首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the long period surface wave data recorded by the China Digital Seismograph Network (CDSN), theQ R of fundamental mode Rayleigh wave with periods from 10 s to 146 s is determined for the eastern Sino-Korean paraplatform in this paper. TheQ β models of the crust and upper mantle are respectively obtained for the 4 paths, with the aid of stochastic inverse method. It shows that in the eastern Sino-Korean paraplatform, the average crustalQ β is about 200, and that there exists a weak attenuation layer in the middle crust (about 10–20 km deep) which is possibly related to earthquake-prone layer. A strong attenuation layer (lowQ) of 70 km thick extensively exists in the uppermost mantle, with the buried depth about 80 km. The averageQ R of fundamental mode Rayleigh wave is between the value of stable tectonic region and that of active tectonic region, and much close to the latter.  相似文献   

2.
—We present a 2-D image of the upper mantle attenuation using nuclear explosion data from the ultra-long refraction/reflection profile "Quartz." Our analysis is based on a modified common spectrum technique followed by least-squares inversion for Q and iterative ray tracing in the velocity structure obtained earlier. The resulting attenuation structure corroborates the earlier model for northern Eurasia, as well as our recent estimate based on the analysis of the long-range P n phase, and provides significantly more detail than the existing models. The resulting upper mantle attenuation structure is characterised by Q values ranging from 400 to 1800. Down to the depths of 150–190, and probably 400 km, the attenuation increases horizontally in SE direction, away from the Baltic Shield. Our model exhibits strong 2-D, vertical and horizontal attenuation contrasts. A high-attenuation layer in the depth range of 120–150 to 160–180 km can apparently be associated with the presence of a partial melts within the base of the lithosphere.  相似文献   

3.
The fundamental mode Love and Rayleigh waves generated by ten earthquakes and recorded across the Tibet Plateau, at QUE, LAH, NDI, NIL, KBL, SHL, CHG, SNG and HKG are analysed. Love- and Rayleigh-wave attenuation coefficients are obtained at time periods of 5–120 s using the spectral amplitudes of these waves for 23 different paths. Love wave attenuation coefficient varies from 0.0021 km?1, at a period of 10 s, to 0.0002 km?1 at a period of 90 s, attaining two maxima at time periods of 10 and 115 s, and two minima at time periods of 25 and 90 s. The Rayleigh-wave attenuation coefficient also shows a similar trend. The very low value for the dissipation factor, Qβ, obtained in this study suggests high dissipation across the Tibetan paths. Backus-Gilbert inversion theory is applied to these surface wave attenuation data to obtain average Qβ?1 models for the crust and uppermost mantle beneath the Tibetan Plateau. Independent inversion of Love- and Rayleigh-wave attenuation data shows very high attenuation at a depth of ~50–120 km (Qβ ? 10). The simultaneous inversion of the Love and Rayleigh wave data yields a model which includes alternating regions of high and low Qβ?1 values. This model also shows a zone of high attenuating material at a depth of ~40–120 km. The very high inferred attenuation at a depth of ~40–120 km supports the hypothesis that the Tibetan Plateau was formed by horizontal compression, and that thickening occurred after the collision of the Indian and Eurasian plates.  相似文献   

4.
This paper deals with characteristics of the short period S-wave attenuation field in the rupture zones of 37 large and great earthquakes with M s = 7.0–8.6, as well as in low seismicity areas. We estimate the effective quality factor from Sn and Lg coda envelopes in two time intervals (Q 1 and Q 2). The quantity Q 1 is a measure of shear wave attenuation in the uppermost mantle, at depths of down to approximately 200–250 km, while Q 2 is relevant to deeper horizons of the upper mantle. We studied variations in the attenuation field in the rupture zone of the 1950 Assam earthquake. We examined the parameters Q 1, Q 2, and Q 1/Q 2 as functions of the time ΔT elapsed after a large earthquake. It is shown that the parameter Q 2 in rupture zones is practically independent of ΔT, while the quantities Q 1 and Q 1/Q 2 increase until ΔT ~ 20–25 years, especially rapidly for normal, normal-oblique, and strike-slip earthquake mechanisms. This analysis provides evidence that, as ΔT increases, so does the quality factor in the upper mantle for shear waves. It is supposed that this is related to the rise of mantle fluids to the crust. Geodynamic mechanisms are discussed that can support a comparatively rapid “drying” of the upper mantle beneath earthquake rupture zones.  相似文献   

