首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This study presents the future seismic hazard map of Coimbatore city, India, by considering rupture phenomenon. Seismotectonic map for Coimbatore has been generated using past earthquakes and seismic sources within 300 km radius around the city. The region experienced a largest earthquake of moment magnitude 6.3 in 1900. Available earthquakes are divided into two categories: one includes events having moment magnitude of 5.0 and above, i.e., damaging earthquakes in the region and the other includes the remaining, i.e., minor earthquakes. Subsurface rupture character of the region has been established by considering the damaging earthquakes and total length of seismic source. Magnitudes of each source are estimated by assuming the subsurface rupture length in terms of percentage of total length of sources and matched with reported earthquake. Estimated magnitudes match well with the reported earthquakes for a RLD of 5.2% of the total length of source. Zone of influence circles is also marked in the seismotectonic map by considering subsurface rupture length of fault associated with these earthquakes. As earthquakes relive strain energy that builds up on faults, it is assumed that all the earthquakes close to damaging earthquake have released the entire strain energy and it would take some time for the rebuilding of strain energy to cause a similar earthquake in the same location/fault. Area free from influence circles has potential for future earthquake, if there is seismogenic source and minor earthquake in the last 20 years. Based on this rupture phenomenon, eight probable locations have been identified and these locations might have the potential for the future earthquakes. Characteristic earthquake moment magnitude (M w ) of 6.4 is estimated for the seismic study area considering seismic sources close to probable zones and 15% increased regional rupture character. The city is divided into several grid points at spacing of 0.01° and the peak ground acceleration (PGA) due to each probable earthquake is calculated at every grid point in city by using the regional attenuation model. The maximum of all these eight PGAs is taken for each grid point and the final PGA map is arrived. This map is compared to the PGA map developed based on the conventional deterministic seismic hazard analysis (DSHA) approach. The probable future rupture earthquakes gave less PGA than that of DSHA approach. The occurrence of any earthquake may be expected in near future in these eight zones, as these eight places have been experiencing minor earthquakes and are located in well-defined seismogenic sources.  相似文献   

2.
The Vienna Basin Transfer Fault (VBTF) is a slow active fault with moderate seismicity (I max~8–9, M max~5.7) passing through the most vulnerable regions of Austria and Slovakia. We use different data to constrain the seismic potential of the VBTF including slip values computed from the seismic energy release during the 20th century, geological data on fault segmentation and a depth-extrapolated 3-D model of a generalized fault surface, which is used to define potential rupture zones. The seismic slip of the VBTF as a whole is in the range of 0.22–0.31 mm/year for a seismogenic fault thickness of 8 km. Seismic slip rates for individual segments vary from 0.00 to 0.77 mm/year. Comparing these data to geologically and GPS-derived slip velocities (>1 mm/year) proofs that the fault yields a significant seismic slip deficit. Segments of the fault with high seismic slip contrast from segments with no slip representing locked segments. Fault surfaces of segments within the seismogenic zone (4–14 km depth) vary from 55 to 400 km2. Empirical scaling relations show that these segments are sufficiently large to explain both, earthquakes observed in the last centuries, and the 4th century Carnuntum earthquake, for which archeo-seismological data suggest a magnitude of M ≥ 6. Based on the combination of all data (incomplete earthquake catalog, seismic slip deficits, locked segments, potential rupture areas, indications of strong pre-catalog earthquakes) we argue, that the maximum credible earthquake for the VBTF is in the range M max = 6.0–6.8, significantly larger than the magnitude of the strongest recorded events (M = 5.7).  相似文献   

