首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regional variation of physical and geochemical characteristics of Central American volcanoes occurs in two fundamentally different patterns. The first pattern is symmetrical about Nicaragua. Crustal thickness, silica contents of mafic lavas and volcanic edifice heights are lowest in Nicaragua and increase smoothly toward Costa Rica to the south and Guatemala to the north. Magma density is maximum in Nicaragua and decreases smoothly outward. The regional variation in crustal thickness is just enough so that magma densities, calculated at appropriate Moho pressures, are the same at the base of the crust throughout the region. This is consistent with magma ponding at the base of the crust. The bulk compositions of Central American basalts show the same symmetrical variation. Suites of Nicaraguan basalts plotted in pseudo-ternary CMAS projections indicate large olivine and plagioclase primary-phase volumes. Toward Costa Rica and Guatemala the olivine and plagioclase fields inferred from suites of basaltic lavas are smaller, which is consistent with fractionation at increasing depth.The second pattern is the segmentation of the volcanic front and the plate margin in general. The segmentation strongly affects the spacing and size of volcanic centers. At segment boundaries volcanic centers are generally small and unusually widely spaced. Toward segment interiors volcano spacing and size increase systematically. The LIL element contents of lavas strongly reflect this pattern. For lavas with similar silica contents the larger the volcano, the higher the LIL element contents. The relationships between segmentation, volcano spacing and volcano size are compatible with diapiric rise of magma accumulated in narrow ribbons near the upper surface of the underthrust slab. The relationship between volcano volume and LIL element content is qualitatively in agreement with an open-system fractionation model.  相似文献   

2.
Mount Drum is one of the youngest volcanoes in the subduction-related Wrangell volcanic field (80×200 km) of southcentral Alaska. It lies at the northwest end of a series of large, andesite-dominated shield volcanoes that show a northwesterly progression of age from 26 Ma near the Alaska-Yukon border to about 0.2 Ma at Mount Drum. The volcano was constructed between 750 and 250 ka during at least two cycles of cone building and ring-dome emplacement and was partially destroyed by violent explosive activity probably after 250 ka. Cone lavas range from basaltic andesite to dacite in composition; ring-domes are dacite to rhyolite. The last constructional activity occurred in the vicinity of Snider Peak, on the south flank of the volcano, where extensive dacite flows and a dacite dome erupted at about 250 ka. The climactic explosive eruption, that destroyed the top and a part of the south flank of the volcano, produced more than 7 km3 of proximal hot and cold avalanche deposits and distal mudflows. The Mount Drum rocks have medium-K, calc-alkaline affinities and are generally plagioclase phyric. Silica contents range from 55.8 to 74.0 wt%, with a compositional gap between 66.8 and 72.8 wt%. All the rocks are enriched in alkali elements and depleted in Ta relative to the LREE, typical of volcanic arc rocks, but have higher MgO contents at a given SiO2, than typical orogenic medium-K andesites. Strontium-isotope ratios vary from 0.70292 to 0.70353. The compositional range of Mount Drum lavas is best explained by a combination of diverse parental magmas, magma mixing, and fractionation. The small, but significant, range in 87Sr/86Sr ratios in the basaltic andesites and the wide range of incompatible-element ratios exhibited by the basaltic andesites and andesites suggests the presence of compositionally diverse parent magmas. The lavas show abundant petrographic evidence of magma mixing, such as bimodal phenocryst size, resorbed phenocrysts, reaction rims, and disequilibrium mineral assemblages. In addition, some dacites and andesites contain Mg and Ni-rich olivines and/or have high MgO, Cr, Ni, Co, and Sc contents that are not in equilibrium with the host rock and indicate mixing between basalt or cumulate material and more evolved magmas. Incompatible element variations suggest that fractionation is responsible for some of the compositional range between basaltic andesite and dacite, but the rhyolites have K, Ba, Th, and Rb contents that are too low for the magmas to be generated by fractionation of the intermediate rocks. Limited Sr-isotope data support the possibility that the rhyolites may be partial melts of underlying volcanic rocks. Received March 13, 1993/Accepted September 10, 1993  相似文献   

