首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
b
A two ship refraction profile was undertaken on the Australian continental shelf during the Banda Sea geophysical program, carried out by the Woods Hole Oceanographic Institution, the Scripps Institution of Oceanography and the Geological Survey of Indonesia. S waves originating close to the sea bottom were observed to distances of up to 1150 km at an array of stations in northern Australia.
These observations are interpreted as implying S mantle velocities of 4.60 km s-1 from a depth of 45 km to a depth of 76 km and 4.72 km s-1 below a depth of 76 km.
Ratios of the P and S travel times (Vp/Vs) have been determined to be 1.74 in the crust rising to a value of greater than 1.79 below a velocity discontinuity at a depth of 200 km. It is inferred that this high value arises because the effect of temperature is greater for S than for P .
Using the data from this and other studies in the shield region of Northern Australia it has been found that the S travel times are significantly less than predicted by the Jeffreys—Bullen tables.  相似文献   

2.
Summary. A long seismic refraction profile was carried out between southern Israel and Cyprus. The seismic energy was generated by 33 sea shots each of 0.8 t explosives and was recorded by land stations in Israel and Cyprus and by ocean bottom seismographs deployed along the profile.
The results showed that the continental crust of southern Israel thins towards the Mediterranean underneath a northward thickening sedimentary cover. Cyprus is underlain by a 35 km thick continental crust thinning south-wards and extending to Mt Eratosthenes. Between Mt Eratosthenes and the Israel continental shelf the crystalline crust is composed of high velocity (6.5 km s-1)material and is about 8 km thick. It is covered by 12–14 km of sediments and may represent a fossil oceanic crust.  相似文献   

3.
Summary. The deep structure of the Faeroe–Shetland Channel has been investigated as part of the North Atlantic Seismic Project. Shot lines were fired along and across the axis of the Channel, with recording stations both at sea and on adjacent land areas. At 61°N, 1.7 km of Tertiary sediments overlies a 3.9–4.5 km s-1 basement interpreted as the top of early Tertiary volcanics. A main 6.0–6.6 km s-1 crustal refractor interpreted as old oceanic crust occurs at about 9 km depth. The Moho (8.0 ° 0.2 km s-1) is at about 15–17 km depth. There is evidence that P n may be anisotropic beneath the Faeroe–Shetland Channel. Arrivals recorded at land stations show characteristics best explained by scattering at an intervening boundary which may be the continent–ocean crustal contact or the edge of the volcanics.
The Moho delay times at the shot points, determined by time-term analysis, show considerable variation along the axis of the Channel. They correlate with the basement topography, and the greatest delays occur over the buried extension of the Faeroe Ridge at about 60° 15'N, where they are nearly 1 s more than the delays at 61°N after correction for the sediments. The large delays are attributed to thickening of the early Tertiary volcanic layer with isostatic downsagging of the underlying crust and uppermost mantle in response to the load, rather than to thickening of the main crustal ayer.
The new evidence is consistent with deeply buried oceanic crust beneath the Faeroe–Shetland Channel, forming a northern extension of Rockall Trough. The seabed morphology has been grossly modified by the thick and laterally variable pile of early Tertiary volcanic rocks which swamped the region, accounting for the anomalous shallow bathymetry, the transverse ridges and the present narrowness of the Channel.  相似文献   

4.
Summary. Shear-wave travel times in a spherically averaged earth are estimated using 'differential' S minus P ( S – P ) travel-time measurements and detailed statistical procedures. Fourteen earthquakes and 48 stations are specially selected, yielding 302 S - P times for 6° < Δ < 111°. Analysis of variance techniques are used to estimate simultaneously azimuthally varying source and station adjustments while constructing an S – P travel-time model. A method of weighting the equations of condition based on the distribution of stations and epicentres is developed to reduce the effects of systematic errors due to non-random sampling of the Earth. The resulting S - P travel times are added to the 1939 Jeffreys–Bullen and the 1968 Herrin P travel times as a function of distance to obtain shear-wave travel-time models. Confidence intervals for the models are estimated from the variance of the observed S – P travel times.
The standard error for a single observed S – P travel time (6° < Δ < 111°) is 2.1 s and the residual distribution is not significantly different from a normal distribution at the 95 per cent confidence level. For 30° < Δ < 80° the mean S travel time is 1.3 s later than the corresponding mean for Jeffreys–Bullen tables, which is significant at the 95 per cent confidence level.  相似文献   

