首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Quaternary Eifel volcanic fields, situated on the Rhenish Massif in Germany, are the focus of a major interdisciplinary project. The aim is a detailed study of the crustal and mantle structure of the intraplate volcanic fields and their deep origin. Recent results from a teleseismic P-wave tomography study reveal a deep low-velocity structure which we infer to be a plume in the upper mantle underneath the volcanic area [J.R.R. Ritter et al., Earth Planet. Sci. Lett. 186 (2001) 7-14]. Here we present a travel-time investigation of 5038 teleseismic shear-wave arrivals in the same region. First, the transverse (T) and radial (R) component travel-time residuals are treated separately to identify possible effects of seismic anisotropy. A comparison of 2044 T- and 2994 R-component residuals demonstrates that anisotropy does not cause any first-order travel-time effects. The data sets reveal a deep-seated low-velocity anomaly beneath the volcanic region, causing a delay for teleseismic shear waves of about 3 s. Using 3773 combined R- and T-component residuals, an isotropic non-linear inversion is calculated. The tomographic images reveal a prominent S-wave velocity reduction in the upper mantle underneath the Eifel region. The anomaly extends down to at least 400 km depth. The velocity contrast to the surrounding mantle is depth-dependent (from −5% at 31-100 km depth to at least −1% at 400 km depth). At about 170-240 km depth the anomaly is nearly absent. The resolution of the data is sufficient to recover the described features, however the anomaly in the lower asthenosphere is underestimated due to smearing and damping. The main anomaly is similar to the P-wave model except the latter lacks the ‘hole’ near 200 km depth, and both are consistent with an upper mantle plume structure. For plausible anhydrous plume material in the uppermost 100 km of the mantle, an excess temperature as great as 200-300 K is estimated from the seismic anomaly. However, 1% partial melt reduces the required temperature anomaly to about 100 K. The temperature anomaly associated with the deeper part of the plume (250 to about 450 km depth) is at least 70 K. However, this estimate is quite uncertain, because the amplitude of the shear-wave anomaly may be larger than the modelled one. Another possibility is water in the upwelling material. The gap at 170-240 km depth could arise from an increase of the shear modulus caused by dehydration processes which would not affect P-wave velocities as much. An interaction of temperature and compositional variations, including melt and possibly water, makes it difficult to differentiate quantitatively between the causes of the deep-seated low-velocity anomaly.  相似文献   

2.
Regional variations of the velocity structure down to a depth of about two hundred kilometers in the central United States are investigated by a combined use of body-wave spectra, surface-wave dispersion, travel-time residuals and synthetic seismograms. With minor adjustments to models obtained in a preceding study of body-wave transfer ratios the revised models FLO74, OXF74 and SHA74 are proposed which reasonably satisfy all data in the above four kinds of methods. These models retain the same characteristic feature of the deepening of the low-velocity zone from the Gulf of Mexico to the Interior Plain nearly along 89°N longitude while decreasing its thickness and increasing its velocities as in the preceding models. The low-velocity zone is about 50 km thick ranging in depth from about 150 to 200 km around a junction of the Interior Plain with the Interior Highlands, about 80 km thick from about 120 to 200 km in the Coastal Plain, and about 90 km thick from about 90 to 180 km in the continental shelf of the Gulf of Mexico. Although it is not clear what relation, if any, exists between the above characteristic feature of the low-velocity zone and the recurrent relief of intra-plate stress along the central Mississippi Valley, an intricate crustal structure found along the valley northwest of the confluence of the Mississippi and Ohio rivers is apparently related to the occurrence of historical earthquakes. Comparisons of synthetic seismograms of the above models with teleseismic records of deep earthquakes reveal that the undulations in a time interval of over 100 sec between the onsets of the P and pP phases on long-period records are good surface expression of the underlying layered structure below the station and are not associated with the source. Relevant future high-quality data promise a comprehensive elucidation of the fine configuration of structure in the crust and upper mantle.  相似文献   