3.
The Plio-Quaternary volcanic rocks of the south-central Andes (southward from latitude 18°S) contain two associations: calc-alkaline and shoshonitic which coincide with seismic belts as geographically distinct zones aligned parallel to the oceanic trench. There is a continuous gradation from calc-alkaline to shoshonitic associations. The shoshonitic association appears to the north of latitude 26°S; southwards, the calc-alkaline association directly abuts against the continental (Argentinian) alkaline association.Thirty-one lavas from the Plio-Quaternary calc-alkaline Socompa, Lascar, Sairecabur and Tocorpuri and shoshonitic Sierra de Lipez volcanoes were studied. The lavas are porphyric with abundant glass. The distribution and the nature of the phenocrysts vary according to the chemistry of the calc-alkaline lavas. Petrographic evidence for crystal fractionation has been observed. Occasional phenocrysts of alkali feldspars occur in the shoshonitic lavas. The K2O and SiO2 contents increase from calc-alkaline to shoshonitic lavas with distance away from the oceanic trench. In lavas from Socompa, Lascar, Sairecabur and Tocorpuri calc-alkaline volcanoes, K2O, Li and Rb increase and K/Rb and Sr decrease with increasing SiO2; Ba increases with decreasing Sr, probably as a result of plagioclase fractionation. In lavas from Sierra de Lípez shoshonitic volcano, SiO2 is high, K2O is high and rather constant and Li, Rb, Ba and Sr increase with increasing SiO2. Bolivian shoshonitic lavas appear to be genetically related to the calc-alkaline suite.The calc-alkaline lavas may be derived by crystal fractionation from a parental magma of andesitic nature that originated in or above the subjacent Benioff zone.  相似文献   

4.
The Aegean volcanic arc is one of the most important geological structure of the Mediterranean area. It is a belt of volcanic centers consisting of products ranging from basaltic, andesitic, dacitic to rhyolitic in composition, all of them displaying a typical calc-alkaline chemical character. The most abundant rock types are represented by andesites and dacites. Minor amounts of basalts and rhyolites occur mainly in the central-eastern sector of the arc. The REE, Rb, Sr, Ba, Th, Ta, Hf, Zr, Ni, Co, V and Cr abundances determined in 27 representative samples from different centers suggest that: 1) the intermediate and acidic terms are products of crystal/liquid fractionation processes starting from basic parent magmas: 2) large variations in incompatible elements occur in the most basic samples that are interpreted as evidence for heterogeneously LIL element-enriched mantle source; 3) plagioclase played a role in the evolution of the volcanic centers of the eastern and central arc different from that played in the volcanoes of the western sector. Along the arc, the differences in the distribution of lithological types, in the volumes of erupted material, in the volcanological characteristics of the different centers as well as in the patterns of trace element distribution in the volcanites are considered to be connected with the prevailing tectonic regime affecting the various sectors of the arc.  相似文献   

5.
Abstract Volcanism in the back-arc side region of Central Luzon, Philippines, with respect to the Manila Trench is characterized by fewer and smaller volume volcanic centers compared to the adjacent forearc side-main volcanic arc igneous rocks. The back-arc side volcanic rocks which include basalts, basaltic andesites, andesites and dacites also contain more hydrous minerals (ie, hornblende and biotite). Adakite-like geochemical characteristics of these back-arc lavas, including elevated Sr, depleted heavy rare earth elements and high Sr/Y ratios, are unlikely to have formed by slab melting, be related to incipient subduction, slab window magmatism or plagioclase accumulation. Field and geochemical evidence show that these adakitic lavas were most probably formed by the partial melting of a garnet-bearing amphibolitic lower crust. Adakitic lavas are not necessarily arc–trench gap region slab melts.  相似文献   