3.
We present new constraints on an active low-angle normal fault system in the Città di Castello–Sansepolcro basin (CSB) of the northern Apennines of Italy. New field data from the geological survey of the Carta Geologica d'Italia (CARG project) define the surface geometry of the normal fault system and lead to an interpretation of the CROP 03 deep-crust seismic reflection profile (Castiglion Fiorentino–Urbania segment), with particular attention paid to the geometry of the Plio-Quaternary extensional structures. Surface and sub-surface geological data are integrated with instrumental and historical seismicity in order to define the seismotectonics of the area.Low-angle east-dipping reflectors are the seismic expression of the well-known Altotiberina Fault (AF), a regional extensional detachment on which both east- and west-dipping high-angle faults, bounding the CSB, sole out. The AF breakaway zone is located ~ 10 km west of the CSB. Within the extensional allochthon, synthetic east-dipping planes prevail. Displacement along the AF is ~ 4.5 km, which agrees with the cumulative offset due to its synthetic splays. The evolution of the CSB has mainly been controlled by the east-dipping fault system, at least since Early Pleistocene time; this system is still active and responsible for the seismicity of the area. A low level of seismic activity was recorded instrumentally within the CSB, but several damaging earthquakes have occurred in historical times. The instrumental seismicity and the intensity data points of the largest historical earthquakes (5 events with maximum MCS intensity of IX to IX–X) allow us to propose two main seismogenic structures: the Monte Santa Maria Tiberina (Mmax = 5.9) and Città di Castello (Mmax up to 6.5) normal faults. Both are synthetic splays of the AF detachment, dipping to the NE at moderate (45–50°) to low (25–30°) angles and cutting the upper crust up to the surface. This study suggests that low-angle normal faults (at least with dips of 25–30°) may be seismogenic.  相似文献   

4.
Spectral analysis of the digital data of the Bouguer anomaly of North India including Ganga basin suggest a four layer model with approximate depths of 140, 38, 16 and 7 km. They apparently represent lithosphere–asthenosphere boundary (LAB), Moho, lower crust, and maximum depth to the basement in foredeeps, respectively. The Airy’s root model of Moho from the topographic data and modeling of Bouguer anomaly constrained from the available seismic information suggest changes in the lithospheric and crustal thicknesses from ∼126–134 and ∼32–35 km under the Central Ganga basin to ∼132 and ∼38 km towards the south and 163 and ∼40 km towards the north, respectively. It has clearly brought out the lithospheric flexure and related crustal bulge under the Ganga basin due to the Himalaya. Airy’s root model and modeling along a profile (SE–NW) across the Indus basin and the Western Fold Belt (WFB), (Sibi Syntaxis, Pakistan) also suggest similar crustal bulge related to lithospheric flexure due to the WFB with crustal thickness of 33 km in the central part and 38 and 56 km towards the SE and the NW, respectively. It has also shown the high density lower crust and Bela ophiolite along the Chamman fault. The two flexures interact along the Western Syntaxis and Hazara seismic zone where several large/great earthquakes including 2005 Kashmir earthquake was reported.The residual Bouguer anomaly maps of the Indus and the Ganga basins have delineated several basement ridges whose interaction with the Himalaya and the WFB, respectively have caused seismic activity including some large/great earthquakes. Some significant ridges across the Indus basin are (i) Delhi–Lahore–Sargodha, (ii) Jaisalmer–Sibi Syntaxis which is highly seismogenic. and (iii) Kachchh–Karachi arc–Kirthar thrust leading to Sibi Syntaxis. Most of the basement ridges of the Ganga basin are oriented NE–SW that are as follows (i) Jaisalmer–Ganganagar and Jodhpur–Chandigarh ridges across the Ganga basin intersect Himalaya in the Kangra reentrant where the great Kangra earthquake of 1905 was located. (ii) The Aravalli Delhi Mobile Belt (ADMB) and its margin faults extend to the Western Himalayan front via Delhi where it interacts with the Delhi–Lahore ridge and further north with the Himalayan front causing seismic activity. (iii) The Shahjahanpur and Faizabad ridges strike the Himalayan front in Central Nepal that do not show any enhanced seismicity which may be due to their being parts of the Bundelkhand craton as simple basement highs. (iv) The west and the east Patna faults are parts of transcontinental lineaments, such as Narmada–Son lineament. (v) The Munghyr–Saharsa ridge is fault controlled and interacts with the Himalayan front in the Eastern Nepal where Bihar–Nepal earthquakes of 1934 has been reported. Some of these faults/lineaments of the Indian continent find reflection in seismogenic lineaments of Himalaya like Everest, Arun, Kanchenjunga lineaments. A set of NW–SE oriented gravity highs along the Himalayan front and the Ganga and the Indus basins represents the folding of the basement due to compression as anticlines caused by collision of the Indian and the Asian plates. This study has also delineated several depressions like Saharanpur, Patna, and Purnia depressions.  相似文献   

