首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
This paper addresses the effects of randomness of initial damage in a rock mass and the critical tensile strain of the rock material on its dynamic responses and damage under explosive loads. A fuzzy definition is proposed to describe the fuzzy nature of failure phenomenon in a rock mass. The initial damage of the rock mass is estimated using the longitudinal and transverse elastic wave velocities. By using statistical analysis, the initial damage of the rock mass is found having the Beta distribution. The statistical estimation of a damage state and properties of randomly damaged rock mass are evaluated by the Rosenbluth's point estimate method. In numerical calculation, an isotropic continuum damage model with the initial damage and the cumulative damage dependent on an equivalent tensile strain is suggested to model the rock mass behavior under blast loads. A Beta distribution is proposed to represent the probabilistic distribution of the damage variable of the rock mass under explosive loads. Several types of membership functions are suggested to represent the fuzziness of material failure. Based on the fuzzy–random probabilistic theory, a model including both the effects of randomness and fuzziness is proposed for the failure analysis of rock mass under explosive loads. The suggested models are coded and linked with an available computer program AUTODYN2D through its user's subroutine capacity. The fuzzy failure probability and dynamic responses of the rock mass are calculated. Numerical results are compared with those obtained from independent field tests.  相似文献   

2.
基于细观损伤有限元方法,模拟分析了刀具在单一动载、动静联合荷载、静态围压条件下动静联合荷载3种情况下岩体破碎的全过程。模型采用黏弹性人工边界剔除了边界应力波反射对模拟结果准确性的影响。数值模拟结果表明:在弹性情况下,静压的存在对岩体内部最小主应力值影响不大,却显著提高了材料内部最大主应力水平,增大了剪应力的大小,导致剪切破坏可能性增加;当有围压存在时,岩体内部受拉区域减少,岩体强度有所提高。单一动载和动静联合荷载破岩时,岩体内部除刀头附近呈现少量压破坏外,破坏均以拉破坏为主;而围压条件下,岩体破碎面积相对减小,裂纹在围压的作用下向两侧自由面延伸,岩体内部破坏形式则趋于多样化,压破坏比重明显增大,整体表现为拉压复合作用。模拟结果还表明,刀头侵入量主要受动载力大小影响,在相同幅值增量下,动载力增加导致的刀头侵入量远大于静压增加所导致的侵入量。相对单一动载和静压作用下的岩石破碎机制来说,动静组合加载破岩的研究还需更为深入的探讨。研究结果可望对岩体破坏机制以及地下工程作业等实际应用提供一定的参考。  相似文献   

3.
舟山灌门水道海底隧道钻爆法施工稳定性分析   总被引:1,自引:0,他引:1  
蔚立元  李术才  徐帮树 《岩土力学》2009,30(11):3453-3459
以舟山灌门水道海底隧道为背景,依据地质资料,选取隧道典型横断面来研究钻爆法施工时围岩的稳定性。由典型横断面的几何参数和地质资料构建数值计算模型,采用国际上常用的计算模式模拟爆破荷载,根据FLAC3D动态计算的特点,将爆破荷载以等效应力的方式加载于模拟炮孔之上。数值计算结果表明,各关键点的位移、振动速度、加速度-时程曲线均满足隧道爆破变形规律,且振动速度峰值均小于规范要求临界值,爆破作用影响范围小于岩石覆盖层建议厚度,验证了岩层覆盖厚度建议值和爆破方案的合理性。最后,为了弄清岩石覆盖厚度和炸药量对围岩稳定性的影响,给出了不同岩石覆盖厚度和炸药量情况下的计算结果。所得结论对后续施工和类似工程具有一定的指导意义。  相似文献   

