首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various methods to control scour around bridge piers have been proposed.In the present study the application of cable or collar and a combination of cable and collar were examined experimentally,as countermeasures against local scouring at a smooth circular bridge pier,close to threshold flow conditions of initiation of uniform sediment motion.The results show that the simultaneous use of cable and collar has high efficiency in reducing the scour depth.The best configuration was found for a cable-pier diameter ratio of 0.15 and thread angle of 15°,in which the scour depth in upstream of the pier reduced to about 53%.In the case of a pier protected with cable and collar the scouring postponed more than pier protected with collar and the rate of scouring is less than in pier protected with collar.These advantages can reduce the risk of pier failure when the duration of flood is short. The results indicate that the scour reduction increases as the cable diameter increased and the thread angle decreased.  相似文献   

2.
Various methods are proposed to control scouring around bridge piers. In the present study application of riprap alone and combinations of riprap and collar were examined experimentally for scour control around cylindrical bridge piers. Tests were conducted with seven riprap sizes and with two different sizes of collars. Empirical equations were developed for stable riprap diameter for two cases of piers with and without collar protection. Extent of riprap layer is also presented for these two cases. The results showed that in the range of b/dR≤7.5 (where b is pier diameter and dR is riprap size) using a collar reduced the stable riprap size. It was also concluded that using collar reduced the riprap layer extension in front and sides of the pier.  相似文献   

3.
《国际泥沙研究》2022,37(6):737-753
An experimental investigation on flow fields within the scour holes upstream and downstream of circular piers positioned in tandem and staggered arrangements is reported and compared with isolated piers on mobile beds with uniform sediment. The instantaneous bed elevations and instantaneous three dimensional (3D) velocities were measured using a 5 MHz Ultrasonic Ranging system and 16 MHz micro down looking acoustic Doppler velocimeter, respectively. The velocity and flow depth were measured at different locations under near equilibrium bed scour conditions. The measured 3D velocities were processed for the computation of flow parameters, such as velocity fields, streamline patterns, vorticity fields, and circulation. Furthermore, turbulence intensities, turbulent kinetic energy, Reynolds shear stresses, and bed shear stresses around the piers for all three pier configurations were computed from the detrended velocity signals to identify significant differences in the flow parameters and turbulence in the tandem and staggered pier arrangements as compared to those for an isolated pier. A recirculation zone was found near the bed in front of the rear pier in the tandem case from the streamline patterns. The vortices in the bi-vortex system were observed to be opposite to each other in the gap between the three piers in the staggered case. A strong secondary vortex also was observed apart from the primary vortex at the foot of the pier (θ = 0°) in all the three configurations. The strength of the horseshoe vortex (combination of primary and secondary vortices) was found to be higher at the front piers of the staggered arrangement as compared to those of the tandem piers, followed by the isolated pier. The bed shear stresses were found to be higher for the staggered piers than for the tandem piers in the direction of flow (θ = 0°). However, a 50% reduction in the bed shear stresses was observed behind the tandem piers at θ = 180°. The study reported in this paper provides the foundation for further investigation of countermeasures against local scour around tandem and staggered bridge piers on a mobile bed with non-uniform sediment.  相似文献   

4.
In this work, investigation on the development of local scour around an oblong pier in a 180 degree flume bend is presented. Scour hole can cause failure of the bridge especially during the river floods. In this study, the use of oblong collars for reducing the effects of local scour at a bridge pier is presented together with the time aspect of the scour development. Tests were conducted using one oblong pier in positions of 60degree under one flow conditions. The study was conducted using a physical hydraulic model operated under clear-water conditions in cohesionless bed material. In this study, the time development of the local scour around the oblong pier fitted with and without collar plates was studied. Investigated was the effect of size and elevation collar on the time development of scour and its efficacy at preventing scour at a bridge pier. The time development of the scour hole around the model pier with and without a collar installed was compared with similar studies on bridge piers. The results of the model study indicated that the maximum depth of scour is highly dependent on the experimental duration. It was observed that, as the minimum depth of scour occurs for the square collar at width of 3B placed at elevation of 0.1B below the bed and the size of a collar plate increases, the scour decreases. Measuring depth of scouring based on experimental observation, an empirical relation is developed with regression coefficient 95%.  相似文献   

