系成煤环境。前者的海相成煤环境主要为泻湖泥炭坪,陆相成煤环境以三角洲平原沼泽意义最大。晚石炭世至晚二叠世,海相为主的成煤环境逐渐被陆相为主的成煤环境所取代,由盆缘到盆内成煤环境总体呈环带状展布。成煤环境差异性影响了成煤特点,这些成煤特点成为识别海、陆相煤层的显著相标志。华北晚古生代聚煤盆地在时间上和空间上存在成煤模式的多样性,以陆表海滨岸成煤模式、废弃碎屑体系成煤模式和浅水三角洲成煤模式为主。  相似文献   

4.
Upper Permian to Lower Triassic coastal plain successions of the Sydney Basin in eastern Australia have been investigated in outcrop and continuous drillcores. The purpose of the investigation is to provide an assessment of palaeoenvironmental change at high southern palaeolatitudes in a continental margin context for the late Permian (Lopingian), across the end‐Permian Extinction interval, and into the Early Triassic. These basins were affected by explosive volcanic eruptions during the late Permian and, to a much lesser extent, during the Early Triassic, allowing high‐resolution age determination on the numerous tuff horizons. Palaeobotanical and radiogenic isotope data indicate that the end‐Permian Extinction occurs at the top of the uppermost coal bed, and the Permo‐Triassic boundary either within an immediately overlying mudrock succession or within a succeeding channel sandstone body, depending on locality due to lateral variation. Late Permian depositional environments were initially (during the Wuchiapingian) shallow marine and deltaic, but coastal plain fluvial environments with extensive coal‐forming mires became progressively established during the early late Permian, reflected in numerous preserved coal seams. The fluvial style of coastal plain channel deposits varies geographically. However, apart from the loss of peat‐forming mires, no significant long‐term change in depositional style (grain size, sediment‐body architecture, or sediment dispersal direction) was noted across the end‐Permian Extinction (pinpointed by turnover of the palaeoflora). There is no evidence for immediate aridification across the boundary despite a loss of coal from these successions. Rather, the end‐Permian Extinction marks the base of a long‐term, progressive trend towards better‐drained alluvial conditions into the Early Triassic. Indeed, the floral turnover was immediately followed by a flooding event in basinal depocentres, following which fluvial systems similar to those active prior to the end‐Permian Extinction were re‐established. The age of the floral extinction is constrained to 252.54 ± 0.08 to 252.10 ± 0.06 Ma by a suite of new Chemical Abrasion Isotope Dilution Thermal Ionization Mass Spectrometry U‐Pb ages on zircon grains. Another new age indicates that the return to fluvial sedimentation similar to that before the end‐Permian Extinction occurred in the basal Triassic (prior to 251.51 ± 0.14 Ma). The character of the surface separating coal‐bearing pre‐end‐Permian Extinction from coal‐barren post‐end‐Permian Extinction strata varies across the basins. In basin‐central locations, the contact varies from disconformable, where a fluvial channel body has cut down to the level of the top coal, to conformable where the top coal is overlain by mudrocks and interbedded sandstone–siltstone facies. In basin‐marginal locations, however, the contact is a pronounced erosional disconformity with coarse‐grained alluvial facies overlying older Permian rocks. There is no evidence that the contact is everywhere a disconformity or unconformity.  相似文献   

