首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We analyze the effect of reflector curvature on the angular dependence of reflection amplitude using ray theory. Defining the curvature effect, CE, as the ratio of reflected amplitude from a curved boundary to that from a flat boundary at the same depth, we obtain 1/CE 2=(1+Z/a xcos2)(1+Z/a y), where is the angle of incidence,Z the depth of the boundary, anda x anda y are the principal radii of curvature of the reflector in the plane, of incidence and in the perpendicular plane, respectively. At =0 this reduces to the formula given byHilterman (1975). The angular dependence ofCE involves onlya x, which appears to shorten at wider angles. This causes an augmentation of the dimming effect of an anticlinal geometry at far offsets. For synclinal structures, the amplitude increases with offset when |Z/ax|<1 and decreases with offset when |Z/ax|<1.In addition we examine the effects of wavefront curvature and of a layered overburden in modulating the curvature effect. We find that there is a significant difference in the curvature effect between plane waves and spherical waves impacting on a curved boundary. In addition results are given showing simple examples of the effect of layered overburden in distorting the curvature effect of a horizontal, but curved, reflector and, more interestingly, of a dipping, but planar, bed. These results strongly suggest that we still have but a rudimentary knowledge, in general, of the combined effects of wavefront curvature, reflector curvature and overburden layering in modulating and/or producing amplitude with offset behavior observed on seismic records.  相似文献   

2.
The Drude law (molecular refraction) for the temperature radiation in a monoatomic model of the Earth's mantle is derived. The considerations are based on the Lorentz electron theory of solids. The characteristic frequency (or eigenfrequency) of independent electron oscillators (in energy units, ) is identified with the band gapE G of a solid. The only assumption is that solid material related to the Earth's mantle has the mean atomic weight A21 g/mole, and its energy gap (E G) is about 9 eV. In this case the value of molecular refraction (in cm3/g) is (n 2–1)/=0.5160.52, where andn are the density and the refractive index at wavelength D=0.5893 m (sodium light), respectively. The average molecular refraction of important silicate and oxide minerals with A21, obtained byAnderson andSchreiber (1965) from laboratory data, is , where denotes the mean arithmetic value calculated from three principal refractive indices of crystal. For the rock-forming minerals with 19A<24 g/mole the new relation was found byAnderson (1975).  相似文献   

3.
Summary Measuring, with the aid of two filters, the instantaneous intensity of the solar radiation in two wave lengths ( B = 0.44 , R = 0.64 ) by means of a sun photometer designed byVolz, we carried out determinations of the decadic turbidity coefficientB (=0.5 ) and the wave length exponent of the haze extinction for Mexico City. Observations were made for almost two and a half years (1960 to 1962 period). A seasonal size distribution in both parameters was found. Although the data thus obtained are provenient of a contaminated atmosphere, comparison of our data is made with those found for higher latitudes ofÅngström, Schüepp andVolz. The height of the homogeneous haze layerH D was calculated showing pronounced variations for a given wind direction. The maximum and minimum values ofB enable us to get, by the first approximation, the aerosol size distribution ofJunge for our latitudes. However, for exceptional very clear days having maximum actinometric intensity of the solar radiation the sensitivity of the microamperimeter in theVolz sun photometer fails.  相似文献   

4.
Strong motion (SM) data of six Mexican subduction zone earthquakes (6.4M S8.1) recorded near the epicentral zone are analyzed to estimate their far-field source acceleration spectra at higher frequencies (f0.3 Hz). Apart from the usual corrections such as geometrical spreading (1/R), average radiation pattern (0.6), free surface amplification (a factor of 2), and equal partitioning of the energy into two orthogonal horizontal components (a factor of 1/ ), the observed spectra are corrected for a frequency dependentQ(Q=100f), a site dependent filter (e kf ), and amplification ofS waves near the surface (a factor of about 2 atf2Hz). We takeR as the average distance from the rupture area to the site. If we model the high frequency plateau (f1 Hz) of the source spectra, by a point source –2-model, and interpret them in terms of Brune's model we obtain between 50 and 100 bars for all earthquakes. The low-frequency broadband teleseismicP wave spectra, corrected witht *=1.0 s, agrees within a factor of two with SM source spectra near 1 Hz. The –2-model is inadequate to explain the observed source spectra in a broad frequency range; these resemble spectra given byGusev (1983) with some differences.SM source acceleration spectra require significant corrections to explain observed spectra and RMS acceleration (arms) (a) at farther coastal sites for extended sources due to directivity effect and (b) at inland sites (100R200 km) because of unaccounted path and site amplification and/or invalidity of body-wave approximation. The observed spectra and arms at these sites are significantly greater than the predicted values from the estimated source spectra.  相似文献   

