首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To investigate the relation between the rock friction and the fractal electromagnetic radiation before the main-shock of earthquakes, we conducted a friction experiment simulating the motion of an asperity on a fault plane, and observed photon emissions due to electric discharge by dielectric breakdown of ambient gases from friction contacts between rock minerals. This indicates that frictional discharges (plasma generations) could occur locally at microscopic asperities on fault surfaces. From concepts on the fractal size-distribution and temporal evolution of fault asperities, the frictional discharge occurring at asperities on the fault plane can be one of origins of the fractal electromagnetic radiation (Benioff electromagnetic radiation) prior to earthquakes.  相似文献   

2.
A 150 μm thick fused layer of rock has been produced by rotating two metadolerite core faces against each other at 3000 r.p.m. under an axial load of 330 kg for 11 s using friction welding apparatus. Scanning electron microscopy and electron microprobe analysis reveal that the melt layer comprises sub-angular to rounded porphyroclasts of clinopyroxene, feldspar and ilmenite (>20 μm diameter), derived from the host metadolerite, set within a silicate glass matrix. Thermal calculations confirm that melting occurred at the rock interface and that mean surface temperatures in excess of 1400°C were attained. The fused layer shows many textural similarities with pseudotachylyte described from fault zones. Morphologically, the fused layer consists of a series of stacks of porphyroclasts welded together by melt to form ‘build-ups’ oriented at right angles to the friction surface. There is also evidence of gouging, ploughing and plucking, as well as transfer and adhesion of material having occurred between the rock faces. The mean surface velocity attained by the metadolerite (0.24 m s−1) and duration of the experiment are comparable with velocities and rise times of typical single jerk earthquakes occurring during stick-slip seismic faulting within brittle crust (i.e. slip rates of 0.1-0.5 m s−1 for, say, 1–10s). In these respects the experiment successfully simulated frictional fusion on a fault plane in the absence of an intergranular fluid. Power dissipation during the experiment was about MW m−2, comparable only to very low values for earthquakes (e.g. 1–100 MW m−2 for displacement rates of 0.1-0.5 m s−1 at shear stresses of 100–1000 bars). This indicates that melting on fault planes during earthquakes should be commonplace. Field evidence, however, does not support this contention. Either pseudotachylyte is not being recognized in exhumed ancient seismic fault zones or melting only occurs under very special circumstances.  相似文献   

3.
High-velocity friction experiments on gabbro and monzodiorite, using a rotary-shear high-velocity friction apparatus, have revealed that frictional melting and progressive growth of a molten layer along a fault cause slip weakening, eventually reaching a nearly steady-state. The melting surface at the host rock/molten layer interface is initially very flat, but it becomes more complex and rounded in shape towards the steady state owing to the selective melting of minerals with lower melting points and the Gibbs–Thomson effect. This change in the melting-surface topography can be quantitatively expressed by the fractal dimension D, as determined by the divider method, from about 1.0 near the peak friction to around 1.1 near the steady-state friction. The ultimate fractal dimension at steady-state friction tends to decrease with increasing heat production rate presumably due to more rapid and uniform melting. A systematic correlation of D with mechanical behavior of the fault during frictional melting may provide a way of estimating slip-weakening distance and heat production rate at steady-state friction by measuring D for natural pseudotachylytes on slip surfaces with different displacements. The weakening distance is of vital significance in relation to fault instability and the heat production rate is related to the fault strength. The experimental studies point to ways to estimate these difficult quantities for natural faults.  相似文献   

4.
We present an extended finite element (FE) approach for the simulation of slow‐rate frictional faulting in geologic media incorporating bulk plasticity and variable friction. The method allows the fault to pass through the interior of FEs without remeshing. The extended FE algorithm for frictional faulting, advocated in two recent articles, emanates from a variational equation formulated in terms of the relative displacement on the fault. In the present paper we consider the combined effects of bulk plasticity and variable friction in a two‐dimensional plane strain setting. Bulk plasticity is localized to the fault tip and could potentially be used as a predictor for the initiation and propagation of new faults. We utilize a variable velocity‐ and state‐dependent friction, known as the Dieterich–Ruina or ‘slowness’ law, formulated in a slip‐weakening format. The slip‐weakening/variable friction model is then time‐integrated according to the generalized trapezoidal rule. We present numerical examples demonstrating the convergence properties of a global Newton‐based iterative scheme, as well as illustrate some interesting properties of the variable friction model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Understanding the fundamental issues related with the effect of shear velocity on frictional characteristics at the interface of rock surfaces is an important issue. In this paper, strain-rate dependence on friction is investigated in relation to sliding behaviour under normal load. The phenomenon of stick-slip of granite and shaly sandstone with a tribometer at constant rate of strain under normal loads was observed.  相似文献   