5.
The South Sumatra basin is among the most important coal producing basins in Indonesia. Results of an organic petrography study on coals from Tanjung Enim, South Sumatra Basin are reported. The studied low rank coals have a mean random huminite reflectance between 0.35% and 0.46% and are dominated by huminite (34.6–94.6 vol.%). Less abundant are liptinite (4.0–61.4 vol.%) and inertinite (0.2–43.9 vol.%). Minerals are found only in small amounts (0–2 vol.%); mostly as iron sulfide.Based on maceral assemblages, the coals can be grouped into five classes: (1) humotelinite-rich group, (2) humodetrinite-rich group, (3) humocollinite-rich group, (4) inertinite-rich group and (5) humodetrinite–liptinite-rich group. Comparing the distribution of maceral assemblages to the maceral or pre-maceral assemblages in modern tropical domed peat in Indonesia reveals many similarities. The basal section of the studied coal seams is represented typically by the humodetrinite–liptinite-rich group. This section might be derived from sapric or fine hemic peat often occurring at the base of modern peats. The middle section of the seams is characterized by humotelinite-rich and humocollinite-rich groups. The precursors of these groups were hemic and fine hemic peats. The top section of the coal seams is typically represented by the humodetrinite-rich or inertinite-rich group. These groups are the counterparts of fibric peat at the top of the modern peats. The sequence of maceral assemblages thus represents the change of topogenous to ombrogenous peat and the development of a raised peat bog.A comparison between the result of detailed maceral assemblage analysis and the paleodepositional environment as established from coal maceral ratio calculation indicates that the use of coal maceral ratio diagrams developed for other coal deposits fails to deduce paleo-peat development for these young tropical coals. In particular, mineral distribution and composition should not be neglected in coal facies interpretations.  相似文献   

6.
The Middle Permian Collinsville Coal Measures of the northern Bowen Basin illustrate a range of cold to cold-temperate, coal-forming environments. Cold climate is indicated by Glossopteris flora in the coal measures, and by restricted marine fauna dominated by brachiopods and bryozoa in correlative marine sequences of the Back Creek Group which contains also abundant lonestones (dropstones). Sedimentation was characterised by an overall transgression, interrupted by local fluvial and coastal progradation in a shallow, epicontinental sea during a relatively quiescent tectonic period.Six sedimentary environments are represented: fluvial, fluvio-paralic, barrier-strandplain, back-barrier, tidal flat and open marine. The basal coal formed from peat of swamps of abandoned areas of gravelly braided streams, and is massive, dull, and with high ash (20%), low sulphur (1%) contents. Overlying coals developed from peats formed in fluvio-paralic and paralic environments, and thicker seams are generally brighter, with low to moderate ash (8–17%) and moderate to high total sulphur (1–6%) contents. Seams associated with fluvial influence show splits and high ash yield, while seams associated with coastal deposits show high sulphur levels (up to 21%).In contrast to reported models of coal-forming environments, no clearly defined deltaic or inter-distributary bay-fill sequences were identified in the area studied. Rather, vast freshwater wetlands backed low-gradient, progradational coasts locally having bars and barriers. The barriers were not prerequisites for substantial peat accumulation, although may have locally assisted peatland development by raising the profile of coastal equilibrium.  相似文献   

7.
《Gondwana Research》2015,28(4):1446-1473
The Toploje Member chert is a Roadian to Wordian autochthonous–parautochthonous silicified peat preserved within the Lambert Graben, East Antarctica. It preserves a remarkable sample of terrestrial life from high-latitude central Gondwana prior to the Capitanian mass extinction event from both mega- and microfossil evidence that includes cryptic components rarely seen in other fossil assemblages. The peat layer is dominated by glossopterid and cordaitalean gymnosperms and contains moderately common herbaceous lycophytes, together with a broad array of dispersed organs of ferns and other gymnosperms. Rare arthropod–plant and fungal–plant interactions are preserved in detail, together with a plethora of fungal morphotypes, Peronosporomycetes, arthropod remains and a diverse coprolite assemblage. Comparisons to other Palaeozoic ecosystems show that the macroflora is of low diversity. The fungal and invertebrate–plant associations demonstrate that a multitude of ecological interactions were well developed by the Middle Permian in high-latitude forest mires that contributed to the dominant coal deposits of the Southern Hemisphere. Quantitative analysis of the constituents of the silicified peat and of macerals within adjacent coal seams reveals that whilst silicified peats provide an unparalleled sample of the organisms forming Permian coals, they do not necessarily reflect the volumetric proportions of constituents within the derived coal. The Toploje Member chert Lagerstätte provides a snapshot of a rapidly entombed mire climax ecosystem in the closing stages of the Palaeozoic, but prior to the onset of the protracted crisis that engulfed and overthrew these ecosystems at the close of the Permian.  相似文献   