5.
The first detailed deep seismic refraction study in the Bransfield Strait, West Antarctica, using sensitive OBSs (ocean bottom seismographs) was carried out successfully during the Antarctic summer of 1990/1991. The experiment focused on the deep crustal structure beneath the axis of the Bransfield Rift. Seismic profile DSS-20 was located exactly in the Bransfield Trough, which is suspected to be a young rift system. Along the profile, five OBSs were deployed at spacings of 50-70 km. 51 shots were fired along the 310 km profile. This paper gives the first presentation of the results. A detailed model of the crustal structure was obtained by modelling the observed traveltimes and amplitudes using a 2-D ray-tracing technique. The uppermost (sedimentary?) cover, with velocities of 2.0-5.5 km s−1, reaches a depth of up to 8 km. Below this, a complex with velocities of 6.4-6.8 km s−1 is observed. The presence of a high-velocity body, with V p= 7.3-7.7 km s−1, was detected in the 14-32 km depth range in the central part of the profile. These inhomogeneities can be interpreted as a stage of back-arc spreading and stretching of the continental crust, coinciding with the Deception-Bridgeman volcanic line. Velocities of 8.1 km s−1, characteristic of the Moho, are observed along the profile at a depth of 30-32 km.  相似文献   

6.
Summary. Two localized regions of velocity heterogeneity in the lower mantle with scale lengths of 1000–2000 km and 2 per cent velocity contrasts are detected and isolated through comparison of S, ScS, P and PcP travel times and amplitudes from deep earthquakes in Peru, Bolivia, Argentina and the Sea of Okhotsk. Comparison of the relative patterns of ScS-S differential travel times and S travel-time residuals across North American WWSSN and CSN stations for the different source regions provides baselines for interpreting which phases have anomalous times. A region of low S and P velocities is located beneath Northern Brazil and Venezuela at depths of 1700–2700 km. This region produces S -wave delays of up to 4 s for signals from deep Argentine events recorded at eastern North American stations. The localized nature of the anomaly is indicated by the narrow bounds in azimuth (15°) and take-off angle (13°) of the arrivals affected by it. The long period S -waves encountering this anomaly generally show 30–100 per cent amplitude enhancement, while the short-period amplitudes show no obvious effect. The second anomaly is a high-velocity region beneath the Caribbean originally detected by Jordan and Lynn, who used travel times from deep Peruvian events. The data from Argentine and Bolivian events presented here constrain the location of the anomaly quite well, and indicate a possible short- and long-period S -wave amplitude diminution associated with it. When the travel-time data are corrected for the estimated effects of these two anomalies, a systematic regional variation in ScS-S station residuals is apparent between stations east of and west of the Rocky Mountains. One possible explanation of this is a long wavelength lateral variation in the shear velocity structure of the lower mantle at depths greater than 2000 km beneath North America.  相似文献   

7.
Summary. Based on accurately located 23 very shallow earthquakes ( h = 1–14 km) in northern and central Greece by portable networks of seismic stations and by the joint epicentre method, the travel times of the Pn -waves from the foci of these earthquakes to the sites of 54 permanent stations in the Balkan region have been determined. The travel times of Pn -waves in the central and eastern part of the area (eastern Greece, south-eastern Yugoslavia, the Aegean Sea, Bulgaria, southern Romania, western Turkey) fit a straight line very well with the Pn velocity equal to 7.9 ± 0.1 km s-1. On the contrary, the travel times of Pn -waves to stations in the western part of the area (Albania, western Greece) do not fit this curve because the Pn -waves travelling to these stations are delayed by more than 1 s due to the thicker crust under the Dinarides–Hellenides mountain range. Time delays for Pn -waves have been calculated for each permanent station in the Balkan area with respect to the mean travel-time curve of these waves in the central and eastern part of the area. Corrections of the travel times for these delays contribute very much to the improvement of the accuracy in the location of the shallow earthquakes in the Aegean and surrounding area.  相似文献   

8.
Simultaneous inversion of seismic data   总被引:2,自引:0,他引:2  
Summary. The resolving power of different data sets, consisting of surface-wave dispersion measurements and S travel times, are compared for a continental structure. The shear velocity in the low-velocity zone can be resolved in some detail with higher-mode phase-velocity data. Sufficient resolution for small density contrasts (0.03 g cm−3) until depths of ∼ 300 km can be reached if higher-mode group velocities are available as well, even at a precision as low as 0.10 km/s. At greater depths the density is not resolved, and here travel-time data are superior to higher modes in resolving the shear velocity.  相似文献   