4.
Rapid growth of urban population in Indian cities have led traffic congestion leading to demand for scientific utilization of underground space. Immediate underground level and deep level underground below the major arterial roads are the sustainable spaces available for meeting the demand of the future traffic/transport. Due to recent increased transit activities it has become one of the soft targets by terrorists or prone to catastrophic accidents in recent years which have increased the importance of rock structures study under explosive loading. In this paper, the response of a underground metro tunnel subjected dynamic loads have been investigated including explosive capacity (30 kg TNT), ground characteristics, liner thickness and blast pressure characteristics. Blast pressure representing CONWEP air blast loading model with positive over pressure phase was applied to lining of tunnel. A three dimensional explicit finite element method was used to analyze dynamic response and damage in twin tunnels of underground metro. It is found that liner of thickness 28 cm will start deforming at the explosive loading of more than 65 kg TNT.  相似文献   

5.
Modeling of wave propagation induced by underground explosion   总被引:5,自引:0,他引:5  
A piecewise linear Drucker–Prager strength criterion and an isotropic continuum damage model with the damage scalar depending on an equivalent tensile strain are suggested to model rock mass behavior under blast loading. A rate-dependent constitutive relation is employed to model the energy dissipation caused by two sources, namely irreversible degradation of damage and permanent deformation caused by plasticity. The suggested model is incorporated with a commercially available software AUTODYN through its user’s subroutine function. Coupling of Euler and Lagrange processors are used to include all the materials under consideration such as explosive, air and rock mass, in the calculation. Using AUTODYN and the suggested model, shock wave propagation in rock mass induced by an underground explosion is simulated. Numerical results obtained agree favorably well with those obtained from an independently conducted field test. It demonstrates that the suggested model can be used to predict the damage area, plastic zone and ground motions generated by underground explosions.  相似文献   

6.
为了分析锦屏水电站大理岩的动力学响应和能量特性,采用分离式霍普金森压杆对岩样开展了动态压缩试验,并引入分形维数定量表征试样的破碎形态、能耗特性及其与应变率的内在关系。结果表明:动态载荷下大理岩应力-应变曲线初始压密段不明显,当应变率较低时,应力-应变曲线呈现出回弹现象;试样峰值应力随应变率的增大而增加,且动态抗压强度与...  相似文献   

7.
This paper is an application of artificial neural networks (ANNs) in the prediction of the geometry of surface blast patterns in limestone quarries. The built model uses 11 input parameters which affect the design of the pattern. These parameters are: formation dip, blasthole diameter, blasthole inclination, bench height, initiation system, specific gravity of the rock, compressive and tensile strength, Young's modulus, specific energy of the explosive and the average resulting fragmentation size. Detailed data from a previous investigation were used to train and verify the network and predict burden and spacing of a blast. The built model was used to conduct parametric studies to show the effect of blasthole diameter and bench height on pattern geometry.  相似文献   

8.
唐礼忠  程露萍  王春  舒计步  武建力  陈源 《岩土力学》2016,37(10):2737-2745
基于改进的分离式霍普金森压杆(SHPB)岩石动静组合加载试验系统,进行了在不同静力轴压条件下受频繁动力扰动作用的动力学试验,研究蛇纹岩在高静载下受频繁冲击扰动过程中的动态变形特性、动态峰值应力和应变、能量变化规律和岩石破坏模式等动力学特性。研究结果表明:高静载条件下受频繁冲击扰动作用时,在动态峰值应力前,动态应力与应变呈正相关关系,而在动态峰值应力后,出现变形回弹和不回弹两种现象;随着动力扰动次数的增加,岩石动态峰值应力减小、动态峰值应变增大、动态变形模量减小、岩石由释放能量向吸收能量方向转化;随着预加静力轴压的增大,单次冲击过程中岩石损伤加剧,岩石破坏需要的扰动冲击次数减少,同时岩石由拉伸破坏模式向压剪破坏模式转变,破坏块度由小变大、均匀度降低。试验结果对揭示深部岩体承受高地应力和频繁开挖爆破等动力扰动作用下的破坏机制具有重要意义,同时为工程实际中通过调整围岩静应力状态和爆破以提高围岩长期稳定性的可行性提供了室内试验支持。  相似文献   