8.
近海型含煤岩系沉积学及层序地层学研究进展   总被引:3,自引:1,他引:2       下载免费PDF全文
层序地层学是近20年来发展起来的一门新的方法学科,并在聚煤作用分析中得到广泛应用。作者就近海型含煤岩系沉积学研究历史以及煤系层序地层学研究方法及有关问题进行探讨,认为近海环境的聚煤作用实际上是海平面(基准面)上升过程中发生的,同时提出煤层厚度受泥炭堆积速率与可容空间增加速率的控制:靠陆一侧冲积平原和三角洲平原沉积环境中,厚煤层主要出现在最大海泛面位置;而靠海一侧障壁-潟湖或碳酸盐岩台地沉积环境中,厚煤层主要出现在初始海泛面的位置;但就整个三级复合层序来说,层序中厚度最大、分布最广的煤层主要分布于可容空间增加速率最大的最大海泛面附近的位置。对于中国晚古生代近海型煤系中常见的“根土岩-煤-石灰岩”序列,聚煤作用发生于海相石灰岩“滞后时段”,即在海侵之后、海相石灰岩层真正沉积下来之前的时段,这一时段可容空间增加速率与泥炭堆积速率平衡,有利于聚煤作用发生。  相似文献   

9.
The coal-bearing sediments and coal seams of the Karoo Basin, Southern Africa are described and discussed. The Karoo Basin is bounded on its southern margin by the Cape Fold Belt, onlaps onto the Kaapvaal Craton in the north and is classified as a foreland basin. Coal seams are present within the Early Permian Vryheid Formation and the Triassic Molteno Formation.The peats of the Vryheid Formation accumulated within swamps in a cool temperate climatic regime. Lower and upper delta plain, back-barrier and fluvial environments were associated with peat formation. Thick, laterally extensive coal seams have preferentially accumulated in fluvial environments. The coals are in general inertinite-rich and high in ash. However, increasing vitrinite and decreasing ash contents within seams occur from west to east across the coalfields. The Triassic Molteno coal seams accumulated with aerially restricted swamps in fluvial environments. These Molteno coals are thin, laterally impersistent, vitrinite-rich and shaly, and formed under a warm temperate climatic regime.Palaeoclimate, depositional systems, differential subsidence and basin tectonics influence to varying degrees, the maceral content, thickness and lateral extent of coal seams. However, the geographic position of peat-forming swamps within a foreland basin, coupled with basin tectonics and differential subsidence are envisaged as the primary controls on coal parameters. The Permian coals are situated in proximal positions on the passive margin of the foreland basin. Here, subsidence was limited which enhanced oxidation of organic matter and hence the formation of inertinitic coals. The coals in this tectonic setting are thick and laterally extensive. The Triassci coals are situated within the tectonically active foreland basin margin. Rapid subsidence and sedimentation rates occurred during peat formation which resulted in the preservation of thin, laterally impersistent, high ash, vitrinite-rich, shaly coals.  相似文献   

10.
Vertical sequence analysis within 1500-2500 m thick coarse-grained coalfield successions allows six sedimentary associations to be distinguished. These are interpreted in terms of depositional environments on, or related to alluvial fans which fringed a fault bounded source region. (i) Topographic valley and fanhead canyon fills: occurring at the bases of the coalfield successions and comprising sporadically reddened, scree, conglomeratic thinning and fining upward sequences, and fine-grained coal-bearing sediments. (ii) Alluvial fan channels: conglomerate and sandstone filled. (iii) Mid-fan conglomeratic and sandstone lobes: laterally extensive, thickly bedded (1-25 m) and varying from structureless coarse conglomerates and pebbly sandstones, to stratified fine conglomerates and cross-bedded sandstones. (iv) Interlobe and interchannel: siltstones, fine-grained sheet sandstones, abundant floras, thin coals and upright trees. (v) Distal fan: 10 cm-1.5 m thick sheet sandstones which preserve numerous upright trees, separated by silt-stones and mudstones with abundant floras, and coal seams. The sheet sandstones and normally arranged in sequences of beds which become thicker and coarser or thinner and finer upwards. These trends also occur in combination. (vi) Lacustrine: coals, limestones, and fine-grained, low-energy, regressive, coarsening upward sequences. Proximal fan sediments are only preserved in certain basal deposits of these coalfields. The majority of the successions comprise mid and distal alluvial fan and lacustrine sediments. Mid-fan depositional processes consisted of debris flows and turbulent streamflows, whilst sheetfloods dominated active distal areas. A tropical and seasonal climate allowed vegetation to colonize abandoned fan surfaces and perhaps resulted in localized diagenetic reddening. Worked coals, from 10s cm-20 m thick, occur in the distal fan and lacustrine environments. These alluvial fan deposits infill‘California-like’basins developed and preserved along major structural zones. In many of their characteristics, in particular the occurrence of thinning and fining, and thickening and coarsening upward sequences and megasequences, these sediments have similarities to documented ancient submarine fan deposits.  相似文献   