6.
Three composite cones have grown on the southern edge of the previously existing Atitlán Cauldron, along the active volcanic axis of Guatemala. Lavas exposed on the flanks of these cones are generally calc-alkaline andesites, but their chemical compositions vary widely. Atitlán, the largest and most southerly of the three cones, has recently erupted mainly pyroclastic basaltic andesites, while the flanks of San Pedro and Tolimán are mantled by more silicic lava flows. On Tolimán, 74 different lava units have been mapped, forming the basis for sequential sampling. Rocks of all three cones are consistently higher in K2O, Rb, Ba and REE than other Guatemalan andesites. Atitlán’s rocks and late lavas from Tolimán have high Al2O3 content, compared to similar andesites from other nearby cones. All major and trace element data on the rocks are shown to be consistent with crystal fractionation involving phases observed in the rocks. If such models are correct, significant differences in the relative proportions of fractionation phases are necessary to explain the varied compositions, in particular higher Al2O3 rocks have fractionated less plagioclase. We speculate that inhibition of plagioclase fractionation could occur in chambers where PH2O is greater and when repose intervals are shorter. The distribution of volcanic vents throughout Guatemala which show this postulated «inhibition of plagioclase fractionation» is systematic with such vents lying just to the south of the main axis. The andesites of the three cones cannot be simply related to the late-Pleistocene rhyolites which are apparently associated with cauldron formation, because unlike the andesites, the rhyolites have markedly depleted heavy REE abundances. Recent dacitic lavas from vents south of San Pedro volcano and silicic pyroclastic rocks which mantle the slopes the San Pedro may reflect residual post-cauldron rhyolitic volcanism.  相似文献   

7.
Four closely spaced vents along a fissure make up the Fuego and Acatenango volcanic centers in western Guatemala. The Fuego complex is composed of the Fuego and Meseta vents, but historic activity has consisted exclusively of high-Al2O3 basalts from the Fuego vent. The Meseta vent is inactive and deeply exposed. Prehistoric lavas from Fuego and Meseta are generally more silicic than historic Fuego lavas, but all the rocks form a single coherent geochemical variation pattern. Major element chemistry of these rocks is consistent with plagioclase, olivine, augite, and magnetite (POAM) fractionating from high-Al2O3 basalt. Separate batches of magma can be recognized from trace-element data throughout the history of the Fuego complex. This suggests that closed-system, POAM fractionation of distinct magma bodies occurs at Fuego. Trace-element data requires that deep fractionation of olivine, clinopyroxene, and perhaps magnetite from primary olivine tholeiite occurs before arrival of new magma into the shallow (8–16 km) magma chamber at Fuego. Migration of activity from Meseta to Fuego along the fissure is correlated with the change towards more mafic compositions at Fuego. The shift of the vents may have resulted in shorter repose periods and less time for fractionation before eruption. A minimum age of 17,000 years was required to build the Fuego complex.The andesitic rocks from the adjacent, larger composite volcanoes of Acatenango and Agua have higher incompatible element concentrations, different incompatible element ratios, and lower CaO, Na2O, and Al2O3 contents than Fuego's lavas. We believe the magmatic evolution of Acatenango and Agua is much more complex than Fuego.  相似文献   

8.
The Pleistocene-Recent volcanism of this arc extends nearly linearly NNE from northern New Zealand for some 2800 km. Along its western margin lies an active marginal basin (Lau Basin and Havre Trough) which has its southern termination in the Taupo volcanic zone (TVZ, New Zealand). The New Zealand arc segment is developed within a continental crust, whereas the Tonga-Kermadec segments are developed on a ridge system within the oceanic basin. Submarine morphology suggests that the Kermadec volcanoes represent a less advanced stage of evolution relative to those of Tonga.Magmas erupted within the TVZ are dominantly rhyolitic (≈16,000 km3) with subordinate andesites and rare high-alumina tholeiites and dacites. The Kermadec Islands are dominated by tholeiites and basaltic andesites, with subordinate andesites and dacites. The Tongan Islands are dominated by basaltic andesites, with locally developed andesites and dacites. These Tonga-Kermadec lavas are characterised by subcalcic groundmass clinopyroxenes, whereas the younger group of TVZ andesites contain groundmass hypersthene and augite.Geochemically, the TVZ andesites are systematically enriched (relative to those of Tonga-Kermadec) in “incompatible” elements (e.g. K, Rb, Cs, Ba, light REE, U, Th, Zr, Pb), are less Fe-enriched, and contain more radiogenic Sr and Pb (excepting certain 207Pb/204Pb compositions). The evidence points to crustal equilibration of the TVZ andesites prior to eruption.A complete overlap of major and trace element chemistry (including TiO2) is observed between the Kermadec-TVZ tholeiites and basaltic andesites, and the ocean floor tholeiites of the Lau Basin. Compared to the Tongan lavas, those of the Kermadecs exhibit a greater degree of chemical variability, also reflected in the greater heterogeneity in their Pb isotopic compositions. Moreover, many of the Tonga-Kermadec basaltic andesites exhibit more depleted “incompatible” trace element abundances than the Kermadec and TVZ tholeiites.The “primary” magmas of this arc are interpreted to be of basaltic andesite type, derived from Benioff zone melting (essentially anhydrous), but extensively modified by low-pressure crystal fractionation processes. The Kermadec tholeiites are explained as products of relatively shallow upper mantle partial fusion induced during the earlier stages of diapiric rise of Benioff zone-derived magmas, which are sufficiently hot to intersect the peridotite solidus. This should result in the production and intermixing of a series of magmas extending from olivine tholeiite to basaltic andesite composition. The voluminous rhyolites of TVZ are interpreted as the products of crustal fusion involving Mesozoic sediments.  相似文献   