5.
Interference of an upstream pier on local scour at downstream piers   总被引:1,自引:0,他引:1  
In this study, three kinds of pier arrangements were tested. They are (i) two piers in tandem, (ii) two piers in staggered arrangement, and (iii) three piers in symmetrically staggered arrangements. In the arrangement of two piers in tandem, the equilibrium scour depth at downstream pier decreases with an increase in downstream distance up to approximately eight times pier diameter and then increases with further increase in downstream distance. However, the scour depth at downstream pier is always smaller than that at upstream pier. In the arrangement of two staggered piers, the scour depth at the downstream pier for L/b = 4, where L is the offset distance and b is the pier diameter, is the same as that of the upstream pier at S = 8b, where S is the streamwise spacing or distance between piers. Further, for three piers in staggered arrangement, as the lateral spacing between downstream piers increases, the equilibrium scour depth at downstream pier decreases.  相似文献   

6.
The mechanism of bridge pier scour becomes more complex in the presence of debris accumulation upstream of the pier. While using countermeasures may be effective in reducing scour, their efficacy could be undermined in such a situation. The current study investigates the effectiveness of using a collar in the presence of different types of floating debris accumulation in reducing scour around a cylindrical bridge pier with non-cohesive bed sediment. The experimental results reveal that using a c...  相似文献   

7.
River confluences (RCs) are important features within river systems where the three dimensional (3D) flow structures and the downstream mixing of flows can cause deep scour holes. Despite this, few methods have been proposed to control scouring at RCs. In this study, application of a collar was experimentally examined for local scour control at the point where two rivers flow together. In parti-cular, experimental tests were done with and without collar application at three different locations. The results reveal that the scour depth is directly proportional to the discharge ratio, i.e. the ratio of lateral discharge to that in the channel downstream of the confluence, and the densimetric Froude number (Frg). In addition, installation of a collar at RCs can decrease the scour depth up to 100%, thus completely avoiding the scour process. The results also show that by increasing the Frg the optimal installation location for a collar changes and moves towards the river bed level. Using a collar can also reduce the height of the point bar formed downstream of the confluence. The outcomes of the study allow deri-vation of an equation for predicting scour depth when a collar is applied as a countermeasure. The analysis of this equation shows that the estimates are mostly affected by the Frg.  相似文献   

8.
In the current study, 108 flume experiments with non-uniform, cohesionless sediments have been done to investigate the local scour process around four pairs of side-by-side bridge piers under both open channel and ice-covered flow conditions. Similar to local scour around bridge piers under open channel conditions and a single bridge pier, it was observed in the experiments that the maximum scour depth always occurred at the upstream face of the pier under ice-covered conditions. Further, the smaller the pier size and the greater the spacing distance between the bridge piers, the weaker the horseshoe vortices around the bridge piers, and, thus, the shallower the scour holes around them. Finally, empirical equations were developed to estimate the maximum scour depth around two side-by-side bridge piers under both open channel and ice-covered flow conditions.  相似文献   

9.
Bridge pier scour mitigation under steady and unsteady flow conditions   总被引:1,自引:1,他引:0  
Watercourse morphology is affected by local scouring when the flow interferes with anthropic structures. Controlling the scour hole size is of predominant importance to guarantee bridge safety as well as to limit the variations of river morphology. A combined countermeasure against bridge pier scour is proposed and tested in order to reduce the maximum scour depth and deviate it away from the bridge foundation. In the first part of the laboratory campaign, combination of two countermeasures (bed-sill and collar) was evaluated for a circular pier under clear-water and live-bed steady flow conditions. The proposed combined countermeasure exhibited an efficiency of about 64% in terms of scour depth reduction. Afterwards, it was tested in unsteady flow conditions, first for a circular pier, then in the case of a rectangular pier with round nose and tail, two circular in-line piers and two rectangular in-line piers, under a hydrograph with a peak flow velocity slightly above the threshold condition of sediment motion. Results showed that the combined countermeasure had an efficiency of about 63% for a single circular pier; however, higher efficiency (about 75%) was obtained in applications to rectangular pier and two in-line circular or rectangular piers.  相似文献   