5.
A worldwide study of short-period teleseismic body wave spectra shows that the high frequency falloff rates of spectra are correlated with the tectonic type of the source and receiver regions and with source depth. The data indicate, in a consistent manner, that the main cause for such variations is the lateral variation of Q in the upper mantle as well as change of Q with depth. Using the internal consistency checks provided by redundancies in the data set other effects such as crustal, site dependent distortion of the spectra, source effects and instrument non-linearity can be ruled out as significant factors influencing the t1 estimates obtained. The results indicate high attenuation in the upper mantle under tectonic regions and new oceans. Long-period regional attenuation studies indicate similar variations in mantle Q among the types of regions mentioned but yield significantly lower Q estimates in all areas. The short- and long-period attenuation results can be reconciled only by assuming a frequency dependent Q that increases with frequency along all types of paths, such that the relative differences in Q along various types of paths retain the same sign over the short- and long-period bands.  相似文献   

6.
Average shear-velocity models for the upper mantle have been derived by controlled Monte Carlo inversion of global average Rayleigh wave group velocity (GAGV) data for periods between 50 and 300 seconds. GAGV data have been corrected for attenuative dispersion using a method based on the theory of Liu, Anderson and Kanamori. Two types of model bounds have been used with one- or two-layer low-velocity zones beginning at depths of 70 and 100 km. All models fitting GAGV data within one standard deviation have low-velocity zones in the 100–200 km depth range. Models with low-velocity zones beginning at 70 km, as well as 100 km, fit GAGV data within one standard deviation, so the average thickness of the lithosphere (taken as the depth to the top of the low-velocity zone) cannot be determined with precision.Global average models for shear-wave attenuation (Q?1β) have been derived from global average Rayleigh wave attenuation coefficients for periods between 50 and 300 s and average shear-velocity models. Zones of high Q?1β coincide with the low-velocity zones of all shear-velocity models, however, models with low-velocity zones beginning at a depth of 70 km have the highest-attenuation layer in the lower half of the low-velocity zone. Resolution kernels for these attenuation models show that parameters for layers shallower than the lower part of the low-velocity-high-attenuation zone are strongly coupled but are distinct from the lower part of this zone. This suggests that the deeper part of the low-velocity-high-attenuation zone is the most mobile part of the zone or that on the average, the top of the zone is deeper than 70 km.The average Qβ of the lithosphere, low-velocity zone, and sub-low-velocity layer (asthenosphere) are approximately 200, 85–110 and 170–200, respectively.  相似文献   

7.
—?The digital data acquired by 16 short-period seismic stations of the Friuli-Venezia-Giulia seismic network for 56 earthquakes of magnitude 2.3–4.7 which occurred in and near NE Italy have been used to estimate the coda attenuation Q c and seismic source parameters. The entire area under study has been divided into five smaller regions, following a criterion of homogeneity in the geological characteristics and the constrains imposed by the distribution of available events. Standard IASPEI routines for coda Q c determination have been used for the analysis of attenuation in the different regions showing a marked anomaly in the values measured across the NE border between Friuli and Austria for Q 0 value. A large variation exists in the coda attenuation Q c for different regions, indicating the presence of great heterogeneities in the crust and upper mantle of the region. The mean value of Q c (f) increases from 154–203 at 1.5?Hz to 1947–2907 at 48?Hz frequency band with large standard deviation estimates.¶Using the same earthquake data, the seismic-moment, M 0, source radius, r and stress-drop, Δσ for 54 earthquakes have been estimated from P- and S-wave spectra using the Brune's seismic source model. The earthquakes with higher stress-drop (greater than 1?Kbar) occur at depths ranging from 8 to 14?km.  相似文献   