3.
The top of the olivine-spinel phase change in subducted oceanic lithosphere can be located by the travel times of seismic waves which have propagated through the slab. P-wave travel-time residuals from deep earthquakes in the Tonga island are observed at Australian seismic stations are grouped according to the depth of the earthquake. The change in mean residual with a change in earthquake depth is related to the velocity contrast between slab and normal mantle at that depth. The curve mean residual versus earthquake depth displays a region of markedly increased slope between earthquake depths of about 250 and 350 km. The most probable explanation of this observation is an elevation by 100 km of the olivine-spinel phase change within the relatively cooler slab. No evidence was found for vertical displacements within the slab of any deeper phase changes.A temperature contrast between slab and normal mantle of about 1,000°C at 250 km depth is implied. This finding confirms current thermal models for subducted lithosphere but is inconsistent with the global intraplate stress field unless only a few percent of the negative buoyancy force at subduction zones is transmitted to the surface plates.  相似文献   

4.
P-wave travel-time residuals at the Warramunga Seismic Array (WRA) in the Northern Territory, Australia, have been studied from 49 earthquakes with epicenters south of 19°S in the Fiji-Tonga region. Focal depths are between 42 and 679 km as determined from pP-P. Using the Jeffreys-Bullen and the Herrin travel-time tables the epicentral parameters have been redetermined by considering only “normal” seismic stations in the location procedure. These are those stations where P-wave travel times are probably not affected by lateral heterogeneities caused by the lithosphere descending beneath the Tonga trench. Epicenters of deep earthquakes below 300 km have been relocated by using stations at Δ > 25° only. Epicenters from shallower-depth earthquakes have been recalculated without using stations between 35 < Δ < 75° epicentral distance. In both cases focal depths were determined from pP-P times. The resulting pattern of P-residuals at WRA does not show any significant change with depth below 350 km. The residuals become more negative for shallower earthquakes above about 250 km. P-waves to WRA are advanced by approximately 2 s compared with those from deep earthquakes. The results do not essentially differ for the two different travel-time tables used. The observations can be interpreted by P-wave velocities that are higher in the sinking slab down to 350–400 km by 5±2% than in both the Jeffreys-Bullen and Herrin models. Without considering possible elevations of phase boundaries this estimate yields a temperature contrast of 1000±450°C between slab and normal mantle material in this depth range.  相似文献   

5.
Jeffreys-Bullen P and PKP travel-time residuals observed at more than 50 seismic stations distributed along Italy and surrounding areas in the time interval 1962–1979, indicate the complex velocity pattern of this region. Strong lateral velocity inhomogeneities and low velocity zones are required to explain the observed pattern of residuals. In particular, late arrivals of about 1 sec are observed in the Apenninic mountain range, requiring both greater crustal thickness and low velocity layers, coherent with seismic refraction data and surface wave dispersion measurements. The seismic stations located in the Western and Eastern Alps indicate the presence of high velocities. In the Western Alps the strong azimuthal variation of residuals and the high values of early arrivals have a close relationship to the Ivrea body, an intrusive crustal complex characterized by a velocity as high as 7–7.2 km/sec.A travel-time inversion performed with theAki et al. (1977) block model, confirms the peculiar characteristics and the sharp variations in the lithosphere of the whole Italian region, with values of velocity perturbations between many adjacent blocks, ranging in size from 50 to 100 km, and independent from the earth parametrization chosen, reaching values up to 10% in the lithospheric part and 5% in the asthenosphere. 3-D inversion requires also high velocity along the Tyrrhenian coastal margin, equivalent to an uprise of major crustal and lithospheric discontinuities along this part of the Italian peninsula. Moreover low velocity material must be present in the northern part of the Adriatic foreland, in the lithosphere-asthenosphere system, closely related to the stress and seismicity pattern, and the lateral bending of the lithosphere in the same region.  相似文献   