9.
10.
高温后大理岩动态劈裂拉伸试验研究   总被引:2,自引:0,他引:2  
刘石  许金余  白二雷  支乐鹏  陈腾飞 《岩土力学》2013,34(12):3500-3504
为了研究高温处理后的岩石材料在冲击加载速率作用下的动态劈裂拉伸性能,利用大直径分离式霍普金森压杆试验设备对经历不同高温作用冷却后的“大理岩”平台巴西圆盘试样进行不同加载速率作用下的径向冲击试验。研究了高温后大理岩的动态劈裂拉伸强度及动态劈裂破坏形式随温度和冲击加载速率的变化规律。试验结果表明,与静态劈裂拉伸强度相比,经历不同高温作用冷却后,大理岩的动态劈裂拉伸强度有明显的提高,表现出显著的冲击加载速率强化效应,同一冲击加载速率作用下,随着温度的升高,动态劈裂拉伸强度表现出先增大后减小的变化趋势;高温后大理岩的动态劈裂破坏形式受到冲击加载速率和温度的共同影响。  相似文献   

11.
In the blasting operation, risk of facing with undesirable environmental phenomena such as ground vibration, air blast, and flyrock is very high. Blasting pattern should properly be designed to achieve better fragmentation to guarantee the successfulness of the process. A good fragmentation means that the explosive energy has been applied in a right direction. However, many studies indicate that only 20–30 % of the available energy is actually utilized for rock fragmentation. Involvement of various effective parameters has made the problem complicated, advocating application of new approaches such as artificial intelligence-based techniques. In this paper, artificial neural network (ANN) method is used to predict rock fragmentation in the blasting operation of the Sungun copper mine, Iran. The predictive model is developed using eight and three input and output parameters, respectively. Trying various types of the networks, it was found that a trained model with back-propagation algorithm having architecture 8-15-8-3 is the optimum network. Also, performance comparison of the ANN modeling with that of the statistical method was confirmed robustness of the neural networks to predict rock fragmentation in the blasting operation. Finally, sensitivity analysis showed that the most influential parameters on fragmentation are powder factor, burden, and bench height.  相似文献   

12.
ABSTRACT

This study develops a mathematical model of buried pipelines subjected to surface blast loading based on the theory of beam on elastic foundation. The Fourier transform, a mathematical formula that converts the time domain of the problem to the frequency domain, was used in order to solve a fourth-order non-homogeneous partial differential equation. Transforming the solution back to the time domain, the blast-induced Peak Particle Velocity (PPV) of the pipeline can be calculated. In addition to the mathematical model, a three-dimensional finite element model has been established, thereby drawing a comparison between analytical and numerical results. It can be concluded that the analytically calculated PPV values are found to be higher than the corresponding numerical values. Lastly, the safe distance from the pipeline to blast source and the maximum allowable ANFO explosive weight for two types of rock have been presented in the form of graphs by imposing a limit of 50 mm/s for PPV. This comparative study has investigated the effect of road-cut excavation blasting on pipelines buried under only two types of rock mass. However, it can be used for different types of rock and explosives, mainly thanks to the comprehensiveness of the analytical solution.  相似文献   

13.
Explosion gas plays an important role in rock mass fragmentation and cast in rock blasting. In this technical note, the discontinuous deformation analysis method is extended for bench rock blasting by coupling the rock mass failure process and the penetration effect of the explosion gas based on a generalized artificial joint concept to model rock mass fracturing. By tracking the blast chamber evolution dynamically, instant explosion gas pressure is derived from the blast chamber volume using a simple polytropic gas pressure equation of state and loaded on the blast chamber wall. A bench blasting example is carried out. The blast chamber volume and pressure time histories are obtained. The rock failure and movement process in bench rock blasting is reproduced and analysed.  相似文献   