5.
Seismic potential of Southern Italy   总被引:1,自引:2,他引:1  
To improve estimates of the long-term average seismic potential of the slowly straining South Central Mediterranean plate boundary zone, we integrate constraints on tectonic style and deformation rates from geodetic and geologic data with the traditional constraints from seismicity catalogs. We express seismic potential (long-term average earthquake recurrence rates as a function of magnitude) in the form of truncated Gutenberg–Richter distributions for seven seismotectonic source zones. Seismic coupling seems to be large or even complete in most zones. An exception is the southern Tyrrhenian thrust zone, where most of the African–European convergence is accommodated. Here aseismic deformation is estimated to range from at least 25% along the western part to almost 100% aseismic slip around the Aeolian Islands. Even so, seismic potential of this zone has previously been significantly underestimated, due to the low levels of recorded past seismicity. By contrast, the series of 19 M6–7 earthquakes that hit Calabria in the 18th and 19th century released tectonic strain rates accumulated over time spans up to several times the catalog duration, and seismic potential is revised downward. The southern Tyrrhenian thrust zone and the extensional Calabrian faults, as well as the northeastern Sicilian transtensional zone between them (which includes the Messina Straits, where a destructive M7 event occurred in 1908), all have a similar seismic potential with minimum recurrence times of M ≥ 6.5 of 150–220 years. This potential is lower than that of the Southern Apennines (M ≥ 6.5 recurring every 60 to 140 years), but higher than that of southeastern Sicily (minimum M ≥ 6.5 recurrence times of 400 years). The high seismicity levels recorded in southeastern Sicily indicate some clustering and are most compatible with a tectonic scenario where the Ionian deforms internally, and motions at the Calabrian Trench are small. The estimated seismic potential for the Calabrian Trench and Central and Western Sicily are the lowest (minimum M ≥ 6.5 recurrence times of 550–800 years). Most zones are probably capable of generating earthquakes up to magnitudes 7–7.5, with the exception of Central and Western Sicily where maximum events sizes most likely do not exceed 7.  相似文献   

6.
《地学前缘(英文版)》2020,11(3):989-998
Regions of slow strain often produce swarm-like sequences, characterized by the lack of a clear mainshock-aftershock pattern. The comprehension of their underlying physical mechanisms is challenging and still debated. We used seismic recordings from the last Pollino swarm (2010–2014) and nearby to separate and map seismic scattering (from P peak-delays) and absorption (from late-time coda-wave attenuation) at different frequencies in the Pollino range and surroundings. High-scattering and high-absorption anomalies are markers of a fluid-filled fracture volume extending from SE to NW (1.5–6 ​Hz) across the range. With increasing frequency, these anomalies approximately cover the area where the strongest earthquakes occurred from the sixteenth century until 1998. In our interpretation, the NW fracture propagation ends where carbonates of the Lucanian Apennines begin, as marked by a high-scattering and low-absorption area. At the highest frequency (12 ​Hz) the anomalies widen southward in the middle of the range, consistently marking the faults active during the recent Pollino swarm. Our results suggest that fracture healing has closed small-scale fractures across the SE faults that were active in the past centuries, and that the propagation of fluids may have played a crucial role in triggering the 2010–2014 Pollino swarm. Assuming that the fluid propagation ended at the carbonates barrier in the NW direction, fractures opened new paths to the South, favoring the nucleation of the last Pollino swarm. Indeed, the recently active faults in the middle of the seismogenic volume are marked by a high-scattering and high-absorption footprints. Our work provides evidence that attenuation parameters may track shape and dynamics of fluid-filled fracture networks in fault areas.  相似文献   