5.
Summary Approximate expressions for the Hilbert transform of the functionf(t)=exp(- 0 2 t 2/2) cos( 0 t+v) are determined. This function, given a suitable choice of the three parameters 0, and v, approximates a wide class of seismic signals very well. The approximate expressions for the Hilbert transform enable very simple formulae to be given for the elementary seismograms of the individual seismic body waves (in the zero approximation of the ray theory). This accelerates the computation of ray theoretical seismograms considerably.  相似文献   

6.
Summary In this work the previous author's results concerning the geomagnetic effect of the interplanetary parameters in dependence on geomagnetic latitude are verified, complemented and presented with better accuracy. Data of 7 intensive storms recorded in 1973–79 at 5 observatories with slight differences in local time and with the appropriate latitude distribution limited by real possibilities have been analysed. Even in these cases the derived values of the constants determining the dependence of storm-time variations of the geomagnetic field upon both the dynamic pressure of the solar wind(P) and the interplanetary electric field(Ey) vary relatively regularly with geomagnetic latitude. The anomaly of Dst and DR-variations from the Almeria Observatory (AE) evident in some intensive storms is pointed out here. Unlike the previous work the time characteristics () of the ring current decay have been studied from the standpoint of the main (m) and recovery (r) phases of the storm. This yields higher values of r as compared to from the above mentioned work. On the other hand, a large decrease in the values of r was observed in some cases at a latitude of about 40°, as in the earlier study. Actually this phenomenon does not occur in all intensive storms as could be expected. As to the investigated storms, m seems to be independent of geomagnetic latitude and much lower in its magnitude than r.  相似文献   