9.
Abstract Nekoma volcano forms part of the arc axis volcanic array of the North-eastern Honshu arc, Japan, which is commonly characterized by medium-K lava suites. However, Nekoma is exceptional because many of its lavas are low-K. This anomaly has been a matter of debate. Nekoma was active from 1.1 to 0.35 Ma. The volcano consists of thick andesite flows and domes associated with block and ash flow deposits produced during lava dome formation. A horseshoe-shaped collapse caldera was formed at the summit and small lava domes extruded into the caldera. Stratigraphy, published K–Ar ages, and tephrochronology define three stages of volcanic activity, about 1.1 Ma (Stage 1), 0.8–0.6 Ma (Stage 2) and 0.45–0.35 Ma (Stage 3; post caldera stage). Low-K andesites occur in all stages. Extremely low-K andesite was also associated in Stage 2 and medium-K andesite was dominant in Stage 3. In general, lavas changed from low-K to medium-K after caldera formation. Geochemical study of the Nekoma lavas shows that both low-K and medium-K lavas are isotopically similar and were derived from a common source. Adatara and Azuma volcanoes, which lie close to Nekoma, also have both low-K and medium-K andesites. However, Sr isotope ratios or temporal-spatial variations in K-level lava classification vary between the three centers. Comparisons of K suites and Sr isotope ratios with frontal arc volcanoes in North-east–Honshu suggest source heterogeneity existed in both medium- and low-K suites. The K contents of lavas and their Sr isotopes are not simply related. This requires re-examination of models for chemical variation of andesites in arcs.  相似文献   

10.
Island arc and continental margin (i.e. western Americas) lavas are divided (based on raw data from literature) into basalts (defined by absence of Ca-poor pyroxene, dominated by quartz-normative tholeiites); basaltic andesites and andesites (subdivided on basis of breaks in SiO2 histogram and taken as <56% and 56–63% SiO2; Ca-poor pyroxene present; amphibole and biotite absent); and hornblende (±biotite) lavas, which prove to be mainly relatively silicic andesites. Relative proportions of these types are (576 samples): 23% basalts, 29% basaltic andesites; 30% andesites; 18% hornblende andesites. The compilation emphasizes the dominance of calcic plagioclase (labradorite-anorthite) amongst the phenocryst phases. Pyroxenes are largely augite and hypersthene (En60–75); olivine (Fo65–85) is common through all compositions. There is an overall close similarity in chemistry and mineralogy between continental margin and island arc lavas, although small consistent differences are apparent (e.g. K2O, TiO2, P2O5).Modal data indicate that 70% of lavas are phenocryst-rich (20–60 vol.%), and that phenocryst contents show a bimodal distribution. Statistically and petrologically significant correlations are found between mineralogy and rock chemistry, most notably between total rock Al2O3 and modal phenocrystic plagioclase (found in all data groups, except hornblende andesites). This, and related data and correlations, indicate that the majority of orogenic magmas are modified by crystal fractionation (including crystal accumulation) processes dominated by plagioclase, and interpreted to occur under relatively low pressures. Dominance of plagioclase suggests phenocryst precipitation occurs typically in water-undersaturated magmas.  相似文献   