9.
Teleseismic data have been collected with temporary seismograph stations on two profiles in southern Norway. Including the permanent arrays NORSAR and Hagfors the profiles are 400 and 500 km long and extend from the Atlantic coast across regions of high topography and the Oslo Rift. A total of 1071 teleseismic waveforms recorded by 24 temporary and 8 permanent stations are analysed. The depth-migrated receiver functions show a well-resolved Moho for both profiles with Moho depths that are generally accurate within ±2 km.
For the northern profile across Jotunheimen we obtain Moho depths between 32 and 43 km (below sea level). On the southern profile across Hardangervidda, the Moho depths range from 29 km at the Atlantic coast to 41 km below the highland plateau. Generally the depth of Moho is close to or above 40 km beneath areas of high mean topography (>1 km), whereas in the Oslo Rift the crust locally thins down to 32 km. At the east end of the profiles we observe a deepening Moho beneath low topography. Beneath the highlands the obtained Moho depths are 4–5 km deeper than previous estimates. Our results are supported by the fact that west of the Oslo Rift a deep Moho correlates very well with low Bouguer gravity which also correlates well with high mean topography.
The presented results reveal a ca . 10–12 km thick Airy-type crustal root beneath the highlands of southern Norway, which leaves little room for additional buoyancy-effects below Moho. These observations do not seem consistent with the mechanisms of substantial buoyancy presently suggested to explain a significant Cenozoic uplift widely believed to be the cause of the high topography in present-day southern Norway.  相似文献   

10.
Deep seismic soundings along Hirapur-Mandla profile, central India   总被引:1,自引:0,他引:1  
Summary. The crustal depth section along Hirapur-Mandla profile has been computed in two steps from Deep Seismic Sounding (DSS) data. The shallow section up to the crystalline basement is derived by inverting first arrival refraction travel times. The upper Vindhyan sediments (velocity 4.5 km s−1) have a maximum thickness of about 1.5 km at Bakshaho. The lower Vindhyan sediments (velocity 5.4 km s−1) were deposited north of Narmada-Son lineament between Katangi and Narsinghgarh in a graben developed in crystalline basement. The thickness of the lower Vindhyans increases from north to south towards Katangi and the depth to the basement reaches 5.5 km near Jabera. The depth to the Moho boundary varies from 39.5 km near Tikaria to 45 km at Narsinghgarh. The narrow block between Katangi and Jabalpur forms a horst feature which represents the Narmada-Son lineament forming the southern boundary of the Vindhyan basin. Two-dimensional ray tracing was performed generating travel time curves from various shot points which were matched with observed travel time data.  相似文献   

11.
Summary. Results from several recent studies suggest that there are lateral heterogeneities of up to a few per cent in the lowermost 150–200 km of the mantle (Bullen's D " region). Inferred anomaly sizes span the range from less than 50 km to greater than 1000 km.
In this study differences in the velocity structure among regions at the base of the mantle were inferred from an analysis of amplitude ratios of PKPAB and PKPDF for given earthquake-station pairs at distances greater than 155° (Sacks, Snoke & Beach). We distinguish two kinds of regions: A (anomalous) regions in which the mean, median and spread in AB/DF amplitude ratios are significantly higher (> 50 per cent) than for a reference radial earth model and N (normal) regions in which the distribution of the amplitude ratios is as expected.
The AB branch has near-grazing incidence to the core and therefore maximum sensitivity to velocity structure compared to the near-normal incident DF phases. Using an iterative, forward-modelling approach, we have determined general characteristics of the velocity structure for regions at the base of the mantle which can produce amplitude-ratio distributions similar to those for an A region. Agreement between model and data is obtained over the period range from 0.5 s to greater than 10 s using a laterally heterogeneous model for the D " region. the model consists of cells which are 200 km in lateral extent with velocity variations of up to ±1 per cent. This structure is modulated by a region-wide (1000km) perturbation which increases smoothly from zero at the edges of the region to a negative 1 per cent at the centre. Small cells (∼40 km) cannot produce anomalously large amplitude, long-period AB arrivals, and larger cells (∼1000km) cannot match the observed scatter. the ∼200 km scale anomalies could be small-scale convection cells confined to the D " region.  相似文献   

