首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. A simple closed-form expression relating saturated hydraulic conductivity to the van Genuchten capillary retention model parameters is derived. Application of this equation to an experimental data set shows reasonable agreement between measured and predicted saturated conductivity values. The proposed equation provides a consistent theoretical basis for estimating both saturated and unsaturated hydraulic conductivity from statistical pore structure models.  相似文献   

2.
The calculation of the relative hydraulic conductivity function based on water retention data is an attractive and widely used approach, since direct measurements of unsaturated conductivities are difficult. We show theoretically under which conditions an air-entry value for water retention data is definitely required when using the statistical approach of Mualem. Moreover we rigorously specify the conditions for which the classical van Genuchten–Mualem model leads to wrong predictions of relative hydraulic conductivity and, hence, an alternative formulation including an air-entry value should be used. Significant consequences are demonstrated for the inverse parameter estimation based on multistep outflow experiments. Furthermore it is shown that the use of a physically correct formulation of the water retention curve including an air-entry value and the derived hydraulic conductivity function influences not only the stability of numerical simulations but also their final results. This is especially grave as simulations with van Genuchten–Mualem parameters are frequently used to compare experiments and simulations and to draw conclusions on the correctness of Richards’ equation.  相似文献   

3.
Estimates of soil hydraulic properties using pedotransfer functions (PTF) are useful in many studies such as hydrochemical modelling and soil mapping. The objective of this study was to calibrate and test parametric PTFs that predict soil water retention and unsaturated hydraulic conductivity parameters. The PTFs are based on neural networks and the Bootstrap method using different sets of predictors and predict the van Genuchten/Mualem parameters. A Danish soil data set (152 horizons) dominated by sandy and sandy loamy soils was used in the development of PTFs to predict the Mualem hydraulic conductivity parameters. A larger data set (1618 horizons) with a broader textural range was used in the development of PTFs to predict the van Genuchten parameters. The PTFs using either three or seven textural classes combined with soil organic mater and bulk density gave the most reliable predictions of the hydraulic properties of the studied soils. We found that introducing measured water content as a predictor generally gave lower errors for water retention predictions and higher errors for conductivity predictions. The best of the developed PTFs for predicting hydraulic conductivity was tested against PTFs from the literature using a subdata set of the data used in the calibration. The test showed that the developed PTFs gave better predictions (lower errors) than the PTFs from the literature. This is not surprising since the developed PTFs are based mainly on hydraulic conductivity data near saturation and sandier soils than the PTFs from the literature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
This study employed a coupled water-air two-phase flow and salt water transport model to analyze the behaviors of generated airflow in unsaturated zones and the fluctuations of salinity at the salt–fresh water interface in a two-layered unconfined aquifer with a sloping beach surface subjected to tidal oscillations. The simulation results show that as the new dynamic steady state including effects of tidal fluctuations is reached through multiple tidal cycles, the dispersion zone in the lower salt water wedge is broadened because fresh water/salt water therein flows continuously landward or seaward during tidal cycles. The upper salt–fresh water interface exhibits more vulnerable to the tidal fluctuations, and the variation of salinity therein is periodic, which is irrelevant to the hydraulic head but is influenced by the direction and velocity of surrounding water-flow. With the tidal level fluctuating, airflow is mainly concentrated in the lower permeable layer due to the restraint of the upper semi-permeable layer, and the time-lag between the pore-air pressure and the tidal level increases with distance from the coastline. The effect of airflow in unsaturated zones can be transmitted downward, causing both the magnitude of salinity and its amplitude in the upper salt–fresh water interface to be smaller for the case with airflow than without airflow due to the resistance of airflow to water-flow. Sensitivity analysis reveal that distributions of airflow in unsaturated zones are affected by the permeability of the upper/lower layer and the van Genuchten parameter of the lower layer, not by the van Genuchten parameter of the upper layer, whereas the salinity fluctuations in the salt–fresh water interface are affected only by soil parameters of the lower layer.  相似文献   