14.
To investigate the influence of gas pressure on rock burst proneness of coal, the rock burst proneness tests were conducted under different gas pressures. Based on the energy method, the rock burst proneness and energy accumulation law are analyzed. The following conclusions can be drawn: (1) The change laws of impact energy index, the effective impact energy index and the residual energy index are consistent, reducing with the increase of gas pressure. (2) Before the coal failure, the total energy, the elastic energy, and the dissipated energy of coal specimens increase with the increase of the stress. The increase speed of total energy is the fastest, the elastic energy takes the second place, and the dissipated energy is the slowest. (3) The failure energy ratio and stress drop coefficient defined by energy can be used to describe the rock burst proneness. (4) The failure modes of coal samples transform from brittle failure into ductile shear failure with the increase of gas pressure. (5) In the coal seam which has typical dynamic hazards, there is a critical value of gas pressure. When the gas pressure is higher than the critical value, gas outburst is the main disaster. When the gas pressure is lower than the critical value, the rock burst is the main disaster.  相似文献   

15.
An intelligent approach to prediction and control ground vibration in mines   总被引:8,自引:0,他引:8  
Drilling and Blasting are still considered to be the most economical method for rock excavation either on surface or underground. The explosive energy, which breaks the rockmass, is not fully utilized for this purpose. Only 20–30% of explosive energy is utilized for fragmenting the rockmass and the rest wasted away in the form of ground vibration, air blast, noise, fly rock, back breaks, etc. Among them, ground vibration is considered to have the most damaging effect. A number of predictor equations have been proposed by various researchers to predict ground vibration prior to blasting. Still, it is difficult to recommend any one predictor for a particular ground condition because ground vibration is influenced by a number of parameters. These parameters are either controllable or non-controllable like blast geometry, explosive types, rock strength properties, joints patterns, etc. In the present paper, an attempt has been made to predict the ground vibration using an Artificial Neural Network incorporating large number of parameters, which affect the ground vibration. Results are also compared with the values obtained from regression analysis and observed field data sets. Finally, it is found that the neural network approach is more accurate and able to predict the value of blast vibration without increasing error with increasing number of inputs and non-linearity among these.  相似文献   

16.
During the excavation of underground opening, the rock may experience a complex loading path that includes the highly confined compression before excavation, unloading of confining stress and further disturbance of dynamic loading after excavation. By using Rock Failure Process Analysis for Dynamics (RFPA-Dynamics), the failure of rock sequentially subjected to this complex loading path is numerically simulated, in order to examine the rock failure mechanism induced by excavation. The RFPA-Dynamics is firstly used to reproduce the failure of rock under confined compression, followed by unloading of confining pressure, and it is validated against with the existing experimental observation. Then, the failure characteristics of rock specimen sequentially subjected to the quasi-static triaxial loading, unloading of confining pressure and dynamic disturbance are numerically simulated, where the effect of magnitude of axial loading and confining pressure, and duration and amplitude of the dynamic disturbance on the final failure patterns of rock are examined. The numerical results indicate that the arc-shaped spalling damage zone is prone to develop with the increase in the axial pressure and lateral pressure coefficient. As for the effect of dynamic disturbance, the contribution of duration and amplitude of dynamic disturbance on the energy input are similar, where the area of damage zone increases with the energy input into the rock specimen. In this regard, the area of the damage zone is influenced by both the magnitude of in situ stress and waveform of dynamic disturbance. This study denotes that it is of great significance to trace the complex loading path induced by excavation in order to capture the rock failure mechanism induced by underground excavation.  相似文献   