12.
Summary. During the EUGENO-S field campaign in 1984 a large number of airgun shots were fired at sea in the Skagerrak and Kattegat and in Lake Vänern in southwestern Sweden. The signals were recorded on land by analogue "MARS" and digital "SN-PCM-80" three channel stations, by a digital 48 channel "SERCEL SN348" reflection instrument, and by "Geostore" stations. The airguns were shot about every 300 m along profiles up to 100 km in length. Clear reflected and refracted arrivals were observed from 5 km to 250 km shot-receiver offset. The field and data processing techniques used are briefly described, and two examples of data are discussed.  相似文献   

13.
Summary. This paper extends an earlier study (Sengupta & Julian) of travel times of P waves of deep-focus earthquakes to include shear waves. Primary advantage of deep-focus earthquakes is the reduction of anomalies caused by complex structures near the source. The standard deviations of travel times and station anomalies of this study are about half as large as those determined from the data of shallow-focus earthquakes (e.g. Herrin et al.; Hales & Roberts). Spherically-symmetric velocity models derived from the travel times by a linearized inverse technique have resolving lengths of about 70 km for standard errors in velocity of about 0.02 km/s. No pronounced reversal of either compressional or shear velocity was required at the base of the mantle to satisfy the data, though a small velocity decrease could not be entirely ruled out. Some anomalous rapid changes in compressional velocity gradient were, however, found centred around the depths of 2400 and 2600 km. The models derived in this study agree most closely with that of Herrin et al . for compressional velocity and the model 1066B of Gilbert & Dziewonski for shear velocity.  相似文献   

14.
Data from 90 permanent broad-band stations spread over central and eastern Europe were analysed using Ps receiver functions to study the crustal and upper-mantle structure down to the mantle transition zone. Receiver functions provide valuable information on structural features, which are important for the resolution of European lithospheric dynamics. Moho depths vary from less than 25 km in extensional areas in central Europe to more than 50 km at stations in eastern Europe (Craton) and beneath the Alpine–Carpathian belt. A very shallow Moho depth can be observed at stations in the Upper Rhine Graben area ( ca. 25 km), whereas, for example, stations in the SW Bohemian Massif show a significantly deeper Moho interface at a depth of 38 km. Vp / Vs ratios vary between 1.60 and 1.96, and show no clear correlation to the major tectonic units, thus probably representing local variations in crustal composition. Delayed arrivals of converted phases from the mantle transition zone are observed at many stations in central Europe, whereas stations in the cratonic area show earlier arrivals compared with those calculated from the IASP91 Earth reference model. Differential delay times between the P410s and P660s phases indicate a thickened mantle transition zone beneath the eastern Alps, the Carpathians and the northern Balkan peninsula, whereas the transition zone thickness in eastern and central Europe agrees with the IASP91 value. The thickening of the mantle transition zone beneath the eastern Alps and the Carpathians could be caused by cold, deeply subducted oceanic slabs.  相似文献   

15.
基于广州地铁交通流的始发地(Origin)—目的地(Destination)(OD分析),运用出行成本(距离/时间)、集中出行距离区间等指标对地铁站点交通流特征及居民地铁出行的人群分异进行刻画。结果表明:1)地铁站点随出行距离增加的乘客累积比例呈“S”型曲线变化,广州地铁站点的平均出行成本约为14.04 km(20.48 min),并由中心向外逐层增加约4 km(5 min)和13 km(10 min),周末平均出行成本略高于工作日。2)广州地铁出行的集中距离区间为8.55~26.61 km,在该出行距离范围内的乘客量占总数的71.88%;周末出行集中距离区间宽度变窄,但乘客量的集中比例却有所下降。3)社会弱势群体如女性、老年人、固定上下班的大学以上学历人群、办事人员、商服人员等是地铁潜在客流的主要构成群体;不同人群的地铁平均出行距离出现分化,其中出行需求小、出行能力偏弱的群体平均出行距离较短,出行需求大的群体平均出行距离普遍较长;除个别人群外站点集中出行距离区间相对差异不大。  相似文献   