10.
Water Resources - The scour and flow field patterns with accumulation of debris around bridge piers are completely different due to the reduction of flow area and the increase in depth average...  相似文献   

11.
Results of an experimental study on the countermeasure of scour depth at circular piers are presented. Experiments were conducted for pier scour with and without a splitter plate under a steady, uniform clear-water flow condition. The results of pier scour without splitter plate were used as a reference. Different combinations of lengths and thicknesses of splitter plates were tested attaching each of them to a pier at the upstream vertical plane of symmetry. Two different median sediment sizes (d 50 = 0.96 and 1.8 mm) were considered as bed sediment. The experimental results show that the scour depth consistently decreases with an increase in splitter plate length, while the scour depth remains independent of splitter plate thickness. In addition, temporal evolution of scour depth at piers with and without a splitter plate is observed. The best combination is found to be with a splitter plate thickness of b/5 and a length of 2b. Here, b denotes the pier diameter. An empirical formula for the estimation of equilibrium scour depth at piers with splitter plates is obtained from a multiple linear regression analysis of the experimental data. The flow fields for various combinations of circular piers with and without splitter plate including plain bed and equilibrium scour conditions were measured by using an acoustic Doppler velocimeter. The turbulent flow fields for various configurations are investigated by plotting the velocity vectors and the turbulent kinetic energy contours on vertical and horizontal planes. The splitter plate attached to the pier deflects the approach flow and thus weakens the strength of the downflow and the horseshoe vortex, being instrumental in reducing the equilibrium scour depth at piers. The proposed method of pier scour countermeasure is easy to install and cost effective as well.  相似文献   

12.
This paper examines the effect of dune migration on local scour around bridge piers. Experiments show that local scour depths fluctuate in response to the translation of dunes past the scour hole. The scour depths measured in a model study conducted in live-bed conditions contain both scour due to the pier and that due to dunes. The con' tribution from scour due to the dunes may form a significant fraction of the total scour depth measured in model investigations. Therefore, it is imperative to separate these two components of scour for analysis and comparison. The study proposes that an equilibrium or time-average scour depth normalized using pier diameter be used for analysis, and the contribution from dunes to the total scour depth be added independently. Dune size, in the absence of field or measured data, may be estimated using published predictive curves. Comparisons between computed and measured scour depths show a good correlation, and 90% of all the data tested fall within a scatter of 15%.  相似文献   

13.
Since local scour at bridge piers in rivers and estuaries is a major cause of bridge failure, estimation of the maximum local scour depth is of great importance to hydraulic and coastal engineers. Although numerous studies that focus on scour-depth prediction have been done and published, understanding of the flow and turbulence characteristics of the horseshoe vortex that drives the scour mechanism in a developing scour hole still is immature. This study aims to quantify the detailed turbulent flow field in a developing clear-water scour hole at a circular pier using Particle Image Velocimetry (PIV). The distributions of velocity fields, turbulence intensities, and Reynolds shear stresses of the horseshoe vortex that form in front of the pier at different scour stages (t=0, 0.5, 1, 12, 24, and 48 h) are presented in this paper. During scour development, the horseshoe vortex system was found to evolve from one initially small vortex to three vortices. The strength and size of the main vortex are found to increase with increasing scour depth. The regions of both the maximum turbulence intensity and Reynolds shear stress are found to form at a location upstream of the main vortex, where the large turbulent eddies have the highest possibility of occurrence. Results from this study not only provide new insight into the complex flow-sediment interaction at bridge piers, but also provide valuable experimental databases for advanced numerical simulations.  相似文献   

