首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This research work deals with the landslide susceptibility assessment using Analytic hierarchy process (AHP) and information value (IV) methods along a highway road section in Constantine region, NE Algeria. The landslide inventory map which has a total of 29 single landslide locations was created based on historical information, aerial photo interpretation, remote sensing images, and extensive field surveys. The different landslide influencing geoenvironmental factors considered for this study are lithology, slope gradient, slope aspect, distance from faults, land use, distance from streams, and geotechnical parameters. A thematic layer map is generated for every geoenvironmental factor using Geographic Information System (GIS); the lithological units and the distance from faults maps were extracted from the geological database of the region. The slope gradient, slope aspect, and distance from streams were calculated from the Digital Elevation Model (DEM). Contemporary land use map was derived from satellite images and field study. Concerning the geotechnical parameters maps, they were determined making use of the geotechnical data from laboratory tests. The analysis of the relationships between the landslide-related factors and the landslide events was then carried out in GIS environment. The AUC plot showed that the susceptibility maps had a success rate of 77 and 66% for IV and AHP models, respectively. For that purpose, the IV model is better in predicting the occurrence of landslides than AHP one. Therefore, the information value method could be used as a landslide susceptibility mapping zonation method along other sections of the A1 highway.  相似文献   

2.
The purpose of this study is to assess the susceptibility of landslides in parts of Western Ghats, Kerala, India, using a geographical information system (GIS). Landslide inventory of the area was made by detailed field surveys and the analysis of the topographical maps. The landslide triggering factors are considered to be slope angle, slope aspect, slope curvature, slope length, distance from drainage, distance from lineaments, lithology, land use and geomorphology. ArcGIS version 8.3 was used to manipulate and analyse all the collected data. Probabilistic-likelihood ratio was used to create a landslide susceptibility map for the study area. The result was validated using the Area under Curve (AUC) method and temporal data of landslide occurrences. The validation results showed satisfactory agreement between the susceptibility map and the existing data on landslide locations. As the result, the success rate of the model was (84.46%) and the prediction rate of the model was (82.38%) shows high prediction accuracy. In the reclassified final landslide susceptibility zone map, 5.68% of the total area is classified as critical in nature. The landslide susceptibility map thus produced can be used to reduce hazards associated with landslides and to land cover planning.  相似文献   

3.
The northeast part of Turkey is prone to landslides because of the climatic conditions, as well as geologic and geomorphologic characteristics of the region. Especially, frequent landslides in the Rize province often result in significant damage to people and property. Therefore, in order to mitigate the damage from landslides and help the planners in selecting suitable locations for implementing development projects, especially in large areas, it is necessary to scientifically assess susceptible areas. In this study, the frequency ratio method and the analytical hierarchy process (AHP) were used to produce susceptibility maps. Especially, AHP gives best results because of allowing better structuring of various components, including both objective and subjective aspects and comparing them by a logical and thorough method, which involves a matrix-based pairwise comparison of the contribution of different factors for landslide. For this purpose, lithology, slope angle, slope aspect, land cover, distance to stream, drainage density, and distance to road were considered as landslide causal factors for the study area. The processing of multi-geodata sets was carried out in a raster GIS environment. Lithology was derived from the geological database and additional field studies; slope angle, slope aspect, distance to stream, distance to road and drainage density were invented from digital elevation models; land cover was produced from remote sensing imagery. In the end of study, the results of the analysis were verified using actual landslide location data. The validation results showed satisfactory agreement between the susceptibility map and the existing data on landslide locations.  相似文献   