11.
Lithium isotope fractionation in the southern Cascadia subduction zone   总被引:2,自引:0,他引:2  
We present lithium (Li) abundances and isotope compositions for a suite of anhydrous olivine tholeiites (HAOTs) and hydrous basalt-andesitic (BA) lavas from the Mt. Shasta and Medicine Lake regions, California. The values of δ7Li vary from + 0.9‰ to + 6.4‰ and correlate inversely with distance from the trench. These data are consistent with continuous isotope fractionation of Li during dehydration of the subducted oceanic lithosphere, an interpretation corroborated by uniformly high pre-eruptive H2O contents in basaltic andesites accompanied by high Li, Rb, Sr, Ba and Pb abundances. The subduction-derived component that was added to these hydrous magmas is shown to be very similar beneath both Mt. Shasta and Medicine Lake volcanoes despite characteristically distinct Li isotope compositions in the magmas themselves. More evolved andesites and dacites from Mt. Shasta have δ7Li from + 2.8 to + 6.9‰ which is identical with the range obtained for HAOTs and BA lavas from Mt. Shasta. Therefore, Li isotopes do not provide evidence for any other crustal component admixed to Mt. Shasta andesites or dacites during magmatic differentiation and magma mixing in the crust.  相似文献   

12.
Barren Island (BI) is a subduction-related volcanic island lying in the northeastern Indian Ocean, about 750 km north of the northern tip of Sumatra. Rising from a depth of ∼2300 m on the Andaman Sea floor, BI has a submarine volume estimated at ∼400 km3, but the island is just 3 km across, reaches a maximum elevation of 355 m, and has a subaerial volume of only ∼1.3 km3. The first historical eruption began in 1787 when a cinder cone grew in the center of a pre-historical caldera 2-km in diameter and sent lava flows westward to reach the sea; activity continued intermittently until 1832. Two subsequent eruptions modified the central cone and also sent lava flows westward to reach the sea in 1991 and 1994–1995.A suite of 28 lava, scoria, and ash samples were investigated from various stages of the subaerial eruptive history of BI. Most are basalts (including all 10 samples from the 1994–1995 eruption) and basaltic andesites (including 7 of 8 samples from the 1991 eruption), but 2 pre-1787 andesites were also studied. On multi-element spider diagrams the BI suite shows subparallel trends for most elements that reflect an important role for fractional crystallization, along with the characteristic depletions of Nb–Ta and enrichments of K–Rb–Pb found in other subduction-related island-arc suites. The typical relative enrichment of Ba is not present, likely because the subducted sediments in the Andaman arc are not Ba-rich. Wide compositional ranges for Cs, Th, Rb, U, and Pb may trace different degrees of scavenging from the underlying volcanic pile.BI basalts and basaltic andesites have variable abundances of phenocrystic–microphenocrystic olivine plus Cr–Al–Mg spinel inclusions, plagioclase, and clinopyroxene, embedded in a matrix of glass, the same minerals, and titanomagnetite (mostly exsolved). The most remarkable mineralogical feature of certain BI basalts and basaltic andesites is the presence of abundant (to 40 vol.%) and large (to 5 mm) crystals of relatively homogeneous anorthitic plagioclase (to An95.7). These have inclusions of Mg olivine (to Fo79) and thin (10–150 μm) normally zoned margins that reach to the more sodic compositions of the plagioclase phenocryst and microphenocryst rims. Anorthitic plagioclase crystals are common at many subduction-related volcanoes. At BI, the anorthitic plagioclase and associated olivine crystals are thought to have entered the magmas through disaggregation of troctolitic crystal mushes or plutonic xenoliths. This process affected bulk-rock compositions in many ways, including raising Al2O3 contents to values as high as 22.8 wt.% and Eu / Eu* values up to 1.05. Compared to a large petrological and geochemical database for Indonesian volcanic rocks, the BI suite falls at the most depleted end for levels of K and incompatible trace elements, and Sr, Nd, and Pb isotopic ratios. Consequently, the BI suite defines an excellent primitive baseline against which Indonesian volcanic suites can be compared.  相似文献   