6.
韩文梅  康天合 《岩土力学》2013,34(3):674-678
对典型岩石摩擦滑动试验装置进行了改进,以8种硅酸盐岩作为研究对象,在低正应力条件下对岩石摩擦滑动过程中的静摩擦系数进行了试验研究。对滑动表面形貌进行了表征,从统计学角度分析了粗糙度对静摩擦系数的影响,并基于滑动表面微凸体(凹凸体、微观粗糙度)对这一影响作进一步分析。研究表明:滑动面为抛光面时,千枚岩、石英岩、岩屑砂岩和石英砂岩的静摩擦系数为0.38~0.47,砾岩、含砾粗粒石英砂岩、中粒岩屑砂岩和中粒石英砂岩的静摩擦系数为0.83~1.07;在粗糙度中,轮廓最大谷深Rm和轮廓最大峰高Rp两个参数导致摩擦滑动中产生不同静摩擦系数,且随着这两个参数的增加,静摩擦系数呈指数规律增加;千枚岩、石英岩、岩屑砂岩和石英砂岩滑动表面的微凸体数量较少,砾岩、含砾粗粒石英砂岩、中粒岩屑砂岩和中粒石英砂岩滑动表面的微凸体数量较多,随着微凸体数量的增加岩石摩擦滑动过程中的静摩擦系数增加。  相似文献   

7.
唐孟雄  陈达 《岩土力学》2015,36(Z2):633-638
采用极限平衡法,利用幂函数形式的滑移面假设,考虑桩岩界面作用力影响,推导出等截面抗拔桩在单层地基中极限承载力的计算公式。以软岩抗拔桩侧摩阻力试验结果为依据,提出软岩抗拔桩幂函数滑移面参数 时破裂面接近实际形状,并将计算结果与试验结果对比,验证了理论计算模型与假设的准确性。以理论模型为基础,提出对于软岩抗拔桩,桩岩界面作用力参数 、岩石界面摩擦角 可分别取岩石黏聚力c和内摩擦角 参数的0.7~0.8倍折减,分析了软岩抗拔桩极限承载力与软岩 、c的关系,发现抗拔桩极限承载力随着软岩摩擦角 、软岩黏聚力c增加而增加,软岩黏聚力对抗拔桩极限承载力影响更大。  相似文献   

8.
Seismic wave transmission and digital image correlation (DIC) are employed to study slip processes along frictional discontinuities. A series of biaxial compression experiments are performed on gypsum specimens with non-homogeneous contact surfaces. The specimens are composed of two blocks with perfectly mated contact surfaces with a smooth surface with low frictional strength on the upper half and a rough surface with high frictional strength on the lower half. Compressional, P, and shear, S, wave pulses were transmitted through the discontinuity while digital images of the specimen surface were acquired during the test. A distinct peak in the amplitude of transmitted wave occurs prior to the peak shear strength and is considered a “precursor” to the failure. Precursors indicate that slip initiates from the smooth surface and extends to the rough surface as the shear load is increased. From the DIC data, slip is identified as a jump in the displacement field along the fracture that initiates from the smooth surface and propagates to the rough surface. Precursors are associated with an increase in the rate of slip across the discontinuity and are a measure of the reduction in the fracture shear stiffness.  相似文献   

9.
The slip rate predicted from geodetic and geomorphological measurements is quite uniform on ~800–1,000 km length of the Altyn Tagh and the Kunlun faults. GPS velocity field documents that tectonic loading on the two active faults changes greatly along their strikes. To explore the mechanical relationship between far‐field tectonic loading and fault slip‐rate accumulation, we built a 3D viscoelastic finite‐element model with fault motion governed by frictional strength of contact interfaces. Based on numerical experiments, it is found that the observed uniform slip rate could reflect lateral variation of frictional strength along fault strike. Variation of predicted frictional coefficient ranges from ~0.13 to ~0.02, verifying that the two active faults must be weak for their mechanical strength. In addition, the good fitness between the relatively weak segment of faults and the location of strong earthquakes suggests that seismic activity along the two faults could be related to their frictional strength.  相似文献   