4.
The 2015 Mw7.8 Gorkha earthquake triggered thousands of landslides of various types scattered over a large area. In the current study, we utilized pre- and post-earthquake high-resolution satellite imagery to compile two landslide inventories before and after earthquake and prepared three landslide susceptibility maps within 404 km2 area using frequency ratio (FR) model. From the study, we could map about 519 landslides including 178 pre-earthquake slides and 341 coseismic slides were identified. This study investigated the relationship between landslide occurrence and landslide causative factors, i.e., slope, aspect, altitude, plan curvature, lithology, land use, distance from streams, distance from road, distance from faults, and peak ground acceleration. The analysis showed that the majority of landslides both pre-earthquake and coseismic occurred at slope >30°, preferably in S, SE, and SW directions and within altitude ranging from 1000 to 1500 m and 1500 to 3500 m. Scatter plots between number of landslides per km?2 (LN) and percentage of landslide area (LA) and causative factors indicate that slope is the most influencing factor followed by lithology and PGA for the landslide formation. Higher landslide susceptibility before earthquake is observed along the road and rivers, whereas landslides after earthquake are triggered at steeper slopes and at higher altitudes. Combined susceptibility map indicates the effect of topography, geology, and land cover in the triggering of landslides in the entire basin. The resultant landslide susceptibility maps are verified through AUC showing success rates of 78, 81, and 77%, respectively. These susceptibility maps are helpful for engineers and planners for future development work in the landslide prone area.  相似文献   

5.
For predictive landslide susceptibility mapping, this study applied and verified probability model, the frequency ratio and statistical model, logistic regression at Pechabun, Thailand, using a geographic information system (GIS) and remote sensing. Landslide locations were identified in the study area from interpretation of aerial photographs and field surveys, and maps of the topography, geology and land cover were constructed to spatial database. The factors that influence landslide occurrence, such as slope gradient, slope aspect and curvature of topography and distance from drainage were calculated from the topographic database. Lithology and distance from fault were extracted and calculated from the geology database. Land cover was classified from Landsat TM satellite image. The frequency ratio and logistic regression coefficient were overlaid for landslide susceptibility mapping as each factor’s ratings. Then the landslide susceptibility map was verified and compared using the existing landslide location. As the verification results, the frequency ratio model showed 76.39% and logistic regression model showed 70.42% in prediction accuracy. The method can be used to reduce hazards associated with landslides and to plan land cover.  相似文献   

6.
Bivariate and multivariate statistical analyses were used to predict the spatial distribution of landslides in the Cuyahoga River watershed, northeastern Ohio, U.S.A. The relationship between landslides and various instability factors contributing to their occurrence was evaluated using a Geographic Information System (GIS) based investigation. A landslide inventory map was prepared using landslide locations identified from aerial photographs, field checks, and existing literature. Instability factors such as slope angle, soil type, soil erodibility, soil liquidity index, landcover pattern, precipitation, and proximity to stream, responsible for the occurrence of landslides, were imported as raster data layers in ArcGIS, and ranked using a numerical scale corresponding to the physical conditions of the region. In order to investigate the role of each instability factor in controlling the spatial distribution of landslides, both bivariate and multivariate models were used to analyze the digital dataset. The logistic regression approach was used in the multivariate model analysis. Both models helped produce landslide susceptibility maps and the suitability of each model was evaluated by the area under the curve method, and by comparing the maps with the known landslide locations. The multivariate logistic regression model was found to be the better model in predicting landslide susceptibility of this area. The logistic regression model produced a landslide susceptibility map at a scale of 1:24,000 that classified susceptibility into four categories: low, moderate, high, and very high. The results also indicated that slope angle, proximity to stream, soil erodibility, and soil type were statistically significant in controlling the slope movement.  相似文献   

7.
国道212线陇南段是我国地质灾害最发育的地区之一,绘制该区的滑坡危险等级地图对灾害管理和发展规划是极其必要的。基于滑坡的野外调查、机理研究和室内试验等工作,分析了滑坡与各种要素的相关性,选择控制滑坡的9个重要要素作为评价要素,利用GIS和二元统计的信息值模型和滑坡先验风险要素模型绘制了研究区的滑坡危险等级地图。最后,选用区内11个具有明显滑动位移的活动滑坡与滑坡危险等级地图比较,检验其可靠度。结果表明,活动的滑坡绝大部分都位于危险等级很高和高的范围内,说明两种模型的评价结果与研究区实际情况相吻合,同时也反映出信息值模型与实际情况更加相符。  相似文献   