11.
We present new original data on the geochemistry of scandium in the coals of Asian Russia, Mongolia, and Kazakhstan. In general, the studied coals are enriched in Sc as compared with the average coals worldwide. Coal deposits with abnormally high, up to commercial, Sc contents were detected in different parts of the study area. The factors for the accumulation of Sc in coals have been identified. The Sc contents of the coals depend on the petrologic composition of coal basins (composition of rocks in their framing) and the facies conditions of coal accumulation. We have established the redistribution and partial removal of Sc from a coal seam during coal metamorphism. The distribution of Sc in deposits and coal seams indicates the predominantly hydrogenic mechanism of its anomalous concentration in coals and peats. The accumulation of Sc in the coals and peats is attributed to its leaching out of the coal-bearing rocks and redeposition in a coal (peat) layer with groundwater and underground water enriched in organic acids. The enrichment of coals with Sc requires conditions for the formation of Sc-enriched coal-bearing rocks and conditions for its leaching and transport to the coal seam. Such conditions can be found in the present-day peatland systems of West Siberia and, probably, in ancient basins of peat (coal) accumulation.  相似文献   

12.
辽西黑山—彰武地区分布有一系列早白垩世断陷成因的陆相盆地,其中以八道壕煤盆地含煤性最好。本次工作在八道壕煤矿深部勘探区,采用二维地震、钻探、测井等对八道壕组进行了层序地层和成煤环境分析。八道壕组可分为三个三级层序,下部第1层序(Sq1)为冲积扇注入湖盆形成的水下扇—扇三角洲沉积体系,湖侵域和高位域各含一个煤组,湖侵域退积的水下扇边缘和高位域扇三角洲前缘都有厚煤层发育。早期冲积扇自盆地西南注入湖盆,煤层发育在断陷较深的中北部,自西侧盆缘断裂附近向东超覆。Sq1湖侵域的煤层比高位域的煤层分布面积要大。盆地南部冲积扇主体部位粗碎屑岩增多,上、下煤组的煤层均向南变薄尖灭。由于物源区构造抬升冲积扇向湖盆的进积作用加剧,八道壕组中上部第2、3层序粗碎屑沉积物增多,湖盆水域面积缩小,煤层不再发育。  相似文献   

13.
Coal balls were collected from four coal beds in the southeastern part of the Illinois Basin. Collections were made from the Springfield, Herrin, and Baker coals in western Kentucky, and from the Danville Coal in southwestern Indiana. These four coal beds are among the principal mineable coals of the Illinois Basin and belong to the Carbondale and Shelburn Formations of late Middle Pennsylvanian age. Vegetational composition was analyzed quantitatively. Coal-ball samples from the Springfield, Herrin, and Baker are dominated by the lycopsid tree Lepidophloios, with lesser numbers of Psaronius tree ferns, medullosan pteridosperms, and the lycopsid trees Synchysidendron and Diaphorodendron. This vegetation is similar to that found in the Springfield and Herrin coals elsewhere in the Illinois Basin, as reported in previous studies. The Danville coal sample, which is considerably smaller than the others, is dominated by Psaronius with the lycopsids Sigillaria and Synchysidendron as subdominants.Coal balls from the Springfield coal were collected in zones directly from the coal bed and their zone-by-zone composition indicates three to four distinct plant assemblages. The other coals were analyzed as whole-seam random samples, averaging the landscape composition of the parent mire environments. This analysis indicates that these coals, separated from each other by marine and terrestrial-clastic deposits, have essentially the same floristic composition and, thus, appear to represent a common species pool that persisted throughout the late Middle Pennsylvanian, despite changes in baselevel and climate attendant the glacial–interglacial cyclicity of the Pennsylvanian ice age. Patterns of species abundance and diversity are much the same for the Springfield, Herrin, and Baker, although each coal, both in the local area sampled, and regionally, has its own paleobotanical peculiarities. Despite minor differences, these coals indicate a high degree of recurrence of assemblage and landscape organization. The Danville departs dramatically from the dominance–diversity composition of the older coals, presaging patterns of tree–fern and Sigillaria dominance of Late Pennsylvanian coals of the eastern United States, but, nonetheless, built on a species pool shared with the older coals.  相似文献   