8.
We employ a niching genetic algorithm to invert ∼30,000 differential ScS/S attenuation values for a new spherically symmetric radial model of shear quality factor (Qμ) with high sensitivity to the lower mantle. The new radial Qμ model, QLM9, possesses greater sensitivity to Qμ at large mantle depths than previous studies. On average, lower mantle Qμ increases with depth, which supports models of increasing viscosity with depth [B.M. Steinberger, A.R. Calderwood. Mineral physics constraints on viscous flow models of mantle flow, J. Conf. Abs., 6, 2001., 2001.]. There are two higher-Qμ regions at ∼1000 and ∼2500 km depth, which roughly correspond to high-viscosity regions observed by Forte and Mitrovica [A.M. Forte and J.X. Mitrovica, Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data, Nature 410, 1049–1056, 2001.]. There is a lower-Qμ layer at the core–mantle boundary and a relatively low-Qμ region in the mid-lower mantle. With several caveats, we infer a divergence of the solidus and geotherm in the lower mantle and a convergence within Dʺ by relating Qμ to homologous temperature.  相似文献   

9.
36 pairs of multiply-reflected ScS waves from deep earthquakes around Japan are analyzed to investigate the anelastic properties of the mantle on the continental and oceanic sides of the dipping slab. The average Q-value for shear waves passing through the mantle on the oceanic side is found to be 226 in the frequency range 10–40 mHz. This Q-value is in good agreement with the Q models SL8 (Anderson and Hart, 1978) and QBS (Sailor and Dziewonski, 1978) which have been derived from free oscillation data. Assuming that the Q-value for the mantle deeper than 400 km on the continental side of the Japanese Arc is the same as that for the model SL8, we obtain a value of Q = 53 in the upper mantle above the dipping slab beneath the Sea of Japan. Higher Q-values are obtained for the mantle behind the northern Izu-Bonin arc.  相似文献   

10.
The attenuation properties of the crust in the Chamoli region of Himalaya have been examined by estimating the frequency-dependent relationships of quality factors for P waves (Qα) and for S waves (Qβ) in the frequency range 1.5–24 Hz. The extended coda normalization method has been applied on the waveforms of 25 aftershocks of the 1999 Chamoli earthquake (M 6.4) recorded at five stations. The average value of Qα is found to be varied from 68 at 1.5 Hz to 588 at 24 Hz while it varies from 126 at 1.5 Hz to 868 at 24 Hz for Qβ. The estimated frequency-dependent relations for quality factors are Qα = (44 ± 1)f(0.82±.04) and Qβ = (87 ± 3)f(0.71±.03). The rate of increase of Q(f) for P and S waves in the Chamoli region is comparable with the other regions of the world. The ratio Qβ/Qα is greater than one in the region which along with the frequency dependence of quality factors indicates that scattering is an important factor contributing to the attenuation of body waves in the region. A comparison of attenuation relation for S wave estimated here (Qβ = 87f0.71) with that of coda waves (Qc = 30f1.21) obtained by Mandal et al. (2001) for the same region shows that Qc > Qβ for higher frequencies (>8 Hz) in the region. This indicates a possible high frequency coda enrichment which suggests that the scattering attenuation significantly influences the attenuation of S waves at frequencies >8 Hz. This observation may be further investigated using multiple scattering models. The attenuation relations for quality factors obtained here may be used for the estimation of source parameters and near-source simulation of earthquake ground motion of the earthquakes, which in turn are required for the assessment of seismic hazard in the region.  相似文献   