8.
The purpose of this study is to produce a landslide susceptibility map for the lower Mae Chaem watershed, northern Thailand using a Geographic Information System (GIS) and remotely sensed images. For this purpose, past landslide locations were identified from satellite images and aerial photographs accompanied by the field surveys to create a landslide inventory map. Ten landslide-inducing factors were used in the susceptibility analysis: elevation, slope angle, slope aspect, lithology, distance from lineament, distance from drainage, precipitation, soil texture, land use/land cover (LULC), and NDVI. The first eight factors were prepared from their associated database while LULC and NDVI maps were generated from Landsat-5 TM images. Landslide susceptibility was analyzed and mapped using the frequency ratio (FR) model that determines the level of correlation between locations of past landslides and the chosen factors and describes it in terms of frequency ratio index. Finally, the output map was validated using the area under the curve (AUC) method where the success rate of 80.06% and the prediction rate of 84.82% were achieved. The obtained map can be used to reduce landslide hazard and assist with proper planning of LULC in the future.  相似文献   

9.
This study applied, tested and compared a probability model, a frequency ratio and statistical model, a logistic regression to Damre Romel area, Cambodia, using a geographic information system. For landslide susceptibility mapping, landslide locations were identified in the study area from interpretation of aerial photographs and field surveys, and a spatial database was constructed from topographic maps, geology and land cover. The factors that influence landslide occurrence, such as slope, aspect, curvature and distance from drainage were calculated from the topographic database. Lithology and distance from lineament were extracted and calculated from the geology database. Land cover was classified from Landsat TM satellite imagery. The relationship between the factors and the landslides was calculated using frequency ratio and logistic regression models. The relationships, frequency ratio and logistic regression coefficient were overlaid to make landslide susceptibility map. Then the landslide susceptibility map was compared with known landslide locations and tested. As the result, the frequency ratio model (86.97%) and the logistic regression (86.37%) had high and similar prediction accuracy. The landslide susceptibility map can be used to reduce hazards associated with landslides and to land cover planning.  相似文献   

10.
This study presented herein compares the bivariate and multivariate landslide susceptibility mapping methods and presents the landslide susceptibility map of the territory of Western Carpathians in small scale. This study also describes pioneer work for the territory of Western Carpathians, overreaching state borders, using verified sophisticated statistical methods. In the susceptibility mapping, digital elevation model was first constructed using a GIS software, and parameter maps affecting the slope stability such as geology, seismicity, precipitation, topographical elevation, slope angle, slope aspect and land cover were considered. In the last stage of the analyses, landslide susceptibility maps were produced using bivariate and multivariate analyses, and they were then compared by means of their validations. The validation of the bivariate analysis data was performed using the results of bivariate analysis for landslide areas of Slovakia containing five classes of susceptibility in scale 1:500,000. The validation area is the area of Western Carpathians within Slovakia. Eighty-two per cent of area does not differ in more than one class. The validation of the multivariate analysis data was performed using the results from the Kysuce region in the northern part of Slovakia in scale 1:10,000. The raster calculator was used to express the difference between each pair of pixels within these two layers. Seventy-seven per cent of the pixels do not differ in more than 25 %, 94 % of the pixels do not differ in more than 50 %. The maximal possible difference is 100 % (one pixel with value 0 and other with value 1, or vice versa). Receiver operating characteristic analysis was also performed, the area under curve value for bivariate model was calculated to be 0.735, while it was 0.823 for multivariate. The results of the validation can be considered as satisfactory.  相似文献   