5.
A new approach is demonstrated that permits a reliable estimate of specific yield using published values of the van Genuchten water retention parameters and effective grain sizes and the measured effective grain sizes of soil samples. The specific yield distribution of the soil texture was computed using the published values of the van Genuchten parameters. The specific yield values and the published values of effective grain sizes were then used to construct a specific yield–effective grain size curve, which estimates the ‘point’ specific yield of the soil samples. Applying the central limit theorem, the point specific yields could be transformed into an ‘areal’ specific yield for a study area. Compared with other commonly used approaches, the present procedure requires relatively low computational efforts and readily obtainable data. It is cost effective and does not depend on soil texture classification. More importantly, it incorporates the depth to water table and the variations in grain sizes inherent in natural soil conditions in the estimation. The approach developed was applied for estimating the specific yield of an unconfined sandy aquifer created by land reclamation in the equatorial region. The values obtained were compared with field measurements and the typical ranges of specific yield from the literature. Instead of a single estimate of the specific yield, the method yields a confidence interval with a high confidence level of 95% and with a narrower range than the typical ranges from the literature. In addition, the estimated values are close to the field measurements; hence, the procedure provides a cost‐effective alternative to field measurement. The applicability of the present approach could be extended to sites with heterogeneity in the horizontal direction. Nevertheless, the applicability of the present approach for layered soil profiles requires further evaluations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
The Bouwer and Rice method of estimating the saturated hydraulic conductivity (Ks) from slug-test data was evaluated for geometries typical of hand-dug wells. A two-dimensional, radially symmetric and variably saturated, ground water transport model was used to simulate well recovery given a range of well and aquifer geometries and unsaturated soil properties, the latter in terms of the van Genuchten parameters. The standard Bouwer and Rice method, when applied to the modeled recharge rates, underestimated Ks by factors ranging from 1.3 to 5.6, depending on the well geometry and the soil type. The Bouwer and Rice analytical solution was modified to better explain the recovery rates as predicted by the numerical model, which revealed a significant dependence on the unsaturated soil for the shallow and wide geometries that are typical of traditional wells. The modification introduces a new parameter to the Bouwer and Rice analysis that is a measure of soil capillarity which improves the accuracy of Ks estimates by tenfold for the geometries tested.  相似文献   

7.
Modeling flow and solute transport in the unsaturated zone on the basis of the Richards equation requires specifying values for unsaturated hydraulic conductivity and water potential as a function of saturation. The objectives of the paper are to evaluate the design of a transient, radial, multi-step outflow experiment, and to determine unsaturated hydraulic parameters using inverse modeling. We conducted numerical simulations, sensitivity analyses, and synthetic data inversions to assess the suitability of the proposed experiment for concurrently estimating the parameters of interest. We calibrated different conceptual models against transient flow and pressure data from a multi-step, radial desaturation experiment to obtain estimates of absolute permeability, as well as the parameters of the relative permeability and capillary pressure functions. We discuss the differences in the estimated parameter values and illustrate the impact of the underlying model on the estimates. We demonstrate that a small error in absolute permeability, if determined in an independent experiment, leads to biased estimates of unsaturated hydraulic properties. Therefore, we perform a joint inversion of pressure and flow rate data for the simultaneous determination of permeability and retention parameters, and analyze the correlations between these parameters. We conclude that the proposed combination of a radial desaturation experiment and inverse modeling is suitable for simultaneously determining the unsaturated hydraulic properties of a single soil sample, and that the inverse modeling technique provides the opportunity to analyze data from nonstandard experimental designs.  相似文献   

8.
The analytic element method is well suited for the Gardner hydraulic conductivity function, but is limited in describing real soils. Therefore, parameter equivalence between the van Genuchten and Gardner hydraulic conductivity functions is explored for the case of steady vertical flow through a homogeneous medium with a single inclusion, i.e., a binary soil. The inclusion has different hydraulic parameters than the background medium. Equivalence is established using three methods: (1) effective capillary drive; (2) capillary length; (3) and a least-squares optimization method that aims to fit a Gardner function to a corresponding van Genuchten function by minimizing the difference in log conductivity over a specified pressure range. Comparisons between hydraulic models are made based on scatterplots of pressure head and the vertical Darcian flux obtained using a finite-element numerical solution with both constitutive relations. For applicability of an equivalent Gardner function over a broad range of pressure heads, the crossover pressure must be maintained between the two parametric functions. The crossover pressure is defined as the pressure in which the hydraulic conductivity of the inclusion is equal to the background. It can be shown that a hybrid methodology of preserving the crossover pressure exactly and using the effective capillary drive will result in hydraulic parameters that are easily obtained and provide good agreement between the conductivity functions of the GR model to the VG model.  相似文献   