14.
The effect of scour countermeasures on the mechanism of local scour around a cylinder requires clarification in order to develop design methodology for use in practice. Previous investigations on countermeasure performance, though useful, have not provided adequate measurements to support this understanding. In the present investigation, particle image velocimetry(PIV) measurements were acquired at several streamwise-vertical planes in the flow field surrounding a submerged circular cylinder wit...  相似文献   

15.
This paper presents the results of comprehensive laboratory experiments to investigate the effects of hooked-collar on the scour development around a vertical pier with a lenticular cross section. The flow around the pier was uniform, steady, and under the clear-water condition. The axial scour profiles for cases without and with a lenticular hooked-collar were measured and the effects of hooked-collar dimensions and elevation from the bed were examined. To compute the efficiency of hooked-colla...  相似文献   

16.
This study performed a bridge pier collar comparison for the purpose of reducing scour,while introducing a new collar design.The new collar,referred to as Collar Prototype Number 3,was designed based on an equilibrium scour hole and provides a method of controlling the horseshoe vortex.Numerical modelling was utilized to show the flow field and bed shear stress as a result of using Collar Prototype Number 3.A prototype model of Collar Prototype Number 3 and a flat plate collar were constructed f...  相似文献   

17.
SCOUR MITIGATION AT BRIDGE PIERS USING SACRIFICIAL PILES   总被引:1,自引:0,他引:1  
To mitigate scour around bridge piers, sacrificial piles are economic method where natural processes are involved. The arrangement should be such that scoured materials from the sacrificial piles should have enough volume to fill the scour hole created upstream of the pier in such a way that sediments are trapped inside the scour hole. This concept differs from earlier study made with sacrificial piles that mainly deals to reduce the strength of horseshoe vortex. To determine the effect of sacrificial piles for scour mitigation, alternative arrangements of piles were tested in front of a rectangular pier under clear-water condition and found that when the group of piles is placed at a distance of twice the projected width of the pier, for which percentage of blockage of the pier width is 60%, the scour volume can be reduced upto 61% while the maximum scour depth can be reduced upto 50%.  相似文献   

18.
The scouring around bridge foundations is a significant concern in civil engineering. Several research has been conducted experimentally and numerically to study the maximum scour depth around the foundations of a bridge in open channel conditions. In cold regions, where ice forms on lakes, reservoirs, and rivers, the interaction between ice and hydraulic structures is further complicated. The flow distribution varies significantly leading to deeper and larger scouring around bridge foundations....  相似文献   

19.
The current study proposes a novel framework for the numerical model for estimating the temporal scour considering unsteady sediment inflow and the sediment sorting process. The framework was applied to local scour upstream of a slit weir. The scour model is based on an ordinary nonlinear differential equation derived from sediment continuity and scour rate equations. A one-dimensional(1-D)Boussinesq-type model coupled with nonequilibrium sediment transport was incorporated in the scour model to...  相似文献   

20.
Influence of large woody debris on sediment scour at bridge piers   总被引:2,自引:0,他引:2  
Large woody debris(LWD) reduces the flow area,deviate the flow and increases the velocity in correspondence of the bridge pier,therefore increases the maximum scour hole depth and accelerates sediment removal.Logs and drifts accumulated on bridge piers are of different dimensions.According to logs characteristics and river morphology,drift accumulations can either extend downstream the bridge pier or they can accumulate totally upstream.This paper aims to analyze the effect of drift accumulation planimetry on bridge pier scour.The experimental investigation has been carried out at the PITLAB hydraulic centre of Civil Engineering Department,University of Pisa,Italy.Drift accumulation was characterized by different relative longitudinal lengths,flow area occlusions,length of longitudinal drift and downstream planimetrical positions relative to the pier center.The experimental investigation has been carried out in clear-water conditions.Several pier sizes,channel widths and sediment materials have been tested.Maximum scour hole in presence of drift accumulation have been compared to the maximum scour hole for an isolated pier.Finally,data were compared with previous literature findings,which highlight the effect of the downstream extension of drift accumulation on bridge pier scour.New relationships have been proposed to predict the effect of drift accumulation on bridge pier scour,both in terms of relative maximum scour and temporal scour evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号