6.
Teleseismic data recorded by stations in the Swedish National Seismic Network (SNSN) are used for a study of upper mantle structure beneath the Baltic Shield using the receiver function technique. The data show very clear conversions from the 410 and 660 km discontinuities. The signals associated with P to S conversions at these discontinuities arrive 1-2 s earlier than predicted by global models such as IASP91 or PREM. We interpret this as a manifestation of higher than average velocities in the mantle beneath the shield, consistent with lower than average global temperatures. For a 1400 km profile along the network, we observe variations of around 1 second in delay times of P410s and slightly less for P660s. Under the assumption that the mantle discontinuities are at a given constant depth, the delay times of the mantle converted phases are tomographically inverted to reveal P and S velocity structure below the stations. Synthetic tests show that this tomographic inversion has the potential to resolve P and S velocity variations at structural scales adequate for upper mantle studies. Results from application to real data appear to be consistent with independently produced mantle velocity structures deduced from normal tomographic arrival time data. For the P velocity model, a north-dipping body of (relatively) low velocity is found for the central part of the profile at 58-64°N. A sharp contrast from low to high velocities that may be associated with the Proterozoic-Archean boundary is found at 66°N.  相似文献   

7.
Summary Distribution of compressional-wave velocities in the mantle is determined fromdT/d measurements using the Uppsala seismograph array station (UPSAS). Short-period vertical-component seismograms from 181 events in the epicentral distance range 16°–100° have been used. The velocity distribution shows anomalous variations at depths of 750, 1500, 1800, 2300 and 2550 km. Evidence of lateral heterogeneity beneath the northern part of the Asian continent, in the depth range 1700–2300 km, is discussed. Computed travel times, based on this velocity-depth relation, are tested by an examination of travel-time residuals from the Long Shot and Milrow explosions on Amchitka, Aleutian Islands.  相似文献   

8.
—?Two chemical calibration explosions, conducted at the former Semipalatinsk nuclear test site in 1998 with charges of 25 tons and 100 tons TNT, have been used for developing travel-time curves and generalized one-dimensional velocity models of the crust and upper mantle of the platform region of Kazakhstan. The explosions were recorded by a number of digital seismic stations, located in Kazakhstan at distances ranging from 0 to 720?km. The travel-time tables developed in this paper cover the phases P, Pn, Pg, S, Sn, Lg in a range of 0–740?km and the velocity models apply to the crust down to 44?km depth and to the mantle down to 120?km. A comparison of the compiled travel-time tables with existing travel-time tables of CSE and IASPEI91 is presented.  相似文献   

9.
An investigation of travel-time residuals of P waves as compared to an average global travel-time curve with a base-line determined shows that about 400–500 km of the upper mantle at the boundary with the crust and a similar thickness of the lower mantle at the boundary with the core are laterally inhomogeneous. The upper mantle both under continents and under oceans consists of crust-mantle blocks distinguished by longitudinal wave velocity, surface tectonics and intensity of the heat flow. It has been revealed that within individual crust-mantle blocks there is an azimuthal relationship of P-wave travel-time indicative of possible anisotropy of upper mantle elastic properties down to depths of the order of several hundred kilometers.  相似文献   

10.
A radial velocity anomaly in the lower mantle may cause a triplication in the travel-time curve for short-period P waves, but the first two arrivals may not be separable visually on seismograms over a distance range of about 4–10°. However, the changes of slowness and azimuth as a function of time can be used to infer the presence of interfering signals. Some of the interference effects that can be generated synthetically are often observed on seismograms of earthquakes recorded at the Yellowknife array at distances close to 50°, 80° and 90°. The data from Yellowknife provide evidence for the presence of regions of high velocity gradients at depths of about 1250, 2400 and 2730 km that also show rapid lateral variations. Numerous P arrivals from South American earthquakes that traverse the lowest 500 km of the mantle beneath the Caribbean region have been used to illustrate the main features of the interference method.  相似文献   

11.
苏鲁地区剪切波速度结构研究及与地震关系探讨   总被引:2,自引:0,他引:2       下载免费PDF全文
利用S波纯波形拟合法以及T函数法反演了苏鲁地区壳幔剪切波速度结构,并利用长周期P波T函数反演得到了连云港和莱阳台下方800km深度的速度结构。结果显示:(1)苏鲁地区大部分台站地壳表层及上地壳浅部速度偏高,分别对应高压、超高压物质和古老基底出露地区;(2)沿郯庐断裂带分布的台站均显示明显低速层,并具有北浅南深的特点;(3)连云港和莱阳台超深度反演结果显示两台均在150km深度下出现高速层,反映扬子板块的俯冲深度为100km以下,俯冲板片厚度在100km以上;板片拆离下沉深度甚至达到300km或者更深;(4)地震深度分布与低速层关系密切,沿郯庐断裂和烟台—五莲断裂的中小地震震源深度都比较深,有的甚至达到地壳的底部,反映这两条断裂目前切割深度都比较大,而且地幔物质相对比较活跃。  相似文献   