7.
Résumé On commence par définir le creusement et le comblement d'une fonctionp(, t) du tempst et des points (, ) d'une surface régulière fermée en se donnant, sur cette surface, un vecteur vitesse d'advection ou de transfert tangent à . Le creusement (ou le comblement) est la variation dep sur les particules fictives se déplaçant constamment et partout à la vitesse , A chaque vecteur et pour un mêmep(, ,t) correspond naturellement une fonction creusementC (, ,t) admissible a priori; mais une condition analytique très générale (l'intégrale du creusement sur toute la surface fermée du champ est nulle à chaque instant), à laquelle satisfont les fonctions de perturbation sur les surfaces géopotentielles, permet de restreindre beaucoup la généralité des vecteurs d'advection admissibles a priori et conduit à des vecteurs de la forme: , oùT est un scalaire régulier, () une fonction régulière de la latitude , le vecteur unitaire des verticales ascendantes etR/2 une constante. Ces vecteurs sont donc une généralisation naturelle des vitesses géostrophiques attachées à tout scalaire régulier. Dans le cas oùp(, ,t) est la perturbation de la pression sur la surface du géoïde, le vecteur d'advection par rapport auquel on doit définir le creusement est précisément une vitesse géostrophique: on a alors ()=sin etT un certain champ bien défini de température moyenne.On déduit ensuite une formule générale de géométrie et de cinématique différentielles reliant la vitesse de déplacement d'un centre ou d'un col d'un champp(, ,t) à son champ de creusementC (, ,t) et au vecteur d'advection correspondant. Cette formule peut être transformée et prend la forme d'une relation générale entre le creusement (ou le comblement) d'un centre ou d'un col et la vitesse de son déplacement, sans que le vecteur d'advection intervienne explicitement. On analyse alors les conséquences de ces formules dans les cas suivants: 1o) perturbations circulaires dans le voisinage du centre; 2o) perturbations ayant, dans le voisinage du centre, un axe de symétrie normal ou tangent à la vitesse du centre; 3o) évolution normale des cyclones tropicaux.Finalement, on examine les relations qui existent entre le creusement ou le comblement d'un champ, le vecteur d'advection et la configuration des iso-lignes du champ dans le voisinage d'un centre.Ces considérations permettent d'expliquer plusieurs propriétés bien connues du comportement des perturbations dans différentes régions.
Summary The deepening and filling (development) of a functionp(, ,t) of the timet and the points (, ) of a regular closed surface is first of all defined, in respect to a given advection or transfer velocity field tangent to , as the variation ofp on any fictitious particle moving constantly and everywhere with the velocity . For a givenp(, ,t) and to any there corresponds a well defined development fieldC (, ,t). All theseC fields are a priori admissible, but a very general analytical condition of the perturbation fields in synoptic meteorology (the integral of the development fieldC (, ,t) on any geopotential surface vanishes at any moment), leads to an important restriction to advection vectors of the form: , whereT is any regular scalar, () any regular function of latitude, the unit vector of the ascending verticals andR/2 a constant. These vectors are a natural generalisation of the geostrophic velocities attached to any regular scalar. Whenp(, ,t) is the pressure perturbation at sea level, its development must be defined in respect to a geostrophic advection vector belonging to the above defined class of vectors with ()=sin andT a well defined mean temperature field.A general formula of the differential geometry and kinematics ofp(, ,t) is then derived, giving the velocity of any centre and col of ap(, ,t) as a function of the advection vector and the corresponding development fieldC (, ,t). This formula can be transformed and takes the form of a general relation between the deepening (and filling) of a centre (or a col) of ap(, ,t) and its displament velocity, the advection vector appearing no more explicitly. A detailed analysis of the consequences of these formulae is then given for the following cases: 1o) circular perturbations in the vicinity of a centre; 2o) perturbations having, in the vicinity of a centre, an axis of symmetry normal or tangent to the velocity of the centre; 3o) normal evolution of the tropical cyclones.Finally, the relations between the developmentC (, ,t) of a fieldp(, ,t), the advection velocity vector and the configuration of the iso-lines in the vicinity of a centre are analysed.These theoretical results give a rational explanation of several well known properties of the behaviour of the perturbations in different geographical regions.


Communication à la 2ème Assemblée de la «Società Italiana di Geofisica e Meteorologia» (Gênes, 23–25 Avril 1954).  相似文献   

8.
Summary The relationship between the phonon conductivity at room temperature (K N ) and the seismic parameter () for silicate minerals is suggested. The considerations are based on the Debye model of thermal energy transport phenomena in solids and on the seismic equation of state for silicates and oxides given byAnderson (1967). The semiempirical relationship is the formK N = 0.430.82 where is in km2/s2 andK N in mcal/cm s K, and the empirical relationship isK N =(0.528±0.006) –(8.18±2.11). The laboratory data on thermal and elastic properties for several silicates were taken fromHorai andSimmons (1970).  相似文献   