14.
Most types of coal in Turkey are generally low in rank: lignite, and subbituminous. Most of the coal was formed during the Miocene, Eocene, and Pliocene ages. There are only a few thin Jurassic-age coal occurrences in Turkey. Pennsylvanian age bituminous coal is found on the Black Sea coast. General implications of the petrographic properties of Turkey's coal seams and coal deposits have not yet been taken into consideration comparatively or as a whole.For this study, about 190 channel samples were collected from different locales. The composite profile samples of the seams were taken into considerations. The content and depositional properties as well as some chemical and physical properties of the main coal seams are compared. All coal samples tend to have similar coal petrographic properties and were deposited in intermontane lacustrine basins. Later, they were affected by faulting and post-depositional volcanic activity. As a result, there are variations in the properties and rank of the coal samples. The most abundant coal maceral group is huminite and the most abundant maceral is gelinite. The liptinite and inertinite contents of the coal are low and the maceral contents of the coals show great similarity. The depositional environments of the all coals are lacustrine dominated.  相似文献   

15.
Floral character in mires has changed progressively through time. In the Carboniferous, pteridophytes, sphenophytes and lycophytes were dominant but by the Permian gymnosperms were an important component of mire flora. During the early Mesozoic gymnosperms remained the characteristic mire vegetation, together with pteridophytes, and conifers became dominant during the Jurassic. Cretaceous and Paleocene vegetation are similar, with taxodiaceous flora being important in mire vegetation. From the Eocene onwards, however, angiosperms were increasingly dominant in mire communities and in the Miocene herbaceous vegetation began to play a significant role. Together with these changes in floral character at least three aspects of coal character also appear to vary sequentially with time and are distinctive in the Tertiary: (1) proportions and thickness of vitrain banding, (2) coal bed thickness and (3) proportions of carbonised material. A compilation has been made of data from the coal literature comparing older coals with those of the Tertiary, in order to give a perspective in which to examine Tertiary coals. It was found that only Tertiary coals contain significant proportions of coal devoid of vitrain bands. In addition, Tertiary coals are the thickest recorded coal beds and generally contain low percentages of carbonised material (many less than 5%) as compared to older coals. It is interesting to note that Paleocene coal beds are similar to Cretaceous coals in that they tend to be thinner and contain higher proportions of carbonised material than do younger Tertiary coals.The absence of vitrain bands in some Tertiary coal beds is thought to result from the floras dominated by angiosperms, which are relatively easily degraded as compared to gymnosperms. The thickness of Tertiary coals may be related to an increase in biomass production from the Carboniferous through to the Tertiary, as plants made less investment in producing lignin, an energy-intensive process. In addition, with less lignin in plants, easier degradation of biomass may have facilitated nutrient recycling which, in turn, led to greater biomass production. Increased biomass production may have also ‘diluted’ the carbonised material present in some Tertiary peats, leading to lower proportions in the coal. Another possible cause of decreased carbonised components in Tertiary coal is that decreasing lignin content resulted in decreased charring during fires, as lignin is particularly prone to charring. A third possibility is that the carbonised component of peat may be concentrated during coalification so that Tertiary coals, generally of lower rank than Mesozoic or Paleozoic coals, contain a smaller fraction of carbonised plant material. It is not at present clear which of these mechanisms may have affected carbonised material in peat and coal but it is clear that lignin type and content has had an important role in determining peat and coal character since the Paleozoic.  相似文献   