7.
《Gondwana Research》2010,17(3-4):512-526
The spatial distribution of deep slow earthquake activity along the strike of the subducting Philippine Sea Plate in southwest Japan is investigated. These events usually occur simultaneously between the megathrust seismogenic zone and the deeper free-slip zone on the plate interface at depths of about 30 km. Deep low-frequency tremors are weak prolonged vibrations with dominant frequencies of 1.5–5 Hz, whereas low-frequency earthquakes correspond to isolated pulses included within the tremors. Deep very-low-frequency earthquakes have long-period (20 s) seismic signals, and short-term slow-slip events are crustal deformations lasting for several days. Slow earthquake activity is not spatially homogeneous but is separated into segments some of which are bounded by gaps in activity. The spatial distribution of each phase of slow earthquake activity is usually coincident, although there are some inconsistencies. Very-low-frequency earthquakes occur mainly at edges of segments. Low-frequency earthquakes corresponding to tremors of relatively large amplitude are concentrated at spots where tremors are densely distributed within segments. The separation of segments by gaps suggests large differences in stick-slip and stable sliding caused by frictional properties of the plate interface. Within each segment, variations in the spatial distribution of slow earthquakes reflected inhomogeneities corresponding to the characteristic scales of events.  相似文献   

8.
A “standard procedure” to characterize the seismic hazard of a given area was proposed. It is based on a multidisciplinary approach implying: (1) the knowledge of the seismic history of the area; (2) detailed geological surveys; (3)seismic noise measurements; (4) simulations of earthquake scenarios. The downtown of Acireale, a typical baroque town located on Eastern Sicily, was chosen as the “test area”. A catalog of the local seismogenic faults (able to generate earthquakes in historical times) has been compiled, as well as a seismic catalog for the effects of both local and regional earthquakes. The analysis of both catalogs allowed us to make the following conclusions: (1) the most important seismogenic faults affecting the Acireale municipality do not affect the downtown, while the related local earthquakes attenuate their energy (and intensity) in short (few km) distances; (2) the highest seismic intensity (degree X) experienced in Acireale downtown was caused by the 1693 regional earthquake; (3) over the last 140 years, the downtown has experienced the highest intensity value of VII only once, while six times the intensity was VI. On the whole, this implies a moderate seismic hazard. The estimation of the seismic hazard has been also approached by the experimental method of recording seismic noise. Measurements have been performed at seven different sites, where drills gave detailed information on the shallow subsurface geology to obtain HV (horizontal/vertical) spectral ratios. On the whole, the highest site amplification factor was moderate (about 7). A further investigation based on synthetic seismograms (and spectra) produced by simulating two given earthquake scenarios was also performed. The two scenarios are, respectively, representative of the largest expected earthquake in the area (the 1693 shock) and of a moderate (magnitude ca. 5.5) local earthquake (as the 1818 one). Moderate to strong locally expected accelerations were evidenced.  相似文献   

9.
The Timiskaming Graben is a 400 km long, 50 km wide north‐west trending morphotectonic depression within the Canadian Shield of eastern North America and experiences frequent intraplate earthquakes. The graben extends along the border of Ontario and Quebec, connecting southward with the Nipissing and Ottawa‐Bonnechere grabens and the St. Lawrence Rift System which includes a similar structure underlying the Hudson Valley of the eastern USA. Together they form a complex failed rift system related to regional extension of North American crust during the breakup of Rodinia and, later, Pangea. The Timiskaming Graben lies within a belt of heightened seismic activity (Western Quebec Seismic Zone) with frequent moderate magnitude (greater than magnitude 5) earthquakes including a magnitude 6.2 in 1935. These events threaten aging urban infrastructure built on soft glacial sediments; post‐glacial landslides along the Ottawa Valley suggest earthquakes as large as magnitude 7. The inner part of the Timiskaming Graben is filled by Lake Timiskaming, a large 110 km long post‐glacial successor to glacial Lake Barlow that was ponded by the Laurentide Ice Sheet 9500 years ago. The effects of frequent ground shaking on lake floor sediments was assessed by collecting more than 1000 line kilometres of high‐resolution ‘chirp’ seismic profiles. Late glacial Lake Barlow glaciolacustrine and overlying post‐glacial sediments are extensively deformed by extensional faults that define prominent horsts and grabens; multibeam bathymetry data suggest that faults influence the morphology of the modern lake floor, despite high sedimentation rates, and indicate recent neotectonic deformation. The Lake Timiskaming area provides evidence of post‐glacial intracratonic faulting related to recurring earthquake activity along a weak spot within the North American plate.  相似文献   