9.
Fundamental-mode Rayleigh wave attenuation data for stable and tectonically active regions of North America, South America, and India are inverted to obtain several frequency-independent and frequency-dependentQ models. Because of trade-offs between the effect of depth distribution and frequency-dependence ofQ on surface wave attenuation there are many diverse models which will satisfy the fundamental-mode data. Higher-mode data, such as 1-Hz Lg can, however, constrain the range of possible models, at least in the upper crust. By using synthetic Lg seismograms to compute expected Lg attenuation coefficients for various models we obtained frequency-dependentQ models for three stable and three tectonically active regions, after making assumptions concerning the nature of the variation ofQ with frequency.In stable regions, ifQ varies as , where is a constant, models in which =0.5, 0.5, and 0.75 satisfy fundamental-mode Rayleigh and 1-Hz Lg data for eastern North America, eastern South America, and the Indian Shield, respectively. IfQ is assumed to be independent of frequency (=0.0) for periods of 3 s and greater, and is allowed to increase from 0.0 at 3 s to a maximum value at 1 s, then that maximum value for is about 0.7, 0.6, and 0.9, respectively, for eastern North America, eastern South America, and the Indian Shield. TheQ models obtained under each of the above-mentioned two assumptions differ substantially from one another for each region, a result which indicates the importance of obtaining high-quality higher-mode attenuation data over a broad range of periods.Tectonically active regions require a much lower degree of frequency dependence to explain both observed fundamental-mode and observed Lg data. Optimum values of for western North America and western South America are 0.0 if is constant (Q is independent of frequency), but uncertainty in the Lg attenuation data allows to be as high as about 0.3 for western North America and 0.2 for western South America. In the Himalaya, the optimum value of is about 0.2, but it could range between 0.0 and 0.5. Frequency-independent models (=0.0) for these regions yield minimumQ values in the upper mantle of about 40, 70, and 40 for western North America, western South America, and the Himalaya, respectively.In order to be compatible with the frequency dependence ofQ observed in body-wave studies,Q in stable regions must be frequency-dependent to much greater depths than those which can be studied using the surface wave data available for this study, andQ in tectonically active regions must become frequency-dependent at upper mantle or lower crustal depths.On leave from the Department of Geophysics, Yunnan University, Kunming Yunnan, People's Republic of China  相似文献   

10.
Summary Utilising two years data collected at two tropical coastal stations, Madras (13°04N, 80°15E) and Waltair (17°42N, 83°18E) and for one tropical continental station, Nagpur (21°09N, 79°07E), the authors have re-evaluated the constants ofBrunt's regression equation. Analyses of the observations for Waltair and Nagpur show good correlation coefficients (r) between the values of the effective emissivity of the atmosphere (the effective emissivity is the ratio of incoming long-wave sky radiation at the surfaceR s , to black body radiation T 4) and the square root values of surface vapour pressuree (mb). The value ofr for Waltair from radiometer observations is 0.98. It is also determined for Waltair and Nagpur from Ångström compensation pyrgeometer observations as 0.83 and 0.91 respectively. A low correlation co-efficient 0.56 is obtained for Madras. It might be due to higher surface vapour pressure values at Madras than at Waltair and Nagpur. The applicability of the reduced regression equations are examined for different years for the different stations. The agreement between the computed values with the new regression equations and the observed long-wave sky radiation at the surface seems to be quite good.  相似文献   

11.
Summary Upgoing and downgoing deuteron whistlers were found on VLF records made by Interkosmos 5, 14 and 19 satellites even at heights below 1000 km. To account for them, a slight admixture ofD + ions has been introduced into the ionospheric plasma model with the usual content of only three ion speciesH +,He + andO +. Relations derived for the calculation of characteristic frequencies in a five-component plasma (e,H +,D +,He +,O +) are given as well as the values of characteristic frequencies calculated on this basis. The observed features of upgoing and downgoing deuteron whistlers could be explained by the calculation results, and it is also possible to formulate some conclusions for the purposes of plasma diagnostics.
mu um, anmau a ma u u, u a a nmua m 5, 14 u 19 a ma ¶rt;a 1000 . u u a ¶rt;a ¶rt; u na ¶rt;au uH +,He +,O + aa nuD + u. m mm ua nma ¶rt;a ¶rt; aamumuu amm ¶rt;a ¶rt;u na. uu aamumuu amm nuu um a¶rt;a mu ¶rt;mu um. a m ¶rt; unam aamumuu ¶rt;mu um ¶rt; u¶rt;au naam na.
  相似文献   

12.
Summary An attempt is made to show possible ways of predicting radio wave absorption in the midlatitude lower ionosphere using relations between absorption and the intensity of solar ionizing radiation and/or common solar activity indices, and between absorption and f0F2.
aa mu nuau nu a¶rt;u ¶rt;um u u a mu ¶rt; nu u umum uuu uu (uu uu u¶rt;au amumu) u ¶rt; nu u f0F2.
  相似文献   