10.
流态化运动是高速远程滑坡的主要运动形式,是揭示高速远程滑坡运动机理的重要基础。基于粒子图像测速(PIV)分析方法,采用物理模型试验对不同粒径组成条件下的颗粒流内部的速度分布、剪切变形及流态特征进行了研究,并对高速远程滑坡流态化运动特征进行了讨论分析。结果表明:碎屑流流态化运动特征与颗粒粒径呈显著的相关性,随着粒径的减小或细颗粒含量的增加,颗粒流底部相对于边界的滑动速度以及整体的运动速度均呈逐渐减小的趋势,颗粒流内部剪切变形程度增加,颗粒的运动形式由“滑动”向“流动”转变;当颗粒粒径较小或细颗粒含量较高时,颗粒流内部剪切速率增大的趋势在颗粒流底部更加显著,反映了粒径减小有助于促进颗粒流内部剪切向底部的集中;在同一颗粒流的不同运动阶段及不同纵向深度,其流态特征具有显著差别,颗粒流前缘及尾部主要呈惯性态,颗粒间以碰撞作用为主,而主体部分则主要呈密集态,颗粒间以摩擦接触作用为主;在颗粒流表面及底部,颗粒间相互作用方式主要是碰撞作用,中间部分则以摩擦作用为主;对于不同粒径的颗粒流,随着粒径的增大或粗颗粒含量的增加,颗粒流内部颗粒的碰撞作用加强,颗粒流整体趋于向惯性态转变。  相似文献   

11.
Finite element modelling of frictional instability between deformable rocks   总被引:1,自引:0,他引:1  
Earthquakes are recognized as resulting from a stick–slip frictional instability along faults. Based on the node‐to‐point contact element strategy (an arbitrarily shaped contact element strategy applied with the static‐explicit algorithm for modelling non‐linear frictional contact problems proposed by authors), a finite element code for modelling the 3‐D non‐linear friction contact between deformable bodies has been developed and extended here to analyse the non‐linear stick–slip frictional instability between deformable rocks with a rate‐ and state‐dependent friction law. A typical fault bend model is taken as an application example to be analysed here. The variations of the normal contact force, the frictional force, the transition of stick–slip instable state and the related relative slip velocity along the fault between the deformable rocks and the stress evolution in the total bodies during the different stages are investigated, respectively. The calculated results demonstrate the usefulness of this code for simulating the non‐linear frictional instability between deformable rocks. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
A rock avalanche is a geological event that is always sudden, rapid and with a long run-out, and can result in large loss of lives and property. The Wenjiagou rock avalanche was a high-speed rock landslide caused by a strong earthquake, in Mianzhu, Sichuan Province, southwest China. In this study, we reproduce the movement and deposition processes of the sliding mass by numerical simulation. We analyze the effects of the friction coefficient of each slip surface and the strength of the parallel bonds and contact stiffness between particles on the dynamic process and deposit features using three-dimensional particle flow code (PFC3D). The simulation results agree with the field measurements when the friction coefficient is 0.2, parallel bond strength is 2 MPa, and contact stiffness is 2?×?108 kN/m. The landslide lasted about 115 s from the initial movement to the final deposition at the exit of the valley. The maximum velocity of the sliding mass was 114 m/s.  相似文献   