13.
The major and trace element geochemistry of lavas erupted from four volcanic front (VF) stratovolcanoes in southeastern Guatemala show differences in the relative importance of flux and decompression melting in a continental arc setting. The VF stratovolcanoes exhibit a wide compositional range from basalt to dacite, although modern Pacaya erupts basaltic lavas. The VF basalts have relatively low MgO contents and plot outside the field of primary arc magmas defined by melting experiments on hydrous peridotite. After subtracting the effects of the fractionation, assimilation, and alteration of some VF lavas, separate partial melting and mixing trends were identified for Agua–Pacaya and Tecuamburro–Moyuta.The distinct chemical signatures of the hemipelagic and carbonate sediments subducted off Guatemala provide constraints on material transfer processes that occurred between the slab and mantle wedge. Model fluids and melts from the subducted slab were calculated using recently published mineral–aqueous fluid partition coefficients. Wide separation of the model fluid and melt compositions on a U/La versus Ba/Th diagram creates diagnostic mixing curves with an enriched mid-ocean ridge basalt source. Fluid from mature ocean crust has high U/La, fluid from carbonate sediment has high Ba/Th, and fluid and melt from hemipelagic sediments have both high U/La and Ba/Th. In a simple single-stage model, a mantle metasomatized by fluid originating largely from the oceanic crust with only minor sediment fluid contributions best explains the overall large ion lithophile element composition of the VF lavas. (Th/Rb)N ratios of ∼1 in the VF lavas from southeastern Guatemala require a component of sediment melting. Therefore, a more realistic two-stage model to describe the Guatemalan arc data involves an initial hemipelagic sediment melt input to the wedge followed by minor fluid additions from the oceanic crust or sediments. Correlation between measures of slab input and extent of melting in the older VF lavas from Tecuamburro and Moyuta favors flux-dominated melting near the base of the mantle wedge. In sharp contrast, the lack of a relationship between slab additions and melting in younger lavas from Agua and Pacaya volcanoes implies a significant role for decompression melting closer to the top of the wedge. In this melting scenario, the rate of crustal extension determines the extent of melting.  相似文献   

14.
The Adak volcanic center is located in the central part of the Aleutian arc and consists of three main volcanic vents. Andrew Bay Volcano, the oldest center, has been mostly removed by erosion. The next youngest vent, Mount Adagdak, was built in three major volcanic stages whereas Mount Moffett, the largest volcanic edifice, consists of a main cone and a parasitic cone each with several magmatic phases. Adak is unique compared to other modern Aleutian volcanic centers in that it contains two xenolith suites (Conrad and Kay, 1984; Debari et al., 1987). One suite consisting predominantly of mafic xenoliths occurs on Mount Moffett whereas an assemblage of ultramafic and mafic xenoliths is found on Mount Adagdak. Lavas erupted at Adak span the compositional range from 48.4 to 65.0 wt.% SiO2 and are characterized by significant variations in Al2O3, MgO, Sr, Ni and Cr. On Harker diagrams, this variability produces compositional trends with significant scatter. The Adak suite has total REE contents that vary from 32 to 154 ppm but do not correlate systematically with silica. ( )n ratios range from 2.41 to 21.72 with the majority of lavas between 2.41 and 6.06. On process identification diagrams, the Adak suite plots as steeply sloping trends that contrast with the horizontal patterns of most other Aleutian centers. Measured isotopic ranges are large and nearly equal to those for the entire arc. Although they span similar silica ranges, subtle geochemical and isotopic differences distinguish the different volcanic vents of Adak. On Mount Moffett, a geochemically and isotopically distinct group of andesites (55.5–57.9 SiO2), the mafic andesites, occur on its NE flank. These lavas have elevated MgO, Ni and Cr but are depleted in Al2O3 relative to other Mount Moffett andesites with similar silica. They also have more heterogeneous REE abundances and isotopic ratios than most of the other andesites. Significant compositional differences exist between Adak and the other volcanic centers of the central Aleutian arc. Although these differences are characteristic of all geochemical systems, they are greatest for major and rare-earth elements and isotopic ratios. The lack of coherent relationships on major- and trace-element Harker diagrams, the isotopic variability, as well as the steeply sloping trends on REE process identification diagrams suggest that the Adak volcanic suite was not formed predominantly by closed-system crystal fractionation, but must be the product of a complex open-system process(es). The significant isotopic variability displayed by the suite suggests that contamination by an isotopically distinct contaminant must also have been an important petrologic component in the evolution of the suite. REE data are also suggestive of a role for magma mixing. Such a complex petrologic evolution is consistent with an immature lithospheric plumbing system. Based on REE systematics, the xenolith suites of Adak cannot, as previously proposed, be related to the host lavas or the rest of the Adak suite through crystal fractionation schemes. Rather they are probably accidental fragments derived from various depths along lithospheric conduits. In light of their relation to xenolith-bearing units, the mafic andesites of Adak presumably represent hybrid magmas formed during the interaction of ascending magmas with lithospheric wall rock. They are, therefore, characteristic of immature volcanic centers and unlikely to be related directly to the magmatic processes responsible for the generation of primary arc magmas. Because of the close proximity of the vents and the subtle compositional differences between their lavas, the Adak volcanic center was probably supplied by a single, deep lithospheric plumbing system that fed separate crustal magma chambers. The absence of historic volcanic activity on Adak suggests this plumbing system was abandoned before complete conduit development. This decline in magmatism may reflect a re-adjustment of volcano spacing within this part of the Aleutian arc.  相似文献   