10.
We present a revision and a seismotectonic interpretation of deep crust strike–slip earthquake sequences that occurred in 1990–1991 in the Southern Apennines (Potenza area). The revision is motivated by: i) the striking similarity to a seismic sequence that occurred in 2002  140 km NNW, in an analogous tectonic context (Molise area), suggesting a common seismotectonic environment of regional importance; ii) the close proximity of such deep strike–slip seismicity with shallow extensional seismicity (Apennine area); and iii) the lack of knowledge about the mechanical properties of the crust that might justify the observed crustal seismicity. A comparison between the revised 1990–1991 earthquakes and the 2002 earthquakes, as well as the integration of seismological data with a rheological analysis offer new constraints on the regional seismotectonic context of crustal seismicity in the Southern Apennines. The seismological revision consists of a relocation of the aftershock sequences based on newly constrained velocity models. New focal mechanisms of the aftershocks are computed and the active state of stress is constrained via the use of a stress inversion technique. The relationships among the observed seismicity, the crustal structure of the Southern Apennines, and the rheological layering are analysed along a crustal section crossing southern Italy, by computing geotherms and two-mechanism (brittle frictional vs. ductile plastic strength) rheological profiles. The 1990–1991 seismicity is concentrated in a well-defined depth range (mostly between 15 and 23 km depths). This depth range corresponds to the upper pat of the middle crust underlying the Apulian sedimentary cover, in the footwall of the easternmost Apennine thrust system. The 3D distribution of the aftershocks, the fault kinematics, and the stress inversion indicate the activation of a right-lateral strike–slip fault striking N100°E under a stress field characterized by a sub-horizontal N142°-trending σ1 and a sub-horizontal N232°-trending σ3, very similar to the known stress field of the Gargano seismic zone in the Apulian foreland. The apparent anomalous depths of the earthquakes (> 15 km) and the confinement within a relatively narrow depth range are explained by the crustal rheology, which consists of a strong brittle layer at mid crustal depths sandwiched between two plastic horizons. This articulated rheological stratification is typical of the central part of the Southern Apennine crust, where the Apulian crust is overthrusted by Apennine units. Both the Potenza 1990–1991 and the Molise 2002 seismic sequences can be interpreted to be due to crustal E–W fault zones within the Apulian crust inherited from previous tectonic phases and overthrusted by Apennine units during the Late Pliocene–Middle Pleistocene. The present strike–slip tectonic regime reactivated these fault zones and caused them to move with an uneven mechanical behaviour; brittle seismogenic faulting is confined to the strong brittle part of the middle crust. This strong brittle layer might also act as a stress guide able to laterally transmit the deviatoric stresses responsible for the strike–slip regime in the Apulian crust and may explain the close proximity (nearly overlapping) of the strike–slip and normal faulting regimes in the Southern Apennines. From a methodological point of view, it seems that rather simple two-mechanism rheological profiles, though affected by uncertainties, are still a useful tool for estimating the rheological properties and likely seismogenic behaviour of the crust.  相似文献   

11.
《Gondwana Research》2010,17(3-4):470-481
We estimate detailed three-dimensional seismic velocity structures in the subducting Pacific slab beneath Hokkaido, Japan, using a large number of arrival-time data from 6902 local earthquakes. A remarkable low-velocity layer with a thickness of ~ 10 km is imaged at the uppermost part of the slab and is interpreted as hydrated oceanic crust. The layer gradually disappears at depths of 70–80 km, suggesting the breakdown of hydrous minerals there. We find prominent low-velocity anomalies along the lower plane of the double seismic zone and above the aftershock area of the 1993 Kushiro-oki earthquake (M7.8). Since seismic velocities of unmetamorphosed peridotite are much higher than the observations, hydrous minerals are expected to exist in the lower plane as well as the hypocentral area of the 1993 earthquake. On the other hand, regions between the upper and lower planes, where seismic activity is not so high compared to the both planes, show relatively high velocities comparable to those of unmetamorphosed peridotite. Our observations suggest that intermediate-depth earthquakes occur mainly in regions with hydrous minerals, which support dehydration embrittlement hypothesis as a cause of earthquake in the subducting slab.  相似文献   