13.
为了更清晰直观地了解高应力下硬岩破坏(岩爆、片帮、应力型塌方等)孕育过程中岩石破裂演化过程,根据岩石破裂面的特点,依据微震监测数据的矩张量结果,推导并得到了岩体破裂面空间方位计算方法,在此基础上给出了根据运动夹角? 来判断岩石破裂类型的确定方法。借助此方法,在实例研究中进一步证明了深埋隧洞矩张量分解判断破裂类型分析方法的可靠性。依托锦屏二级水电站深埋引水隧洞这一典型工程,依据破裂面的方位角、倾角特征和岩爆宏观破坏情况,初步探究了即时性应变-结构面滑移型岩爆的孕育过程:在岩爆孕育初期,以张拉破裂为主,由于硬性结构面的存在,在开挖扰动应力调整初期,破裂面由岩体浅层往岩体较深层硬性结构面扩展,张拉破裂面尖端接近硬性结构面时,硬性结构面上发生剪切滑移,若较深层岩体内部还有其他硬性结构面存在,则在该硬性结构面尖端,除随着岩体浅层切向应力的持续增大,往开挖面扩展外,继续以张拉破裂面型式往深层扩展,至较深层硬性结构面上剪切破裂产生,最终以剪切滑移面为破坏面边界往开挖面发展,并最终将岩体抛掷而出。  相似文献   

14.
To investigate the physical processes operating in active fault zones, we conduct analogue laboratory experiments where we track the morphological and mechanical evolution of an interface during slip. Our laboratory friction experiments consist of a halite (NaCl) slider held under constant normal load that is dragged across a coarse sandpaper substrate. This set-up is a surrogate for a fault surface, where brittle and plastic deformation mechanisms operate simultaneously during sliding. Surface morphology evolution, frictional resistance and infra-red emission are recorded with cumulative slip. After experiments, we characterize the roughness developed on slid surfaces, to nanometer resolution, using white light interferometry. We directly observe the formation of deformation features, such as slip parallel linear striations, as well as deformation products or gouge. The striations are often associated with marginal ridges of positive relief suggesting sideways transport of gouge products in the plane of the slip surface in a snow-plough-like fashion. Deeper striations are commonly bounded by triangular brittle fractures that fragment the salt surface and efficiently generate a breccia or gouge. Experiments with an abundance of gouge at the sliding interface have reduced shear resistance compared to bare surfaces and we show that friction is reduced with cumulative slip as gouge accumulates from initially bare surfaces. The relative importance of these deformation mechanisms may influence gouge production rate, fault surface roughness evolution, as well as mechanical behavior. Finally, our experimental results are linked to Nature by comparing the experimental surfaces to an actual fault surface, whose striated morphology has been characterized to centimeter resolution using a laser scanner. It is observed that both the stress field and the energy dissipation are heterogeneous at all scales during the maturation of the interface with cumulative slip. Importantly, we show that the formation of striations on fault planes by mechanical abrasion involves transport of gouge products in the fault plane not only along the slip direction, but also perpendicular to it.  相似文献   

15.
Rock discontinuities play a crucial and critical role on the deformational and failure behavior of the rock mass. In most investigations, both the surfaces of the rock joints are considered to have same roughness. But, in nature, the walls of a fresh joint is only expected to be complimentary and to have same roughness. Weathered and water percolating rock joint is most likely to develop different surface roughness on the two opposite walls. So, the shear strength and frictional response behavior derived from the single joint roughness coefficient (JRC) assumption cannot be used in such a condition. To address this shortcoming, we have prepared sandstone blocks with different surface roughness and conducted experiments in a tribometer. The static friction, shear stiffness and coefficient-of-friction of the joint surfaces were calculated and their changes with increasing normal load were noted. One of the major findings of this paper is that, shear strength of the joints may not have a direct correlation with the increasing JRC value of the individual joint walls. Hence, some of the joint walls having higher cumulative JRCs were found to show lower shear strength than those with lowers roughness. This is because, the opposing walls of such joints are not anymore complementary and the frictional resistance is completely controlled by the height and contact area of the asperites.  相似文献   

16.
基于离散元的强度折减法分析岩质边坡稳定性   总被引:26,自引:0,他引:26  
雷远见  王水林 《岩土力学》2006,27(10):1693-1698
将通用离散元UDEC与强度折减法结合,对含多结构面的岩质边坡的稳定性进行了分析。通过对节理岩质边坡的UDEC模型中的可变形块体和节理单元的强度参数进行折减,使模型不能再达到平衡状态,此时的折减系数就是边坡的安全系数,另外,由对应的边坡块体的速度矢量可以确定滑动面和边坡的破坏形态。通过与传统的条分法的结果比较,表明基于UDEC的强度折减法是一种可靠、有效的方法,为复杂节理岩质边坡的滑动面确定与安全系数计算开辟了新的途径。  相似文献   