11.
Landslide susceptibility maps are vital for disaster management and for planning development activities in the mountainous country like Nepal. In the present study, landslide susceptibility assessment of Mugling?CNarayanghat road and its surrounding area is made using bivariate (certainty factor and index of entropy) and multivariate (logistic regression) models. At first, a landslide inventory map was prepared using earlier reports and aerial photographs as well as by carrying out field survey. As a result, 321 landslides were mapped and out of which 241 (75?%) were randomly selected for building landslide susceptibility models, while the remaining 80 (25?%) were used for validating the models. The effectiveness of landslide susceptibility assessment using GIS and statistics is based on appropriate selection of the factors which play a dominant role in slope stability. In this case study, the following landslide conditioning factors were evaluated: slope gradient; slope aspect; altitude; plan curvature; lithology; land use; distance from faults, rivers and roads; topographic wetness index; stream power index; and sediment transport index. These factors were prepared from topographic map, drainage map, road map, and the geological map. Finally, the validation of landslide susceptibility map was carried out using receiver operating characteristic (ROC) curves. The ROC plot estimation results showed that the susceptibility map using index of entropy model with AUC value of 0.9016 has highest prediction accuracy of 90.16?%. Similarly, the susceptibility maps produced using logistic regression model and certainty factor model showed 86.29 and 83.57?% of prediction accuracy, respectively. Furthermore, the ROC plot showed that the success rate of all the three models performed more than 80?% accuracy (i.e. 89.15?% for IOE model, 89.10?% for LR model and 87.21?% for CF model). Hence, it is concluded that all the models employed in this study showed reasonably good accuracy in predicting the landslide susceptibility of Mugling?CNarayanghat road section. These landslide susceptibility maps can be used for preliminary land use planning and hazard mitigation purpose.  相似文献   

12.
In the Three Gorges of China, there are frequent landslides, and the potential risk of landslides is tremendous. An efficient and accurate method of generating landslide susceptibility maps is very important to mitigate the loss of lives and properties caused by these landslides. This paper presents landslide susceptibility mapping on the Zigui-Badong of the Three Gorges, using rough sets and back-propagation neural networks (BPNNs). Landslide locations were obtained from a landslide inventory map, supported by field surveys. Twenty-two landslide-related factors were extracted from the 1:10,000-scale topographic maps, 1:50,000-scale geological maps, Landsat ETM + satellite images with a spatial resolution of 28.5 m, and HJ-A satellite images with a spatial resolution of 30 m. Twelve key environmental factors were selected as independent variables using the rough set and correlation coefficient analysis, including elevation, slope, profile curvature, catchment aspect, catchment height, distance from drainage, engineering rock group, distance from faults, slope structure, land cover, topographic wetness index, and normalized difference vegetation index. The initial, three-layered, and four-layered BPNN were trained and then used to map landslide susceptibility, respectively. To evaluate the models, the susceptibility maps were validated by comparing with the existing landslide locations according to the area under the curve. The four-layered BPNN outperforms the other two models with the best accuracy of 91.53 %. Approximately 91.37 % of landslides were classified as high and very high landslide-prone areas. The validation results show sufficient agreement between the obtained susceptibility maps and the existing landslide locations.  相似文献   

13.
14.
This study evaluates the susceptibility of landslides in the Lai Chau province of Vietnam using Geographic Information System (GIS) and remote sensing data to focus on the relationship between tectonic fractures and landslides. Landslide locations were identified from aerial photographs and field surveys. Topographic, geological data and satellite images were collected, processed, and constructed into a spatial database using GIS data and image-processing techniques. A scheme of the tectonic fracturing of crust in the Lai Chau region was established. Lai Chau was identified as a region with many crustal fractures, where the grade of tectonic fracture is closely related to landslide occurrence. The influencing factors of landslide occurrence were: distance from a tectonic fracture, slope, aspect, curvature, soil, and vegetative land cover. Landslide prone areas were analyzed and mapped using the landslide occurrence factors employing the probability–frequency ratio model. The results of the analysis were verified using landslide location data and showed 83.47% prediction accuracy. That emphasized a strong relationship between the susceptibility map and the existing landslide location data. The results of this study can form a basis stable development and land use planning for the region.  相似文献   

15.
Landslides are one of the major natural disasters that occur in the Himalayan range with recurring frequency, causing enormous loss of life and property every year. Preparation of landslide inventory maps and landslide susceptibility zonation maps are the important tasks to be taken into account initially for safe mitigation measures. The present paper focuses on landslide susceptibility maps of the Ghurmi–Dhad Khola area, east Nepal, using Geographic Information System. For this purpose, the landslide susceptibility maps are prepared by using the heuristic and bivariate statistical methods. The parameters considered for the study are slope angle, slope aspect, elevation, distance from drainage, geology, land cover, rock and soil type, and distance from faults and folds. The landslide susceptibility zonation map produced from the heuristic method shows that 42.59 % of the observed landslide falls under the very high susceptible zone and 33.00 % under the high susceptible zone. Likewise, the landslide susceptibility zonation map produced from the bivariate method depicts that 44.19 % of the observed landslide falls under the very high susceptible zone and 31.59 % under the high susceptible zone. Both the landslide susceptibility zonation maps are identical, and success rates of both the maps are above 80 %. While comparing the landslide susceptibility maps obtained from two different methods, about 78 % of the study area falls in the identical susceptible zones. Special attention should be taken into consideration for the construction works in the areas which have been spatially agreed as very high and high susceptible zones from both techniques. Moreover, these maps can be used for slope management, land use planning, disaster management planning, etc., by the concerned authorities.  相似文献   