17.
为准确地测量岩石试样在不同围压作用下的拉伸强度与变形特性,对用于岩石三轴压缩试验的MTS815材料试验机为主体设备进行了一系列技术改造,一方面设计加工了一套试验机活塞与三轴室的随动连锁装置,使原本只能提供压缩载荷的MTS815试验机也能精确提供轴向拉伸荷载;另一方面设计开发一种多自由度岩石试样三轴拉伸夹具,解决岩石等脆性材料在拉伸过程中难以始终保持对中的技术难题。提出一套完整的测试技术方法,能实现0~140 MPa围压范围内各种岩石试件的复杂三轴直接拉伸测试研究,利用研发的配套装置与测试方法对页岩试样进行了三轴拉伸试验。结果表明,试验装置和试验方法完全能够进行不同围压条件下的岩石三轴拉伸试验,得到相应的三轴拉伸试验曲线;页岩在低围压和高围压下呈现不同的破坏特征和破坏形式,低围压下依然呈现脆性特征,高围压下则是由脆性向塑性转换。  相似文献   

18.
The mechanism by which the explosive energy is transferred to the surrounding rock mass is changed in air-deck blasting. It allows the explosive energy to act repeatedly in pulses on the surrounding rock mass rather than instantly as in the case of concentrated charge blasting. The air-deck acts as a regulator, which first stores energy and then releases it in separate pulses. The release of explosion products in the air gap causes a decrease in the initial bore hole pressure and allows oscillations of shock waves in the air gap. The performance of an air-deck blast is basically derived from the expansion of gaseous products and subsequent multiple interactions between shock waves within an air column, shock waves and stemming base and shock waves and hole bottom. This phenomenon causes repeated loading on the surrounding rock mass by secondary shock fronts for a prolonged period. The length of air column and the rock mass structure are critical to the ultimate results. Several attempts have been made in the past to study the mechanism of air-deck blasting and to investigate its effects on blast performance but a clear understanding of the underlying mechanism and the physical processes to explain its actual effects is yet to emerge. In the absence of any theoretical basis, the air-deck blast designs are invariably carried out by the rules of thumb. The field trials of this technique in different blast environments have demonstrated its effectiveness in routine production blasting, pre-splitting and controlling over break and ground vibrations etc. The air-deck length appropriate to the different rock masses and applications need to be defined more explicitly. It generally ranges between 0.10 and 0.30 times the original charge length. Mid column air-deck is preferred over the top and bottom air-decks. Top air-deck is used especially in situations, which require adequate breakage in the stemming region. The influence of air-deck location within the hole on blast performance also requires further studies. This paper reviews the status of knowledge on the theory and practice of air-deck blasting in mines and surface excavations and brings out the areas for further investigation in this technique of blasting.  相似文献   

19.
聚能爆破在石材切割应用中的试验研究   总被引:1,自引:0,他引:1  
季荣生 《现代地质》1998,12(1):138-142
摘 要 简单分析了聚能爆破装药在孔内爆破的力学效应‚阐明了聚能爆破对岩石定向破裂 的控制机理。在聚能爆破切割石材过程中‚聚能射流起到前期切割出定向裂缝的作用‚石材 的最终开裂由后期爆破产生的气体的准静态胀楔作用来完成。通过提高炸药爆速、增大装药 密度等方法可以提高聚能装药爆炸后形成射流的能量和改善聚能爆破切割石材的效果。  相似文献   

20.
Summary A variety of overbreak control techniques are used during excavation with the drill and blast system. Tracer blasting is used in Canadian underground mines to minimize blast damage and involves placing a low-strength detonating cord along the length of a blast hole prior to charging with ammonium nitrate-fuel oil (ANFO). The results of tracer blasting are not always consistent and its mechanism is only hazily comprehended. In the absence of a clearly defined mechanism, it is difficult to analyse the results of tracer blasting and to identify the factors responsible for the inconsistency of results.A series of bench blasts and pipe tests were carried out to investigate the mechanism of tracer blasting. The evidence indicated partial deflagration and desensitization of ANFO, thus reducing the total available explosive energy. The rock mass surrounding the traced blasthole experienced a low level of ground vibrations. As a result of the continuous side initiation of ANFO, energy partitioning was more in favour of gas energy. A mechanism of tracer blasting has been proposed and the factors responsible for the inconsistency of the results have been identified in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号