12.
The crustal structure of North Abu-Simbel area was studied using spectral ratios of short-period P waves. Three-component short period seismograms from the Masmas seismic station of the Egyptian National Seismic Network Stations were used. The Thomson-Haskell matrix formulation was applied for linearly elastic, homogeneous crustal layers. The obtained model suggests that the crust under the study region consists of a thin (0.8 km) superficial top layer with a P-wave velocity of 3.8±0.7 km/s and three distinct layers with a mean P-wave velocity of 6.6 km/s, overlaying the upper mantle with a P-wave velocity of 8.3 km/s (fixed). The results were obtained for 14 different earthquakes. The P-wave velocities of the three layers are: 5.8±0.6 km/s, 6.5±0.4 km/s and 7.2±0.3 km/s. The total depth to the Moho interface is 32±2 km. The crustal velocity model estimated using observations is relatively simple, being characterized by smooth velocity variations through the middle and lower crust and normal crustal thickness. The resultant crustal model is consistent with the model obtained from previous deep seismic soundings along the northern part of Aswan lake zone.  相似文献   

13.
The arrival times of seismic P waves recorded at long lines of portable seismographs deployed on the shield region of central Australia show evidence of breaks in the travel-time curve at epicentral distances near 30, 39 and 43°. These breaks are additional to those at about 20 and 24° (associated with the 400- and 650-km discontinuities) and imply that the P wave velocity structure of the mantle does not increase smoothly in the depth range 650–1100 km, but rather consists of regions of nearly constant velocity separated by small but significant velocity increases at depths of approximately 770, 980 and 1080 km. These conclusions are in agreement with those previously inferred from first and later arrivals at the Warramunga Seismic Array.  相似文献   

14.
This paper describes a travel—time analysis performed for the Italian seismic stations, in particular those operating in southern Italy, in order to study the crust and upper mantle properties in the region. Average P-wave residuals of teleseisms in the distance range 30°–95° with respect to Jeffreys-Bullen tables, at thirteen permanent and temporary stations of southern Italy, are coherent with a high velocity zone beneath Calabria and northern Sicily and low velocity material in the mantle beneath the Eolian Islands. Travel—time residuals from Tyrrhenian intermediate earthquakes show a high velocity structure which extends in a NW direction from a depth of at least 200 km down to 450 km.A damped least-squares inversion applied to DSS data confirms the existence of low velocity zones in the crust beneath the Eolian Islands, at 8–12 km depth, that agrees with previous results and with the lack of S waves from local earthquakes.Publication No. 193, Progetto Finalizzato Geodinamica, CNR-Roma.  相似文献   

15.
The paper presents a review and analysis of new seismic data related to the structure of the mantle beneath the East European platform. Analysis of observations of long-range profiles revealed pronounced differences in the structure of the lower lithosphere beneath the Russian plate and the North Caspian coastal depression. The highest P-velocities found at depths around 100 km are in the range 8.4–8.5 km s?1. Deep structure of the Baltic shield is different from the structures of both these regions. No evidence of azimuthal anisotropy in the upper mantle was found. A distribution of P-velocity in the upper mantle and in the transition zone consistent with accurate travel-time data was determined. The model involves several zones of small and large positive velocity gradients in the upper mantle, rapid increases of velocity near 400 and 640 km depths and an almost constant positive velocity gradient between the 400 and 640 km discontinuities. The depth of the 640 km discontinuity was determined from observations of waves converted from P to SV in the mantle.  相似文献   