13.
We present some results of the analytical integration of the energy rate balance equation, assuming that the input energy rate is proportional to the azimuthal interplanetary electric field, Ey, and can be described by simple rectangular or triangular functions, as approximations to the frequently observed shapes of Ey, especially during the passage of magnetic clouds. The input function is also parametrized by a reconnection-transfer efficiency factor (which is assumed to vary between 0.1 and 1). Our aim is to solve the balance equation and derive values for the decay parameter compatible with the observed Dst peak values. To facilitate the analytical integration we assume a constant value for through the main phase of the storm. The model is tested for two isolated and well-monitored intense storms. For these storms the analytical results are compared to those obtained by the numerical integration of the balance equation, based on the interplanetary data collected by the ISEE-3 satellite, with the values parametrized close to those obtained by the analytical study. From the best fit between this numerical integration and the observed Dst the most appropriate values of are then determined. Although we specifically focus on the main phase of the storms, this numerical integration has been also extended to the recovery phase by an independent adjust. The results of the best fit for the recovery phase show that the values of may differ drastically from those corresponding to the main phase. The values of the decay parameter for the main phase of each event, m, are found to be very sensitive to the adopted efficiency factor, , decreasing as this factor increases. For the recovery phase, which is characterized by very low values of the power input, the response function becomes almost independent of the value of and the resulting values for the decay time parameter, r, do not vary greatly as varies. As a consequence, the relative values of between the main and the recovery phase, m/r, can be greater or smaller than one as varies from 0.1 to 1.  相似文献   

14.
u¶rt;m mam uu u nu a¶rt;u m¶rt;3 (a na¶rt;u) a amm 1539 a amuu aa a nu¶rt; am 1978 — am 1981. u m nuau nu mma. a¶rt;am u¶rt;aa ma (a aumu) u a auau nu, u u aauu u an u u. numa u am au nu ¶rt; =60° na¶rt;am. au naa, m nu u um a a ¶rt;a ¶rt;m a nu¶rt;, nu a m n u nua nu mma am 1980.  相似文献   

15.
Summary The theory of methods of computing single- and inter-station transfer functions in both the spectral and time domains was developed in paper[1]. Both approaches are applied to the variation data recorded at field stations along two non-simultaneous profiles traversing the eastern margin of the Bohemian Massif, where a zone of anomalous induction seems to mark an important geological boundary of formations with different histories of development. The results of both analyses are found to coincide within reasonable bounds of 20–30% in the principal induction characteristics.
u m¶rt; ama ¶rt;-u -mau n¶rt;am u nma u am a ua am[1]. am nua m am a n¶rt;¶rt;a nu ¶rt; aaua ¶rt;aaum auau aumua a n mau ¶rt; u nu, nau m au aua,¶rt; aa a aa u¶rt;uu. a, u¶rt;u, mamau a¶rt;a ¶rt; ¶rt; ¶rt;uuau au umuu aumu. mam aau nma u am auam a 20–30% ¶rt; u¶rt;u naam.
  相似文献   