9.
Our understanding of hydraulic properties of peat soils is limited compared with that of mineral substrates. In this study, we aimed to deduce possible alterations of hydraulic properties of peat soils following degradation resulting from peat drainage and aeration. A data set of peat hydraulic properties (188 soil water retention curves [SWRCs], 71 unsaturated hydraulic conductivity curves [UHCs], and 256 saturated hydraulic conductivity [Ks] values) was assembled from the literature; the obtained data originated from peat samples with an organic matter (OM) content ranging from 23 to 97 wt% (weight percent; and according variation in bulk density) representing various degrees of peat degradation. The Mualem‐van Genuchten model was employed to describe the SWRCs and UHCs. The results show that the hydraulic parameters of peat soils vary over a wide range confirming the pronounced diversity of peat. Peat decomposition significantly modifies all hydraulic parameters. A bulk density of approximately 0.2 g cm?3 was identified as a critical threshold point; above and below this value, macroporosity and hydraulic parameters follow different functions with bulk density. Pedotransfer functions based on physical peat properties (e.g., bulk density and soil depth) separately computed for bog and fen peat have significantly lower mean square errors than functions obtained from the complete data set, which indicates that not only the status of peat decomposition but also the peat‐forming plants have a large effect on hydraulic properties. The SWRCs of samples with a bulk density of less than 0.2 g cm?3 could be grouped into two to five classes for each peat type (botanical composition). The remaining SWRCs originating from samples with a bulk density of larger than 0.2 g cm?3 could be classified into one group. The Mualem‐van Genuchten parameter values of α can be used to estimate Ks if no Ks data are available. In conclusion, the derived pedotransfer functions provide a solid instrument to derive hydraulic parameter values from easily measurable quantities; however, additional research is required to reduce uncertainty.  相似文献   

10.
A series of multi-step outflow experiments was carried out to identify the unsaturated hydraulic properties of two homogeneous coarse-textured porous media (glass beads and sand). Because of the measured sharp fronts of water content decrease during these experiments the hydraulic functions are assumed to be represented by the complete van Genuchten–Mualem closed-form expressions with variable coefficients α, n, m and θr. The values of θs and Ks were measured directly. A sensitivity analysis with respect to α, n, and m shows that conditions of local identifiability are satisfied if measurements of water content at some inner points inside the column are considered. The inverse modelling technique consists of two steps: first, computation of objective function values based on water content data responses to obtain initial parameter estimations, and second, a more detailed parameter determination using a Levenberg–Marquardt scheme. In both steps a numerical model incorporating the hydraulic functions is utilized to simulate theoretical pressure head and water content distributions along the column. For both porous media unique solutions of the inverse problem could be obtained, and afterwards, the corresponding hydraulic functions were verified from additional drainage experiments.©1998 Elsevier Science Limited. All rights reserved  相似文献   

11.
The Mualem and the Burdine hydraulic conductivity prediction models are considered in combination with the van Genuchten analytical retention curve, as well as the Brooks and Corey prediction model. An equivalence is presented between the retention curves of these models. A comparative study follows between hydraulic conductivities that are based on equivalent retention curves. A unified presentation of prediction models provides a framework for the whole analysis. The treatment of the equivalence problem consists in a minimization procedure characterized by uncoupling of the parameters and analytical evaluation of the objective function. Exact analytical equivalence relations are given for significant parts of the parameter ranges, and, for the remaining parts, analytical approximations are proposed. The comparisons between hydraulic conductivities are carried out via an inequality analysis. It is shown that the hydraulic conductivity of the Burdine model is less than that of the other models for extended ranges of equivalent parameters.  相似文献   

12.
In subsurface porous media, the soil water retention curve (WRC) and unsaturated hydraulic conductivity curve (UHC) are two important soil hydraulic property curves. Spatial heterogeneity is ubiquitous in nature, which may significantly affect soil hydraulic property curves. The main theme of this paper is to investigate how spatial heterogeneities, including their arrangements and amounts in soil flumes, affect soil hydraulic property curves. This paper uses a two‐dimensional variably saturated flow and solute transport finite element model to simulate variations of pressure and moisture content in soil flumes under a constant head boundary condition. To investigate the behavior of soil hydraulic property curves owing to variations of heterogeneities and their arrangements as well, cases with different proportions of heterogeneities are carried out. A quantitative evaluation of parameter variations in the van Genuchten model (VG model) resulting from heterogeneity is presented. Results show that the soil hydraulic properties are strongly affected by variations of heterogeneities and their arrangements. If the pressure head remains at a specific value, the soil moisture increases when heterogeneities increase in the soil flumes. On the other hand, the unsaturated hydraulic conductivity decreases when heterogeneities increase in the soil flumes under a constant pressure head. Moreover, results reveal that parameters estimated from both WRC and UHC also are affected by shapes of heterogeneity; this indicates that the parameters obtained from the WRC are not suitable for predicting the UHC of different shapes in heterogeneous media. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
14.
Consistent parameter constraints for soil hydraulic functions   总被引:2,自引:0,他引:2  
Parameters of functions to describe soil hydraulic properties are derived from measurements by means of parameter estimation. Of crucial importance here is the choice of correct constraints in the parameter space. Often, the parameters are mere shape parameters without physical meaning, giving flexibility to the model. A fundamental requirement is that the hydraulic functions are monotonic: the retention function and the conductivity function can only decrease as the capillary suction increases. A stricter physical requirement for the conductivity function is that its decrease with respect to saturation is at least linear. This linear decrease would occur if all pores of a capillary bundle had an equal radius. In the first part of this contribution, we derive constraints for the so-called tortuosity parameter of the Mualem conductivity model, which allow highest possible flexibility on one hand and guarantee physical consistency on the other hand. In combination with the retention functions of Brooks and Corey, van Genuchten, or Durner, such a constraint can be expressed as a function of the pore-size distribution parameters. In the second part, we show that a common modification of retention models, which is applied to reach zero water content at finite suction, can lead to the physically unrealistic case of increasing water content with increasing suction. We propose a solution for this problem by slightly modifying these models and introducing a correct parameter constraint.  相似文献   