11.
In this study, observed seismic attributes from shot gather 11 of the SAREX experiment are used to derive a preliminary velocity and attenuation model for the northern end of the profile in southern Alberta. Shot gather 11 was selected because of its prominent Pn arrivals and good signal to noise ratio. The 2-D Gaussian beam method was used to perform the modeling of the seismic attributes including travel times, peak envelope amplitudes and pulse instantaneous frequencies for selected phases. The preliminary model was obtained from the seismic attributes from shot gather 11 starting from prior tomographic results. The amplitudes and instantaneous frequencies were used to constrain the velocity and attenuation structure, with the amplitudes being more sensitive to the velocity gradients and the instantaneous frequencies more sensitive to the attenuation structure. The resulting velocity model has a velocity discontinuity between the upper and lower crust, and lower velocity gradients in the upper and lower crust compared to earlier studies. The attenuation model has Q p -1 values between 0.011 and 0.004 in the upper crust, 0.0019 in the lower crust and a laterally variable Q p -1 in the upper mantle. The Q p -1 values are similar to those found in Archean terranes from other studies. Although the results from a single gather are non-unique, the initial model derived here provides a self-consistent starting point for a more complete seismic attribute inversion for the velocity and attenuation structure.  相似文献   

12.
    
Based on the long period surface wave data recorded by the China Digital Seismograph Network (CDSN), theQ R of fundamental mode Rayleigh wave with periods from 10 s to 146 s is determined for the eastern Sino-Korean paraplatform in this paper. TheQ β models of the crust and upper mantle are respectively obtained for the 4 paths, with the aid of stochastic inverse method. It shows that in the eastern Sino-Korean paraplatform, the average crustalQ β is about 200, and that there exists a weak attenuation layer in the middle crust (about 10–20 km deep) which is possibly related to earthquake-prone layer. A strong attenuation layer (lowQ) of 70 km thick extensively exists in the uppermost mantle, with the buried depth about 80 km. The averageQ R of fundamental mode Rayleigh wave is between the value of stable tectonic region and that of active tectonic region, and much close to the latter. Contribution No. 96A0001, Institute of Geophysics, SSB, China. Funded by the Chinese Joint Seismological Science Foundation.  相似文献   

13.
A total number of 46 local earthquakes (2.0≤ML≤4.0) recorded in the period 2000–2011 by the Egyptian seismographic network (ENSN) were used to estimate the total (Qt−1), intrinsic (Qi1) and scattering attenuation (Qsc1) in Cairo metropolitan area, Egypt. The multiple lapse time window analysis (MLTWA) under the assumption of multiple isotropic scattering with uniform distribution of scatters was firstly applied to estimate the pair of Le1, the extinction length inverse, and B0, the seismic albedo, in the frequency range 3–24 Hz. To take into account the effect of a depth-dependent earth model, the obtained values of B0 and Le1 were corrected for an earth structure characterized by a transparent upper mantle and a heterogeneous crust. The estimated values of Qt−1, Qsc1 and Qi1 exhibited frequency dependences. The average frequency-dependent relationships of attenuation characteristics estimated for the region are found to be: Qt1=(0.015±0.008)f (−1.02±0.02), Qsc−1=(0.006±0.001)f (−1.01±0.02), and Qi1=(0.009±0.008)f (−1.03±0.02); showing a predominance of intrinsic absorption over scattering attenuation. This finding implies that the pore-fluid contents may have great effect on the attenuation mechanism in the upper crust where the River Nile is passing through the study area. The obtained results are comparable with those obtained in other tectonic regions.  相似文献   