16.
The Ruhuhu Basin in SW Tanzania contains several small coal basins (i.e. Mchuchuma, Ngaka North, Mbalawala, Lumecha), consisting of fault controlled half-grabens submitted to several stages of tectonic activation. All basins underwent fragmentation in the ? middle Jurassic and late Miocene to Pliocene. Palaeotopography of pre-Karoo basement was partly responsible for the development of coal seam thickness distribution. Facies characteristics of the lower/middle and upper Mchuchuma Formation and the »Scarp sandstone« of the overlying Ketewaka formation exhibit synsedimentary basin subsidence. Vitrinite reflectance data suggest similar temperature gradients and burial history for the Mchuchuma and Ngaka subbasins. The application of a computer simulation program revealed the considerable effect of post-sedimentary tilting of depositional surfaces. In the Mchuchuma basin the back rotation of the base of the economic coal seam was calculated at -2°, the Ngaka basin showed an even higher degree of back rotation of -6°. Cyclicity was determined by Markov chain analysis for both basins. Mainly fining upward cycles prevail being characteristic for a fluvial environment. The depositional model for the Mchuchuma basin represents a meandering river system with a lower basal channel fill and an upper suspension load dominated cycle with accompanying overbank and flood plain sediments. The Ngaka basin shows an environment tentatively attributed to a braided river system. Thinning of coal seams and increased ash values in upper stratigraphic units depict deteriorating peat forming and preserving conditions. Swamp water chemistry was responsible for peat preservation, channel configuration and to some degree differential compaction governed the coal seam geometry. A slightly warmer climate than usually described for the Gondwana coals is proposed for the Lower Permian Tanzania coals. The diversity of microfloral evolution, eustatic sea level rises in the Sakmarian of Australia and available palaeotemperature curves demonstrate a probable mean annual temperature of 10–12 °C for a palaeolatitude of 60° S for the Tanzania coal fields.  相似文献   

17.
Abstract

Coal measures located in marginal sea basins are important hydrocarbon source rocks. For the purpose of effectively guiding future oil and gas exploration, the characteristics and distribution patterns of coal seams in coal measures of a marginal sea basin are systematically outlined. Coal measures in marginal sea basins can have large thicknesses, but the individual coal seams can be very thin and lack lateral continuity. In the study area, the organic micro-components of the coal are dominated by vitrinite, with very low amounts of inertinite and liptinite. The amount of inorganic microscopic components is large, but with limited drilling results, few cores and thin coal seams, which are easily overlooked during logging activities, a comprehensive analysis of the logging data may improve efficiency in coal-seam identification and thickness determination. The development and distribution of coal seams in marginal sea basins are controlled by various factors, including (1) paleoclimatic and paleobotanic conditions, which could fundamentally limit coal formation, (2) coal-forming sedimentary environmental conditions that may limit the scope of coal-seam development from a macroscopic perspective, and (3) paleotectonic and paleotopographic conditions that define the coal-forming structures. Therefore, the descending and rising cycles of base-levels, along with changes in the growth rates of the accommodation spaces, can be used to determine the horizons that are potentially favourable for coal formation and can also indicate the migration trends of coal-forming environments on the structural plane. Seismic wave impedance inversion methods could be utilised for semi-quantitative assistance for prediction of coal seams. In summary, for models of coal-seam development in marginal sea basins, the grades should be divided according to reliability, and the different reliability levels should be predicted separately.
  1. The characteristics of coal seams developed in marginal sea basins are described.