16.
Zusammenfassung Die Gleichgewichtsfiguren lassen sich gänzlich unabhängig vom Dichtegesetz durch die Eingeschaft charakterisieren, daß der Absolutbetrag des Formparametersf0 ein Minimum sein muß. Diese merkwürdige Eigenschaft liefert eine Gleichung zwischen der geometrischen Abplattung und den beidenStokesschen Konstanten und , mit deren Hilfe aus den 4 Lösungen desHelmertschen Gleichungssystems für eine bestimmte Masse die 3 Gleichgewichtsfiguren ausgesiebt werden können. Jede beliebige heterogene sphäroidische Gleichgewichtsfigur ist entweder durch die Masse und die Gestalt ihrer freien Oberfläche oder durch die Masse und drei physikalische Parameter gänzlich eindeurig bestimmt; sie hat ein streng individuelles Dichtegesttz. Aus der dreifach unendlichen Mannigfaltigkeit der Gleichgewichtsfiguren können linear Reihen herausgegriffen werden, indem man entweder zwei physikalische Parameter festhält oder indem man die Figuren aufsucht, welche eine gegebene Fläche zur gemeinsamen äußeren Niveaufläche besitzen oder die Reihe jener Gleichgewichtsfiguren, die sich aus der Schar der äußeren Niveauflähen einer gegebenen Gleichgewichtsfigur bilden läßt.Obwohl das HauptträgheitsmomentC keineStockessche Konstante ist, kann das durch ,W 0 undC eindeutig definierte Normalsphäroid der Erde hypothesenfrei bestimmt werden, weil in der Reihe (,K) auch die Trägheitsmomente und damit die dynamische Abplattung konstant ist. Damit kann die empirisch bekannte dynamische Abplattung mittels des Rückganges auf die homogene Ausgangsfigur der Reihe (,K) durch die statische Abplattung ersetzt werden. Allerdings muß der Ableitung des Normalsphäroides an Stelle der primär unbekannten Werte für die Erdmasse und den Potentialwert des Geoides die Äquatorschwere und die Äquatorachse zugrunde gelegt werden.Abschließend werden noch die drei linearen Reihen (,W 0), (,K) und (W 0,K) diskutiert, welche sich im Normalsphäroid schneiden müssen. Auch kann in dem mit den Achsena, undh m gebildeten Koordinatensystem die Hüllfläche der Gleichgewichtsfiguren angegeben werden; sie ist durch den Formparameterf=–3a2/2 gekennzeichnet.
Summary The figures of equilibrium independant from the law of density in their interior can be characterized by the remarkable property that the absolute value of the «shape-parameter» must be a minimum. This gives an equation between the flattening and the twoStokes constant and , by which the 3 figures of equilibrium can be selected from the 4 solutions ofHelmert's equations for a given mass. Each inhomogeneous spheroidical figure of equilibrium is determined unequivocally by the mass and the shape of its free surface or by the mass and three physical parameters; the law of density is strictly individual. From the threefold infinite multiplicity of the figures of equilibrium linear series are to find out with two fixed physical parameters or you can compute a series of figures with a common level surface or the series built by all level surface of a given figure of equilibrium.Though the moments of inertia are notStokes constants the normal spheroid of earth unequivocally defined by ,W 0 andC can be determined without hypotheses, because in the series (,K) also the moments of inertia and the mechanical ellipticity are constant. Therefore the empirically known mechanical ellipticity can be substituted by the static flattening returning to the homogenous figure in the beginning of the series. Of course the determination of the normal spheroid of earth demands the knowledge of gravity in equator and of the equator-axis instead of the unknown mass of earch series (,W 0), (,K) and (K,W 0), which intersect in the normal spheroid, are discussed. Also the boundary surface of the figures of equilibrium in the Cartesian system of the coordinatesa, andh m is discussed; this surface is determined byf=–3a2/2.
  相似文献   

17.
A Markov chain{X t }, which has been useful for modelling in hydrology, can be specified by the Laplace transform (LT) of the conditional p.d.f. ofX t+1 givenX t =x t , which is assumed to be of the exponential formH()exp{-G()x t }. For appropriate choice ofH andG the marginal distribution ofX t is the (univariate) gamma distribution. In this case, the joint p.d.f. ofX t +1,...,X t+n and its LT, are obtained, and this is extended to a seasonal version of the chain. A simple method of generating observations from these multivariate gamma distributions is noted, and the joint LT is applied to the problem of determining moments of weighted sums of such variables.  相似文献   

18.
Summary This paper is an attempt towards determination of station adjustments for Shillong and Delly Observatories from considerations of a large number ofP n residuals. Station adjustments toJeffreys-Bullen travel time tables for Shillong comes to about 4 seconds and for Delhi 2 seconds respectively for 20°.  相似文献   

19.
We discuss an explicit solution of the Cauchy problem for induction equation and suggest its generalization for equations of 2-dynamo. These solutions are based on concepts of multiplicative, Wiener path, and stochastic integrals. Obtained explicit solution can be useful as a tool in investigations of a dynamo with fluctuating helicity.  相似文献   

20.
¶rt;aam ¶rt;a m¶rt;a amu uaa, u u , u auam u ma mum nuu ¶rt; uau aumma. u n u ama u ma n¶rt; ma m¶rt;a nm a umam u naa u ¶rt; nuu. mm m¶rt; n au auu u aau n¶rt;mam a au nm aum nu m unu a a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号