15.
The Beerkan method based on in situ single‐ring water infiltration experiments along with the relevant specific Beerkan estimation of soil transfer parameters (BEST) algorithm is attractive for simple soil hydraulic characterization. However, the BEST algorithm may lead to erroneous or null values for the saturated hydraulic conductivity and sorptivity especially when there are only few infiltration data points under the transient flow state, either for sandy soil or soils in wet conditions. This study developed an alternative algorithm for analysis of the Beerkan infiltration experiment referred to as BEST‐generalized likelihood uncertainty estimation (GLUE). The proposed method estimates the scale parameters of van Genuchten water retention and Brooks–Corey hydraulic conductivity functions through the GLUE methodology. The GLUE method is a Bayesian Monte Carlo parameter estimation technique that makes use of a likelihood function to measure the goodness‐of‐fit between modelled and observed data. The results showed that using a combination of three different likelihood measurements based on observed transient flow, steady‐state flow and experimental steady‐state infiltration rate made the BEST‐GLUE procedure capable of performing an efficient inverse analysis of Beerkan infiltration experiments. Therefore, it is more applicable for a wider range of soils with contrasting texture, structure, and initial and saturated water content. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The forest floor plays an important role in runoff rate, soil erosion and soil infiltration capacity by protecting mineral soils from the direct impact of falling raindrops. Forest floor consists of different kinds of litter with different hydraulic properties. In this study, the inverse method was used to estimate the hydraulic properties of three kinds of forest floor (broad‐leaved, needle‐leaved and mixed‐stand) at three replications in a completely random design. Forest floor samples were collected from the Gilan Province, Iran. The samples were piled up to make long columns 40.88 cm high with an inner diameter of 18.1 cm. Artificial rainfall experiments were conducted on top of the columns, and free drainage from the bottom of the columns was measured in the laboratory. Saturated hydraulic conductivity (Ks), saturated water content and water retention curve parameters (van Genuchten equation) were estimated by the inverse method. The results showed that the Ks of needle‐leaved samples differed significantly (p < 0.05) from those of broad‐leaved and mixed‐stand samples, whereas the latter two did not differ in this regard. No significant differences emerged in the water retention function parameters of van Genuchten (θr, β and α) in the three forest floor samples. The saturated water content of mixed‐stand samples was significantly different (p < 0.05) from that of broad‐leaved and needle‐leaved treatments with the latter two samples showing no significant difference. The good agreement between simulated and observed free drainage for all forest floor samples in the validation period indicates that the estimated hydraulic properties efficiently characterize the unsaturated water flow in the forest floor. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Previous studies have shown that water retention curve (WRC) and the hydraulic conductivity vary because of changes of the void ratio or porosity of soil. However, limited documents pointed out the change of hydraulic properties of soil when compacted to different porosities while considering both of the drying and wetting processes of the WRC. This information is sometimes necessary for research like finger flow analysis or the occurrence of wetting and drying cycles as what would be seen in the field. Therefore, this study aims to examine the change of WRC characteristics with varied porosity considering both of the drying and wetting path in WRC by conducting a sand box experiment. Results show that the same type of sand compacted to various porosities have different hydraulic parameters. Hydraulic conductivities generally decrease with reduced porosities; shape parameter α of the van Genuchten equation (1980) linearly decreases with declining porosity and shape parameter n in a reversal manner for the sands of interest whether in the drying process or wetting process. The unsaturated properties of sand are further characterized by inspecting the variations of moisture content, matric suction and vertical displacement of soil body subject to periodic changes of the water level by another sand box experiment. The outcomes suggest that the saturated water content and residual water content are changing during the wetting–drying process, which can be an implication of the changed properties of WRC. The characteristics of volumetric deformation might be varied as well because of the observation of the dissimilar patterns of the changing vertical displacements among each wetting–drying process. Infiltration patterns of the sands also are identified through numerical modelling by introducing a constant infiltration flux from the surface followed by a no‐influx condition. Results indicate that less water accumulates in the sand near the surface for the sand compacted to higher porosity, but water can move deeper. Hydraulic conductivity is found as the prime factor dominating the evolvement of wetting fronts. However, shape parameters of water retention curves also affect the infiltration pattern to some extent. In addition, different sands with similar porosities can have quite different infiltrating characteristics. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
In Smith (1986, J. Hydrol. 86, 27–43), a family of statistical distributions and estimators for extreme values based on a fixed number r > = 1 of the largest annual events are presented. The method of estimation was numerical maximum likelihood. In this paper, we consider the robust estimation of parameters in such families of distributions. The estimation technique, which is based on optimal B-robust estimates, will assign weights to each observation and give estimates of the parameters based on the data which are well modeled by the distribution. Thus, observations which are not consistent with the proposed distribution can be identified and the validity of the model can be assessed. The method is illustrated on Venice sea level data.  相似文献   