16.
Upper mantle shear structure of North America   总被引:5,自引:0,他引:5  
Summary. The waveforms and travel times of S and SS phases in the range 10°–60° have been used to derive upper mantle shear velocity structures for two distinct tectonic provinces in North America. Data from earthquakes on the East Pacific Rise recorded at stations in western North America were used to derive a tectonic upper mantle model. Events on the north-west coast of North America and earthquakes off the coast of Greenland provided the data to investigate the upper mantle under the Canadian shield. All branches from the triplications due to velocity jumps near 400 and 660 km were observed in both areas. Using synthetic seismograms to model these observations placed tight constraints on heterogeneity in the upper mantle and on the details of its structure. SS–S travel-time differences of 30 s along with consistent differences in waveforms between the two data sets require substantial heterogeneity to at least 350 km depth. Velocities in the upper 170 km of the shield are about 10 per cent higher than in the tectonic area. At 250 km depth the shield velocities are still greater by about 4.5 per cent and they gradually merge near 400 km. Below 400 km no evidence for heterogeneity was found. The two models both have first-order discontinuities of 4.5 per cent at 405 km and 7.5 per cent at 695 km. Both models also have lids with lower velocities beneath. In the western model the lid is very thin and of relatively low velocity. In the shield the lid is 170 km thick with very high elocity (4.78 km s-1); below it the velocity decreases to about 4.65 km s-1. Aside from these features the models are relatively smooth, the major difference between them being a larger gradient in the tectonic region from 200 to 400 km.  相似文献   

17.
Summary. The seismic structure has been measured to a depth of about 3 km along a 30 km seismic profile in east central Ireland. This profile is unusual in that it is the S -wave velocity—depth structure that has been measured to a degree of precision more normally associated with P -wave results. One reason for this is that the sources used were quarry blasts which generated strong S -waves and short-period surface waves but rather weak P -waves.
The results show a layer of Carboniferous limestone with shear velocity 2.65 km−1 s overlying a layer with a velocity of 3.06 km s−1. This second layer was interpreted as Lower Palaeozoic strata (Silurian/Ordovician) since this velocity was evident in an inlier seen at the surface at the northern end of the line. A third refraction horizon, shear velocity 3.45 km s−1 and displaying a basinal structure, was also recognized. This may be Cambrian or Precambrian basement.  相似文献   

18.
Summary. The major objective of the Central Australian seismic experiment is to investigate the structural evolution of the Arunta Block and the Ngalia and Amadeus Basins. A regional north-south reflection line of 420 km length from the Northern Arunta Province to the southern part of the Amadeus Basin was recorded in 1985. The most significant basement features are prominent bands of reflectors from beneath the Northern Arunta Province and the Ngalia Basin at times of between 4 and 10 s that dip towards the north. Deep crustal features south of the Ngalia Basin are less clear except in the Redbank Zone. Bands of deep reflectors similar to those observed in the north occur at times of between 5 and 10 s beneath the southern part of the Amadeus Basin. Additional seismic profiling included a reflection line of 40 km length recorded across the northern margin of the Redbank Zone, three expanding spread reflection profiles and a tomographic experiment. An east-west seismic refraction profile of 400 km length was recorded within the Arunta Block, and suggests an average crustal thickness of 55 km.  相似文献   

19.
Expanding spread profile at the northern Jan Mayen Ridge   总被引:1,自引:0,他引:1  
An expanding spread seismic profile at the central northern Jan Mayen Ridge, ESP-5, has yielded a crustal seismic velocity distribution which is similar to observations from the thinned continental crust at the Norwegian continental margin. The profile reveals a post-early Eocene sedimentary sequence, about 1. 5 km thick, overlying 1 km of volcanic extrusives and interbedded sediments. Below, there are about 3 km of pre-opening sediments above the seismic basement. The results indicate that the main ridge block is underlain by a thinned crust, possibly only 13.5 km thick. The results are compatible with a continental nature for the main ridge complex.  相似文献   

20.
Summary. P -wave relative teleseismic residuals were measured for a network of seismological stations along a 300 km profile across the Adamawa Plateau and the Central African Shear Zone of central Cameroon, to determine the variation in crust and upper mantle velocity associated with these structures. A plot of the mean relative residuals for the stations shows a long wavelength (> 300 km) variation of amplitude 0.45 s. the slowest arrivals are located over and just to the north, of the faulted northern margin of the Adamawa Plateau. the residuals do not correlate with topography, surface geology or the previously determined crustal structure, in any simple way.
The Aki inversion technique has been used to invert the relative residuals into a 3-D model of velocity perturbations from a mean earth model. the results show the region is divided roughly into three blocks by two subvertical boundaries, striking ENE and traversing both the crust and upper mantle down to depths greater than 190km. the central block, which is 2 per cent slower than the adjacent blocks, roughly corresponds to the Central African Shear Zone. the Adamawa Plateau, as an individual uplifted area, is explained by the interaction of a regional anomalous upper mantle associated with the West African Rift System, and the Central African Shear Zone, which provided a conduit for heat flow to the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号