16.
Ardesen is a settlement area which has been significantly damaged by frequent landslides which are caused by severe rainfalls and result in many casualties. In this study a landslide susceptibility map of Ardesen was prepared using the Analytical Hierarchy Process (AHP) with the help of Geographical Information Systems (GIS) and Digital Photogrametry Techniques (DPT). A landslide inventory, lithology–weathering, slope, aspect, land cover, shear strength, distance to the river, stream density and distance to the road thematics data layers were used to create the map. These layer maps are produced using field, laboratory and office studies, and by the use of GIS and DPT. The landslide inventory map is also required to determine the relationship between these maps and landslides using DPT. In the study field in the Hemsindere Formation there are units that have different weathering classes, and this significantly affects the shear strength of the soil. In this study, shear strength values are calculated in great detail with field and laboratory studies and an additional layer is evaluated with the help of the stability studies used to produce the landslide susceptibility map. Finally, an overlay analysis is carried out by evaluating the layers obtained according to their weight, and the landslide susceptibility map is produced. The study area was classified into five classes of relative landslide susceptibility, namely, very low, low, moderate, high, and very high. Based on this analysis, the area and percentage distribution of landslide susceptibility degrees were calculated and it was found that 28% of the region is under the threat of landslides. Furthermore, the landslide susceptibility map and the landslide inventory map were compared to determine whether the models produced are compatible with the real situation resulting in compatibility rate of 84%. The total numbers of dwellings in the study area were determined one by one using aerial photos and it was found that 30% of the houses, with a total occupancy of approximately 2,300 people, have a high or very high risk of being affected by landslides.  相似文献   

17.
Landslides are natural geological disasters causing massive destructions and loss of lives, as well as severe damage to natural resources, so it is essential to delineate the area that probably will be affected by landslides. Landslide susceptibility mapping (LSM) is making increasing implications for GIS-based spatial analysis in combination with multi-criteria evaluation (MCE) methods. It is considered to be an effective tool to understand natural disasters related to mass movements and carry out an appropriate risk assessment. This study is based on an integrated approach of GIS and statistical modelling including fuzzy analytical hierarchy process (FAHP), weighted linear combination and MCE models. In the modelling process, eleven causative factors include slope aspect, slope, rainfall, geology, geomorphology, distance from lineament, distance from drainage networks, distance from the road, land use/land cover, soil erodibility and vegetation proportion were identified for landslide susceptibility mapping. These factors were identified based on the (1) literature review, (2) the expert knowledge, (3) field observation, (4) geophysical investigation, and (5) multivariate techniques. Initially, analytical hierarchy process linked with the fuzzy set theory is used in pairwise comparisons of LSM criteria for ranking purposes. Thereafter, fuzzy membership functions were carried out to determine the criteria weights used in the development of a landslide susceptibility map. These selected thematic maps were integrated using a weighted linear combination method to create the final landslide susceptibility map. Finally, a validation of the results was carried out using a sensitivity analysis based on receiver operator curves and an overlay method using the landslide inventory map. The study results show that the weighted overlay analysis method using the FAHP and eigenvector method is a reliable technique to map landslide susceptibility areas. The landslide susceptibility areas were classified into five categories, viz. very low susceptibility, low susceptibility, moderate susceptibility, high susceptibility, and very high susceptibility. The very high and high susceptibility zones account for 15.11% area coverage. The results are useful to get an impression of the sustainability of the watershed in terms of landsliding and therefore may help decision makers in future planning and mitigation of landslide impacts.  相似文献   