16.
We use a total of 839,369 PcP, PKPab, PKPbc, PKPdf, PKKPab, and PKKPbc residual travel times from [Bull. Seism. Soc. Am. 88 (1998) 722] grouped in 29,837 summary rays to constrain lateral variation in the depth to the core-mantle boundary (CMB). We assumed a homogeneous outer core, and the data were corrected for mantle structure and inner-core anisotropy. Inversions of separate data sets yield amplitude variations of up to 5 km for PcP, PKPab, PKPbc, and PKKP and 13 km for PKPdf. This is larger than the CMB undulations inferred in geodetic studies and, moreover, the PcP results are not readily consistent with the inferences from PKP and PKKP. Although the source-receiver ambiguity for the core-refracted phases can explain some of it, this discrepancy suggest that the travel-time residuals cannot be explained by topography alone. The wavespeed perturbations in the tomographic model used for the mantle corrections might be too small to fully account for the trade off between volumetric heterogeneity and CMB topography. In a second experiment we therefore re-applied corrections for mantle structure outside a basal 290 km-thick layer and inverted all data jointly for both CMB topography and volumetric heterogeneity within this layer. The resultant CMB model can explain PcP, PKP, and PKKP residuals and has approximately 0.2 km excess core ellipticity, which is in good agreement with inferences from free core nutation observations. Joint inversion yields a peak-to-peak amplitude of CMB topography of about 3 km, and the inversion yields velocity variations of ±5% in the basal layer. The latter suggests a strong trade-off between topography and volumetric heterogeneity, but uncertainty analyses suggest that the variation in core radius can be resolved. The spherical averages of all inverted topographic models suggest that the data are best fit if the actual CMB radius is 1.5 km less than in the Earth reference model used (i.e. the average outer core radius would be 3478 km).  相似文献   

17.
At subduction zones that have only recently ceased to be active, the lithospheric slab may retain a seismic velocity greater than that of the surrounding mantle even after the slab becomes seismically dead. To seek the subduction zone thought to have been recently active along the western margin of North America, we examined the variation with propagation direction of P-wave travel time residuals from sources at various distances and azimuths to seismograph stations in Washington and California. The uncertainty in source location and origin time was removed by referring the travel-time delay to a nearby station overlying presumably more uniform mantle. An eastward-dipping band of anomalously early arrivals at several stations on the western flank of the Sierra Nevada and California Cascades may imply that a dead slab is present beneath northern California, though a definitive conclusion is premature at present because of a paucity of seismic sources in eastern North America. The position of the dead slab speculatively suggested by the travel-time data is roughly consistent with that predicted by others on the basis of heat flow and geochemistry in the Sierra Nevada, and the southward decrease in the magnitude of the travel-time advance associated with such a slab is in agreement with the history of subduction of the Farallon plate as reconstructed from ocean floor magnetic anomalies and continental tectonic activity.  相似文献   

18.
邓超云 《中国地震》2020,36(2):359-366
近年来,远震走时层析成像方法有了长足的发展,在地下结构反演的研究中获得了众多成果。针对射线在台站下方覆盖率较差而导致远震反演方法对地壳速度约束不足的问题,本文提出了一种新的地壳异常体改正方法——对同一台站的相对走时残差进行求和平均去均值,消除了地壳中复杂的速度异常体对上地幔速度结构反演的干扰,反演结果具有更优的相对走时残差分布,同时反演得到的速度模型具有更小的数据方差。  相似文献   

19.
张先康  杨玉春 《地球物理学报》1994,37(6):759-766,T002
利用布设在唐山滦县震区30km×40km范围内的由88台数字和模拟地震仪组成的临时台阵,接收来自不同方向6个炮点激发产生的莫霍界面反射波走时,重建了台阵下1-9km深度的P,S波速度和V/V图像.结果表明。中、上地壳结构存在明显的横向不均匀性.北北东走向的滦县-卢龙断裂自地表向下至少延伸到8km深度处,并向北西方向倾斜.中、上地壳存在着近东西向的低速异常条带.这两组构造控制着该区的地震活动.  相似文献   

20.
南海西沙地块岛屿地震观测和海陆联测初步结果   总被引:6,自引:1,他引:5       下载免费PDF全文
为了研究南海西沙地块下方的地壳结构,我们在岛屿区架设了流动地震台站进行天然地震观测和海底地震仪的人工地震探测.本文利用远震接收函数方法和射线追踪方法对琛航台的远震数据和海陆联测数据进行了初步处理和分析,建立了琛航岛下方的一维横波速度模型以及横穿琛航岛的二维地壳结构模型.琛航岛顶部存在2 km厚的新生代低速沉积层,下地壳...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号