14.
This paper presents the results of a modified two-step inversion algorithm approach to find S wave quality factor Q β(f) given by Joshi (Bull Seis Soc Am 96:2165–2180, 2006). Seismic moment is calculated from the source displacement spectra of the S wave using both horizontal components. Average value of seismic moment computed from two horizontal components recorded at several stations is used as an input to the first part of inversion together with the spectra of S phase in the acceleration record. Several values of the corner frequency have been selected iteratively and are used as inputs to the inversion algorithm. Solution corresponding to minimum root mean square error (RMSE) is used for obtaining the final estimate of Q β(f) relation. The estimates of seismic moment, corner frequency and Q β(f) from the first part of inversion are further used for obtaining the residual of theoretical and observed source spectra which are treated as site amplification terms. The acceleration record corrected for the site amplification term is used for determination of seismic moment from source spectra by using Q β(f) obtained from first part of inversion. Corrected acceleration record and new estimate of seismic moment are used as inputs to the second part of the inversion scheme which is similar to the first part except for use of input data. The final outcome from this part of inversion is a new Q β(f) relation together with known values of seismic moment and corner frequency of each input. The process of two-step inversion is repeated for this new estimate of seismic moment and goes on until minimum RMSE is obtained which gives final estimate of Q β(f) at each station and corner frequency of input events. The Pithoragarh district in the state of Uttarakhand in India lies in the border region of India and Nepal and is part of the seismically active Kumaon Himalaya zone. A network of eight strong motion recorders has been installed in this region since March, 2006. In this study we have analyzed data from 18 local events recorded between March, 2006 and October, 2010 at various stations. These events have been located using HYPO71 and data has been used to obtain frequency-dependent shear-wave attenuation. The Q β(f) at each station is calculated by using both the north-south (NS) and east-west (EW) components of acceleration records as inputs to the developed inversion algorithm. The average Q β(f) values obtained from Q β(f) values at different stations from both NS and EW components have been used to compute a regional average relationship for the Pithoragarh region of Kumaon Himalaya of form Q β(f)?=?(29?±?1.2)f (1.1 ± 0.06).  相似文献   

15.
P-wave attenuation anomalies in the lower mantle can be delineated by assuming that body-wave magnitude residuals, derived from teleseismic data, are due to structure near the mid-points of the rays. Many rays traversing a given region are used to minimise random errors in the data, after correction for source and receiver effects. Published data for North Atlantic ray paths are used to outline significant anomalies with scale lengths of the order of 500 km, giving magnitude residuals up to 0.1 mb unit. To achieve the observed residuals, the mean value of Q for short-period P-waves probably does not greatly exceed 1000 in the lower mantle under the North Atlantic.  相似文献   

16.
A method is presented to derive pure path attenuation coefficients of Rayleigh waves, in the period range 30–90 s, across the Tibet Plateau, using events located within Tibet and observed at teleseismic distances. This method uses data from 2 events and 2 stations simultaneously, these being aligned along a great circle path, and, for relatively small events, is practically free of errors due to inaccurate knowledge of the source radiation patterns.In spite of large standard errors due to the impossibility of separating effects of anclasticity from spurious effects on amplitudes such as scattering or multipathing, results seem to indicate an anelastic model of the crust and upper mantle compatible with shear velocity models derived independently, with a thick crust and in particular, a thick high Q lid and thin low Q zone consistent with a shield like upper mantle beneath Tibet.  相似文献   

17.
Multi-phase long-period t* measurements are among the key evidences for the frequency-dependent mantle attenuation factor, Q. However, similarly to Q, poorly constrained variations of Earth’s structure may cause spurious frequency-dependent effects in the observed t*. By using an attenuation-coefficient approach which incorporates measurements of geometric spreading (GS), such effects can be isolated and removed. The results show that the well-known increase of body P-wave t* from ~0.2 s at short periods to ~1–2 s at long periods may be caused by a small and positive bias in the underlying GS, which is measured by a dimensionless parameter γ*?≈?0.06. Similarly to the nearly constant t* at teleseismic distances, this GS bias is practically range-independent and interpreted as caused by velocity heterogeneity within the crust and uppermost mantle. This bias is accumulated within a relatively thin upper part of the lithosphere and may be closely related to the crustal body-wave GS parameter γ?~?4–60 mHz reported earlier. After a correction for γ, P-wave t P * becomes equal ~0.18 s at all frequencies. By using conventional dispersion relations, this value also accounts for ~40 % of the dispersion-related delay in long-period travel times. For inner-core attenuation, the attenuation coefficient shows a distinctly different increase with frequency, which is remarkably similar to that of fluid-saturated porous rock. As a general conclusion, after the GS is accounted for, no absorption-band type or frequency-dependent upper-mantle Q is required for explaining the available t* and velocity dispersion observations. The meaning of this Q is also clarified as the frequency-dependent part of the attenuation coefficient. At the same time, physically justified theories of elastic-wave attenuation within the Earth are still needed. These conclusions agree with recent re-interpretations of several surface, body and coda-wave attenuation datasets within a broad range of frequencies.  相似文献   