12.
Water level fluctuations in twenty-one observation wells have been monitored for the last 10 years around the seismically active Koyna–Warna region, western India where earthquakes continue to occur even after four decades of the initiation of the seismic activity in the region. Fourteen of the observation wells act as volume strain meters as their water levels show earth tidal signals. Our analysis suggests three types of response of the well water levels to seismo-tectonic effects, i) one to local earthquakes, ii) to regional and teleseismic events, and iii) to local fluctuations in rock strain on regional scale. We observed five cases of co-seismic step-like well water level changes, of the order of few centimeters in amplitude, related to earthquakes in the magnitude range 4.3 ≤ M ≤ 5.2. All these earthquakes occurred within the network of wells drilled for the study and within 25 km distance of the recording wells. In three cases, drop in well levels preceded co-seismic step-like increases, which may be of premonitory nature. The second type of response is observed to be due to the passing of seismic waves from regional and teleseismic earthquakes like the M 7.7 Bhuj event on January 26, 2001 and the M 9.3 December 26, 2004 Sumatra earthquake. The third type is a well level anomaly of centimeter amplitude coherently occurring in several wells. The anomalies are similar in shape and last for several hours to days.From our studies we conclude that the wells in the network appear to respond to regional strain variations and transient changes due to distant earthquakes. The two factors which are important to co-seismic steps due to local earthquakes are the magnitude and epicentral distance. From the limited number of events we found that all local earthquakes exceeding M ≥ 4.3 have produced co-seismic changes. No such changes were observed for earthquakes below this magnitude threshold.  相似文献   

13.
Precise zonation of the territory of China has been performed based on the active known faults, type of faulting and seismicity level. One hundred and forty seven seismogenic regions were defined, forming 10 larger seismic areas, and the seismotectonic characteristics in each one of them were investigated in detail. After checking for data accuracy and completeness of the shallow earthquakes (h≤60 km), the regional time and magnitude predictable model was applied and the model parameters were estimated. Based on the model applicability in the studied area, probabilities for the occurrence of strong (M≥6.0) earthquakes during the next 10 years were calculated for each seismogenic region. Statistical tests have been used proving the superiority of the model in comparison with the time independent one, as well as in comparison with the actual earthquake occurrence.  相似文献   

14.
L. Faenza  S. Pierdominici   《Tectonophysics》2007,439(1-4):13-31
We present two examples of statistical analysis of seismicity conducted by integrating geological, geophysical and seismological data with the aim to characterize the active stress field and to define the spatio-temporal distribution of large earthquakes. Moreover, our data will help to improve the knowledge of the “seismogenic behavior” of the areas and to provide useful information for seismic hazard evaluation.The earthquakes are described by two non-parametric statistical procedures integrating also tectonic-physical parameters to study the spatio-temporal variability.The results show that the areas are characterized by: 1) a stress regime with mainly extensional kinematics; 2) tectonic structures mainly oriented with the active stress field (Shmin = N44° ± 18° in the southern Apennines and Shmin = N50° ± 17° in the central Apennines); 3) cluster distribution of seismicity and 4) a high probability of earthquake occurrence (M > 5.5) in the next 10 years.  相似文献   