15.
Correlations of Late Tertiary volcanic stratigraphic columns in Guatemala, El Salvador, and Honduras indicate that a common lithostratigraphic sequence is present throughout northern Central America. The Late Tertiary volcanic sequences are divided into three lithostratigraphic formations that roughly parallel the Pacific coastline. The Chalatenango Formation, composed of rhyolitic tuffs and lavas, is of Middle to Upper Miocene age. It occurs in the northern and central portions of the Tertiary volcanic belt. The Bálsamo Formation consists of andesitic lavas, tuffs, and lahars and is Upper Miocene to Pliocene in age. It is only found on the Pacific coastal side of the Tertiary volcanic belt. The Cuscatlán Formation is made up of rhyolitic tuffs and volcanic sediments overlain by rhyolitic and basaltic lavas that were erupted during the Pliocene. In eastern and central El Salvador the Cuscatlán Formation overlies the Bálsamo Formation on the coastal side of the belt, but in western El Salvador and southeastern Guatemala it overlies the Chalatenango Formation on the northern side of the Tertiary volcanic belt. The apparent offset of the Cuscatlán Formation in western El Salvador may indicate that the underthrusting Cocos Plate was broken into segments in Pliocene time.  相似文献   

16.
Middle Miocene to Quaternary lavas on Kunashir Island in the southern zone of the Kurile Arc were examined for major, trace, and Sr–Nd–Pb isotope compositions. The lavas range from basalt through to rhyolite and the mafic lavas show typical oceanic island arc signatures without significant crustal or sub-continental lithosphere contamination. The lavas exhibit across-arc variation, with increasingly greater fluid-immobile incompatible element contents from the volcanic front to the rear-arc; this pattern, however, does not apply to some other incompatible elements such as B, Sb, and halogens. All Sr–Nd–Pb isotope compositions reflect a depleted source with Indian Ocean mantle domain characteristics. The Nd and Pb isotope ratios are radiogenic in the volcanic front, whereas Sr isotope ratios are less radiogenic. These Nd isotope ratios covary with incompatible element ratios such as Th/Nd and Nb/Zr, indicating involvement of a slab-derived sediment component by addition of melt or supercritical fluid capable of mobilizing these high field-strength elements and rare earth elements from the slab. Fluid mobile elements, such as Ba, are also elevated in all basalt suites, suggesting involvement of slab fluid derived from altered oceanic crust. The Kurile Arc lavas are thus affected both by slab sediment and altered basaltic crust components. This magma plumbing system has been continuously active from the Middle Miocene to the present.  相似文献   