17.
The paper deals with constitutive modelling of contiguous rock located between rock joints. A fully explicit kinematically constrained microplane‐type constitutive model for hardening and softening non‐linear triaxial behaviour of isotropic porous rock is developed. The microplane framework, in which the constitutive relation is expressed in terms of stress and strain vectors rather than tensors, makes it possible to model various microstructural physical mechanisms associated with oriented internal surfaces, such as cracking, slip, friction and splitting of a particular orientation. Formulation of the constitutive relation is facilitated by the fact that it is decoupled from the tensorial invariance restrictions, which are satisfied automatically. In its basic features, the present model is similar to the recently developed microplane model M4 for concrete, but there are significant improvements and modifications. They include a realistic simulation of (1) the effects of pore collapse on the volume changes during triaxial loading and on the reduction of frictional strength, (2) recovery of frictional strength during shearing, and (3) the shear‐enhanced compaction in triaxial tests, manifested by a deviation from the hydrostatic stress–strain curve. The model is calibrated by optimal fitting of extensive triaxial test data for Salem limestone, and good fits are demonstrated. Although these data do not cover the entire range of behaviour, credence in broad capabilities of the model is lend by its similarity to model M4 for concrete—an artificial rock. The model is intended for large explicit finite‐element programs. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
基于岩石摩擦滑动变形场的非均匀特征,开展了岩石蠕滑和黏滑两种形式的摩擦滑动规律研究。采用双面摩擦模型试验方法,以数字散斑相关方法作为观测手段,分别研究了岩石蠕滑和黏滑变形过程中围岩位移场等值线、变形场非均匀统计指标、变形能密度与滑动面滑动速度演化及规律。结果表明:围岩位移场等值线分布能较好地反映滑动面阻滑特征,其中强阻滑区域的位移等值线呈弧状且分布较稀疏,弱阻滑区域的位移场等值线呈平行状且分布较密集;岩石蠕滑过程中,非均匀统计指标呈现波动增长特征,岩石黏滑过程中,非均匀统计指标呈现出突变跳跃特征。岩石蠕滑过程中不同区域的滑动速度均呈加速与减速滑动的交替状态,滑动面上各点滑动趋势不同;岩石黏滑过程中不同区域的滑动速度均出现突变。岩石蠕滑过程中不同区域上的变形能密度均处于积累与释放的波动状态,岩石黏滑过程中不同区域变形能密度产生突变。  相似文献   

19.
为了克服现有数值计算方法在计算复杂断裂面接触滑移过程中效率低的问题,通过吸收边界元的建模思想,提出了新的数值计算方法。在该算法中,所有网格均位于岩块的边界,利用显示差分方法计算得到岩块之间的相互作用力以及岩块的位移量。利用“小球在抛物面上滑移”、“哑铃在不同倾角的斜面上”两个模拟试验对文中的算法进行验证,同时利用文中算法与有限元算法对直剪试验进行模拟。结果表明:算法能够准确描述物体之间的相互接触,准确计算得到接触块体之间的法向位移。算法能够准确判断出接触物体的“滑移状态”和“稳定状态”,摩擦力的数值计算结果与解析解的误差小于10?10。在计算断裂面接触和剪应力变化规律时,算法与有限元算法的计算结果一致,但文中计算方法的效率显著提高。  相似文献   

20.
We use three‐dimensional mechanical modelling with fault as Coulomb‐type frictional surface to explore the active deformation of the Xianshuihe–Xiaojiang fault system in south‐eastern Tibet. Crustal rheology is simplified as an elastoplastic upper crust and a viscoelastic lower crust. Far‐field GPS velocities and Quaternary fault slip rates are used to constrain the model results. Numerical experiments show that effective fault friction lower than ∼0.1–0.08 leads to a high slip rate that fits well with geological estimates of the slip rate on the fault system. Associating with the modelled fault slip rate, strain in the surrounding crust distributes broadly, and is partitioned into strike–slip and thrust senses. This means that in the Indian‐Eurasia convergence, accommodation of the large fraction of sinistral motion on the fault system is achieved mainly due to its lower fault friction. This in turn affects crustal deformation around the south‐eastern Tibetan margin, resulting in negligible compression across the Longmen Shan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号