15.
The cause for prolific seismicity in the Koyna region is a geological enigma. Attempts have been made to link occurrence of these earthquakes with tectonic strain as well as the nearby reservoirs. With a view to providing reliable seismological database for studying the earth structure and the earthquake process in the Koyna region, a state of the art digital seismic network was deployed for twenty months during 1996–97. We present preliminary results from this experiment covering an area of 60 × 80 km2 with twenty seismic stations. Hypocentral locations of more than 400 earthquakes confined to 11×25 km2 reveal fragmentation in the seismicity pattern — a NE — SW segment has a dip towards NW at approximately 45°, whilst the other two segments show a near vertical trend. These seismic segments have a close linkage with the Western Ghat escarpment and the Warna fault. Ninety per cent of the seismicity is confined within the depth range of 3–10 km. The depth distribution of earthquakes delimits the seismogenic zone with its base at 10 km indicating a transition from an unstable to stable frictional sliding regime. The lack of shallow seismicity between 0 and 3 km indicates a mature fault system with well-developed gouge zones, which inhibit shallow earthquake nucleation. Local earthquake travel time inversion for P- and S-waves show ≈ 2% higher velocity in the seismogenic crust (0–10 km) beneath the epicentral tract relative to a lower velocity (2–3%) in the adjoining region. The high P- and S-wave velocity in the seismogenic crust argues against the presence of high pressure fluid zones and suggests its possible linkage with denser lithology. The zone of high velocity has been traced to deeper depths (≈ 70 km) through teleseismic tomography. The results reveal segmented and matured seismogenic fault systems in the Koyna region where seismicity is possibly controlled by strain build up due to competent lithology in the seismic zone with a deep crustal root.  相似文献   

16.
The aim of this paper was to provide a significant case‐history concerning the evolution of a segmented system of extensional faults and related basins, investigated by a set of seismic reflection profiles. We investigated two kinematically linked semi‐grabens, developed at the hangingwall of two opposite‐dipping normal faults: the Vallo di Diano and Auletta basins, located in the southern Apennines, one of the most seismically active regions of the Italian peninsula. Our interpretation suggests that the Pliocene–Quaternary tectonic history consists of a single extensional phase, where the major NW–SE trending normal faults, generating the basins, and the strike‐slip and transtensional faults connecting adjacent normal fault segments, simultaneously act, being part of the same extensional system. We also conclude that major normal faults, bordering the basins, should be considered as potential seismogenic sources in the seismic hazard evaluation.  相似文献   

17.
《Gondwana Research》2013,24(4):1455-1483
The crust and upper mantle in mainland China were relatively densely probed with wide-angle seismic profiling since 1958, and the data have provided constraints on the amalgamation and lithosphere deformation of the continent. Based on the collection and digitization of crustal P-wave velocity models along related wide-angle seismic profiles, we construct several crustal transects across major tectonic units in mainland China. In our study, we analyzed the seismic activity, and seismic energy releases during 1970 and 2010 along them. We present seismogenic layer distribution and calculate the yield stress envelopes of the lithosphere along the transects, yielding a better understanding of the lithosphere rheology strength beneath mainland China. Our results demonstrate that the crustal thicknesses of different tectonic provinces are distinctively different in mainland China. The average crustal thickness is greater than 65 km beneath the Tibetan Plateau, about 35 km beneath South China, and about 36–38 km beneath North China and Northeastern China. For the basins, the thickness is ~ 55 km beneath Qaidam, ~ 50 km beneath Tarim, ~ 40 km beneath Sichuan and ~ 35 km beneath Songliao. Our study also shows that the average seismic P-wave velocity is usually slower than the global average, equivalent with a more felsic composition of crust beneath the four tectonic blocks of mainland China resulting from the complex process of lithospheric evolution during Triassic and Cenozoic continent–continent and Mesozoic ocean–continent collisions. We identify characteristically different patterns of seismic activity distribution in different tectonic blocks, with bi-, or even tri-peak distribution of seismic concentration in South Tibet, which may suggest that crustal architecture and composition exert important control role in lithosphere deformation. The calculated yield stress envelopes of lithosphere in mainland China can be divided into three groups. The results indicate that the lithosphere rheology structure can be described by jelly sandwich model in eastern China, and crème brulee models with weak and strong lower crust corresponding to lithosphere beneath the western China and Kunlun orogenic belts, respectively. The spatial distribution of lithospheric rheology structure may provide important constraints on understanding of intra- or inter-plate deformation mechanism, and more studies are needed to further understand the tectonic process(es) accompanying different lithosphere rheology structures.  相似文献   