19.
Often the soil hydraulic parameters are obtained by the inversion of measured data (e.g. soil moisture, pressure head, and cumulative infiltration, etc.). However, the inverse problem in unsaturated zone is ill‐posed due to various reasons, and hence the parameters become non‐unique. The presence of multiple soil layers brings the additional complexities in the inverse modelling. The generalized likelihood uncertainty estimate (GLUE) is a useful approach to estimate the parameters and their uncertainty when dealing with soil moisture dynamics which is a highly non‐linear problem. Because the estimated parameters depend on the modelling scale, inverse modelling carried out on laboratory data and field data may provide independent estimates. The objective of this paper is to compare the parameters and their uncertainty estimated through experiments in the laboratory and in the field and to assess which of the soil hydraulic parameters are independent of the experiment. The first two layers in the field site are characterized by Loamy sand and Loamy. The mean soil moisture and pressure head at three depths are measured with an interval of half hour for a period of 1 week using the evaporation method for the laboratory experiment, whereas soil moisture at three different depths (60, 110, and 200 cm) is measured with an interval of 1 h for 2 years for the field experiment. A one‐dimensional soil moisture model on the basis of the finite difference method was used. The calibration and validation are approximately for 1 year each. The model performance was found to be good with root mean square error (RMSE) varying from 2 to 4 cm3 cm?3. It is found from the two experiments that mean and uncertainty in the saturated soil moisture (θs) and shape parameter (n) of van Genuchten equations are similar for both the soil types. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The selective radius shift model was used to relate changes in mineral volume due to precipitation/dissolution reactions to changes in hydraulic properties affecting flow in porous media. The model accounts for (i) precipitation/dissolution taking place only in the water-filled part of the pore space and further that (ii) the amount of mineral precipitation/dissolution within a pore depends on the local pore volume. The pore bundle concept was used to connect pore-scale changes to macroscopic soil hydraulic properties. Precipitation/dissolution induces changes in the pore radii of water-filled pores and, consequently, in the effective porosity. In a time step of the numerical model, mineral reactions lead to a discontinuous pore-size distribution because only the water-filled pores are affected. The pore-size distribution is converted back to a soil moisture characteristic function to which a new water retention curve is fitted under physically plausible constraints. The model equations were derived for the commonly used van Genuchten/Mualem hydraulic properties. Together with a mixed-form solution of Richards’ equation for aqueous phase flow, the model was implemented into the geochemical modelling framework PHREEQC, thereby making available PHREEQC’s comprehensive geochemical reactions. Example applications include kinetic halite dissolution and calcite precipitation as a consequence of cation exchange. These applications showed marked changes in the soil’s hydraulic properties due to mineral precipitation/dissolution and the dependency of these changes on water contents. The simulations also revealed the strong influence of the degree of saturation on the development of the saturated hydraulic conductivity through its quadratic dependency on the van Genuchten parameter α. Furthermore, it was shown that the unsaturated hydraulic conductivity at fixed reduced water content can even increase during precipitation due to changes in the pore-size distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号