  2. The macerals of coals developed in marginal sea basins have been ascertained.

  3. A development model and distribution prediction method for coal seams are assessed according to the control factors.

  4. A model for the prediction of coal-seam distribution is presented.

  相似文献   

18.
The Cantabrian Mountains, containing about 70% of the total coals of the country and 95% of the anthracitic and bituminous resources, is the most important coal-mining district of Spain. Coal-bearing successions are Late Carboniferous in age and their deposition took place in a syn-orogenic context during the Hercynian activity, mainly in three different time-successive locations: foreland basins, intrathrust basins and intramontane fault-controlled basins. Foreland deposition occurred in strongly asymmetrical basins located ahead of thrust sheets units. Intrathrust basins resulted from folding and tightening of these units during or after their emplacement. Intramontane and fault-controlled basins were developed along lineaments with strike-slip movements and as a result of fold and fault reactivation. Peat mires in foreland and intrathrust coal basins mainly occupied broad areas on abandoned delta and fan delta lobes. Coals in intramontane and fault-controlled basins were related with alluvial fan and lacustrine environments. Coal ranks vary from high volatile bituminous coals to anthracite, depending on the structural location of the coalfields. Hydrothermal activity seems to be the most important factor in coal evolution.  相似文献   

19.
采用沉积学、煤地质学、古生物学、地层学及地球化学等多技术手段,结合比较分析法的思路,分析了事件型海侵的特点和海侵事件沉积组合特征,研究发现:海侵事件沉积组合为区域对比性强、具沉积时间连续性与相序间断性的暴露沉积-煤层-灰岩组合,其关键沉积学特征是煤层底板的暴露沉积.海侵事件组合灰岩的古生化石个体小、破碎强烈等特征表现为高能量水体运动等环境,孢粉表现为低含量的单缝孢和裸子植物及高含量的三缝孢.地球化学分析表明暴露沉积为陆相环境,煤层中的微量元素表现为海相主要原因是由于泥炭沼泽覆于深水后受海水影响所致.海侵事件成煤与海侵过程成煤差异体现在两个方面:第一,盆地属性差异,即海侵事件成煤形成于陆表海盆地之中,而海侵过程成煤则形成于具有缓坡的边缘海盆地,第二,成煤原理存在着差异,海侵事件成煤强调的是成煤前海侵未发生前的碎屑体系废弃而发育大量泥炭沼泽且被后期突发性海侵终止,而海侵过程成煤则强调的是泥炭沼泽发育于滨海的活动碎屑体系并终止于后期的缓慢海平面上升.  相似文献   

20.
Strata of Westphalian D age on the western coast of the Sydney Basin expose a fossil forest of approximately 30 lepidodendrid trees within one of several clastic splits of the Harbour Seam. A multidisciplinary approach was employed to interpret the origins of the coat bed, the depositional history of the site and the response of the fossil forest to changing edaphic conditions. The megaspore and miospore records indicate that the mire vegetation was dominated by arboreous lycopsids, especially Paralycopodites, with subdominant tree ferns. Petrographic, palynological and geochemical evidence suggest that the Harbour coal bed at Table Head originated as a rheotrophic (cf. planar) mire (eutric histosol). The mire forest is interpreted to have been engulfed by prograding distributary-channel sediments; sparse protist assemblages are suggestive of a freshwater delta-plain lake environment occasionally in contact with brackish waters. Lepidodendrids persisted as site colonizers of clastic substrates even after burial of the rheotrophic peatland and influenced the morphology of deposited sediment, but apparently were unable to colonize distributary channels. Equivocal taxonomic data (compression fossils) show the fossil forest to have been composed of both monocarpic (Lepidodendron) and polycarpic (Diaphorodendron, Paralycopodites, ?Sigillaria) lycopsids, genera recorded in the palynology of the uppermost ply of the underlying coal bed. Comparatively rare within the clastic beds of the fossil forest, however, is the stem compression of Paralycopodites, whose dispersed megapores and miospores dominate the underlying coal bed. Tree diameter data recorded equivalent to breast height indicate a forest of mixed age. These data would appear to suggest that some lepidodendrids employing a polycarpic reproductive strategy were better able to cross the ecological barrier imposed between peat and clastic substrates. Foliar compressions indicate that an understory or stand of Psaronius type tree ferns co-existed with the lepidodendrids on clastic substrates, which developed as incipient gleysol soils. The entombment of the forest can be ascribed to its distributary coastal setting, local subsidence and a seasonal climate that fostered wildfire and increased sedimentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号