18.
In the southern South–North Seismic Zone, China, seismic activity in the Yingjiang area of western Yunnan increased from December 2010, and eventually a destructive earthquake of Ms5.9 occurred near Yingjiang town on 10 March 2011. The focal mechanism and hypocenter location of the mainshock suggest that the Dayingjiang Fault was the site of the mainshock rupture. However, most of foreshocks and all aftershocks recorded by a portable seismic array located close to the mainshock occurred along the N–S-striking Sudian Fault, indicating that this fault had an important influence on these shocks. Coulomb stress calculations show that three strong(magnitude ≥5.0) earthquakes that occurred in the study region in 2008 increased the coulomb stress along the plane parallel to the Dayingjiang Fault. This supports the Dayingjiang Fault, and not the Sudian Fault, as the seismogenic fault of the 2011 Ms5.9 Yingjiang earthquake. The strong earthquakes in 2008 also increased the Coulomb stress at depths of ≤5 km along the entire Sudian Fault, and by doing so increased the shallow seismic activity along the fault. This explains why the foreshocks and aftershocks of the 2011 Yingjiang earthquake were located mostly on the Sudian Fault where it cuts the shallow crust. The earthquakes at the intersection of the Sudian and Dayingjiang faults are distributed mainly along a belt that dips to the southeast at ~40°, suggesting that the Dayingjiang Fault in the mainshock area also dips to the southeast at ~40°.  相似文献   

19.
The north–south trending Tancheng-Lujiang (Tanlu) fault belt extends from northeast China to the Dabie–Sulu orogenic belt, for a length of more than 3000 km. This fault belt probably has close links with the lithosphere evolution, seismic activity and mineral resource concentration in East China. Surface geological mapping and studies on sedimentation and basin formation have indicated segmentation at the southern, middle and northern domains of the fault. Here we employ geophysical constraints to evaluate these fault segments. Unlike previous geophysical studies focused on laterally varying crust/mantle seismic velocity structure across the fault, in this study we have integrated a variety of geophysical data sets, such as crustal P-wave velocity, earthquake occurrence and released seismic energy, seismogenic layer thickness, surface heat flow and geothermal field, to understand the deep structure and strength of the lithosphere along the Tanlu segmented fault belt. The results demonstrate remarkable crustal-scale north-to-south segmentation this major fault. The geophysical evidence and some geochemical constraints suggest that the Tanlu fault belt probably served as a channel for melt and fluid percolation, and exerted a significant control on the lithosphere evolution in East China.  相似文献   

20.
To investigate subsurface structure and seismogenic layers, 3D velocity inversion was carried out in the source zone of 1905 Kangra earthquake (M8.0) in the northwestern Himalaya. P-wave and S-wave phase data of 159 earthquakes recorded by a network of 21 stations were used for this purpose. Inverted velocity tomograms up to a depth range of 18 km show significant variations of 14% in Vp and Vs and 6% in the Vp/Vs across the major tectonic zones in the region. Synthesis of seismicity pattern, velocity structure, distinctive focal mechanisms coupled with nature of stress distribution allows mapping of three different source regions that control regional seismotectonics. Accumulating strains are partly consumed by sliding of Chamba Nappe to the southwest through reverse-fault movements along Chamba/Panjal/Main Boundary Thrusts. This coupled with normal-fault type displacements along Chenab Normal Fault in the north account for low magnitude widespread seismicity in upper 8–10 km of the crust. At intermediate depths from 8 to 15 km, adjusting to residual compressive stresses, the detachment or lower end of the MBT slips to produce thrust dominated seismicity. Nucleation of secondary stresses in local NE–SW oriented structure interacts in complex manner with regional stresses to generate normal type earthquakes below the plane of detachment and therefore three seismic regimes at different depths produce intense seismicity in a block of 30 × 30 km2 centered NE to the epicenter of Kangra earthquake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号