18.
On the basis of data of long period Rayleigh surface wave, we select 43 two-station paths which cover the eastern China thoroughly. By using the improved method of multi-filtration, we obtain the group velocity and amplitude spectrum, and then get attenuation factor for each paths. We employ Talentola inversion method to get local attenuation factor, and further invert the three-dimension Q β image under the crust and upper mantle in the eastern Chinese continent. The Q β image shows the following basic characters. There is correlation between the seismic activity and Q β structure under the crust and upper mantle in North China region. The Yangtze block begins to collide with and subduct to the North China block from the southern border of the Qinling in the southern Shaanxi. In the large part of Yangtze quasi-platform appear an obvious high Q β area at 88 km deep. In the east of Sichuan depression platform, the juncture of Sichun and Guizhou, and the Jiangnan block near the juncture of Guizhou and Hunan, the lateral variation of Q β in the crust is little, and there is a high-Q β layer no thinner than 40 km in the top mantle. In the Dian-Qian fold and fracture region between Yunnan and Guizhou, the vertical variation of Q β at the region of the crust and upper mantle is little, there is a low-Q β layer in the top mantle, about 40 km thick, low-Q β layer of the upper mantle begins to appear at about 95 km deep. In the east of Yangtze quasi-platform and the central and eastern part of the South China fold system, the Moho is smooth, the lateral variation of Q β in the crust is also little, low-Q β layer of the upper mantle begins to appear at about 85 km deep.  相似文献   

19.
We construct and evaluate a new three-dimensional model of crust and upper mantle structure in Western Eurasia and North Africa (WENA) extending to 700 km depth and having 1° parameterization. The model is compiled in an a priori fashion entirely from existing geophysical literature, specifically, combining two regionalized crustal models with a high-resolution global sediment model and a global upper mantle model. The resulting WENA1.0 model consists of 24 layers: water, three sediment layers, upper, middle, and lower crust, uppermost mantle, and 16 additional upper mantle layers. Each of the layers is specified by its depth, compressional and shear velocity, density, and attenuation (quality factors, Q P and Q S ). The model is tested by comparing the model predictions with geophysical observations including: crustal thickness, surface wave group and phase velocities, upper mantle n velocities, receiver functions, P-wave travel times, waveform characteristics, regional 1-D velocities, and Bouguer gravity. We find generally good agreement between WENA1.0 model predictions and empirical observations for a wide variety of independent data sets. We believe this model is representative of our current knowledge of crust and upper mantle structure in the WENA region and can successfully be used to model the propagation characteristics of regional seismic waveform data. The WENA1.0 model will continue to evolve as new data are incorporated into future validations and any new deficiencies in the model are identified. Eventually this a priori model will serve as the initial starting model for a multiple data set tomographic inversion for structure of the Eurasian continent.  相似文献   

20.
A method for determining medium quality factor is developed on the basis of analyzing the attenuation dispersion of the arrived first period P wave. In order to enhance signal to noise ratio, improve the resolution in measurement and reduce systematic error we applied the data resampling technique. The group velocity delay of P wave was derived by using an improved multi-filtering method. Based on a linear viscoelastic relaxation model we deduced the medium quality factor Q m, and associated error with 95% confidence level. Applying the method to the seismic record of the Xiuyan M=5.4 earthquake sequences we obtained the following result: (1) High Q m started to appear from Nov. 9, 1999. The events giving the deduced high Q m value clustered in a region with their epicenter distances being between 32 and 46 km to the Yingkou station. This Q m versus distance observation obviously deviates from the normal trend of Q m linearly increasing with distance. (2) The average Q m before the 29 Dec. 1999 M=5.4 earthquake is 460, while the average Q m between the M=5.4 event and the 12 Jan. 2000 M=5.1 earthquake is 391, and the average Q m after the M=5.1 event is 204.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号