18.
van Westen  C. J.  Rengers  N.  Soeters  R. 《Natural Hazards》2003,30(3):399-419
The objective of this paper is to evaluate the importance of geomorphological expert knowledge in the generation of landslide susceptibility maps, using GIS supported indirect bivariate statistical analysis. For a test area in the Alpago region in Italy a dataset was generated at scale 1:5,000. Detailed geomorphological maps were generated, with legends at different levels of complexity. Other factor maps, that were considered relevant for the assessment of landslide susceptibility, were also collected, such as lithology, structural geology, surficial materials, slope classes, land use, distance from streams, roads and houses. The weights of evidence method was used to generate statistically derived weights for all classes of the factor maps. On the basis of these weights, the most relevant maps were selected for the combination into landslide susceptibility maps. Six different combinations of factor maps were evaluated, with varying geomorphological input. Success rates were used to classify the weight maps into three qualitative landslide susceptibility classes. The resulting six maps were compared with a direct susceptibility map, which was made by direct assignment of susceptibility classes in the field. The analysis indicated that the use of detailed geomorphological information in the bivariate statistical analysis raised the overall accuracy of the final susceptibility map considerably. However, even with the use of a detailed geomorphological factor map, the difference with the separately prepared direct susceptibility map is still significant, due to the generalisations that are inherent to the bivariate statistical analysis technique.  相似文献   

19.
Landslides and their assessments are of great importance since they damage properties, infrastructures, environment, lives and so on. Particularly, landslide inventory, susceptibility, and hazard or risk mapping have become important issues in the last few decades. Such maps provide useful information and can be produced by qualitative or quantitative methods. The work presented in this paper aimed to assess landslide susceptibility in a selected area, covering 570.625 km2 in the Western Black Sea region of Turkey, by two quantitative methods. For this purpose, in the first stage, a detailed landslide inventory map was prepared by extensive field studies. A total of 96 landslides were mapped during these studies. To perform landslide susceptibility analyses, six input parameters such as topographical elevation, lithology, land use, slope, aspect and distance to streams were considered. Two quantitative methods, logistic regression and fuzzy approach, were used to assess landslide susceptibility in the selected area. For the fuzzy approach, the fuzzy and, or, algebraic product, algebraic sum and gamma operators were considered. At the final stage, 18 landslide susceptibility maps were produced by the logistic regression and fuzzy operators in a GIS (Geographic Information System) environment. Two performance indicators such as ROC (relative operating characteristics) and cosine amplitude method (r ij ) were used to validate the final susceptibility maps. Based on the analyses, the landslide susceptibility map produced by the fuzzy gamma operator with a level of 0.975 showed the best performance. In addition, the maps produced by the logistic regression, fuzzy algebraic product and the higher levels of gamma operators showed more satisfactory results, while the fuzzy and, or, algebraic sum maps were not sufficient to provide reliable outputs.  相似文献   

20.
Without a doubt, landslide is one of the most disastrous natural hazards and landslide susceptibility maps (LSMs) in regional scale are the useful guide to future development planning. Therefore, the importance of generating LSMs through different methods is popular in the international literature. The goal of this study was to evaluate the susceptibility of the occurrence of landslides in Zonouz Plain, located in North-West of Iran. For this purpose, a landslide inventory map was constructed using field survey, air photo/satellite image interpretation, and literature search for historical landslide records. Then, seven landslide-conditioning factors such as lithology, slope, aspect, elevation, land cover, distance to stream, and distance to road were utilized for generation LSMs by various models: frequency ratio (FR), logistic regression (LR), artificial neural network (ANN), and genetic programming (GP) methods in geographic information system (GIS). Finally, total four LSMs were obtained by using these four methods. For verification, the results of LSM analyses were confirmed using the landslide inventory map containing 190 active landslide zones. The validation process showed that the prediction accuracy of LSMs, produced by the FR, LR, ANN, and GP, was 87.57, 89.42, 92.37, and 93.27 %, respectively. The obtained results indicated that the use of GP for generating LSMs provides more accurate prediction in comparison with FR, LR, and ANN. Furthermore; GP model is superior to the ANN model because it can present an explicit formulation instead of weights and biases matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号