17.
The Spurr volcanic complex (SVC) is a calc-alkaline, medium-K, sequence of andesites erupted over the last 250000 years by the eastern-most currently active volcanic center in the Aleutian arc. The ancestral Mt. Spurr was built mostly of andesites of uniform composition (58%–60% SiO2), although andesite production was episodically interrupted by the introduction of new batches of more mafic magma. Near the end of the Pleistocene the ancestral Mt. Spurr underwent avalanche caldera formation, resulting in the production of a volcanic debris avalanche with overlying ashflows. Immediately afterward, a large dome (the present Mt. Spurr) formed in the caldera. Both the ash flows and dome are made of acid andesite more silicic (60%–63% SiO2) than any analyzed lavas from the ancestral Mt. Spurr, yet contain olivine and amphibole xenocrysts derived from more mafic magma. The mafic magma (53%–57% SiO2) erupted during and after dome emplacement from a separate vent only 3 km away. Hybrid block-and-ash flows and lavas were also produced. The vents for the silicic and mafic lavas are in the center and in the breach of the 5-by-6-km horseshoe-shaped caldera, respectively, and are less than 4 km apart. Late Holocene eruptive activity is restricted to Crater Peak, and magmas continue to be relatively mafic. SVC lavas are plag ±ol+cpx±opx+mt bearing. All postcaldera units contain small amounts of high-Al2O3, high-alkali amphibole, and proto-Crater Peak and Crater Peak lavas contain abundant pyroxenite and anorthosite clots presumably derived from an immediately preexisting magma chamber. Ranges of mineral chemistries within individual samples are often nearly as large as ranges of mineral chemistries throughout the SVC suite, suggesting that magma mixing is common. Elevated Sr, Pb, and O isotope ratios and trace-element systematics incompatible with fractional crystallization suggest that a significant amount of continental crust from the upper plate has been assimilated by SVC magmas during their evolution.  相似文献   

18.
Nishinoshima, a submarine volcano in the Ogasawara Arc, approximately 1 000 km south of Tokyo, Japan, suddenly erupted in November 2013, after 40 years of dormancy. Olivine‐bearing phenocryst‐poor andesites found in older submarine lavas from the flanks of the volcano have been used to develop a model for the genesis of andesitic lavas from Nishinoshima. In this model, primary andesite magmas originate directly from the mantle as a result of shallow and hydrous melting of plagioclase peridotites. Thus, it only operates beneath Nishinoshima and submarine volcanoes in the Ogasawara Arc and other oceanic arcs, where the crust is thin. The primary magma compositions have changed from basalt, produced at considerable depth, to andesite, produced beneath the existing thinner crust at this location in the arc. This reflects the thermal and mechanical evolution of the mantle wedge and the overlying lithosphere. It is suggested that continental crust‐like andesitic magma builds up beneath submarine volcanoes on thin arc lithosphere today, and has built up beneath such volcanoes in the past. Andesites produced by this shallow and hydrous melting of the mantle could accumulate through collisions of plates to generate continental crust.  相似文献   

19.
Origin of andesite and its bearing on the Island arc structure   总被引:1,自引:0,他引:1  
The hypothesis that andesite magmas originate from basalt magmas through fractionation is supported for the following reasons: 1) A close association of andesite and dacite with basalt in many volcanoes and a complete gradation in chemistry and mineralogy throughout this suite. 2) Formation of andesite magmas from basalt magmas by differentiation in situ of some intrusive and extrusive bodies. 3) Agreement between the calculated compositions of solid materials to be subtracted from basalt magmas to yield andesite magmas and the observed mineralogy of phenocrysts in these rocks. 4) Higher alkali contents in andesite and dacite associated with high-alumina basalt than in those associated with tholeiite. 5) A complete gradation from the high iron concentration trend of basalt magma fractionation (Skaergaard) to the low or noniron concentration trend (the calc-alkali series) which can be ascribed to the difference of the stage of magnetite crystallization. 6) Similarity between the orogenic rock suite and plateau basalts in the preferential eruption of magmas of middle fractionation stage, givin rise to the great volume of andesite in the orogenic belts and iron-rich basalt in the plateau lavas. Petrological and seismic refraction studies suggest that a great volume of gabbroic materials are present in the lower crust underneath the volcanic belts as a complementary material for the andesite lavas. The island arc structure would develop by repeated eruption of andesite on the surface and by thickening of the oceanic crust underneath the arc due to the addition of gabbroic materials. The suitable portion of the lower crust may be subjected to partial melting to produce granitic magma in the later stage of development of the arc, successively changing it to a part of the adjacent continent.  相似文献   

20.
The variation in the activity patterns of the Chichinautzin volcanic rocks is discussed. This sequence of lavas and pyroclastic deposits is located in the central part of the Mexican Volcanic Belt, directly south of Mexico City, and is typical of its Quaternary monogenetic vulcanism. One-hundred and fourty-six volcanoes and their deposits covering 952 km2 were mapped. Cone density is 0.15 km2 with heights ranging from to 315 m and crater diameters from 50 to 750 m. Ratios of cone height/diameter decreased from 0.20 to 0.12 with age. Basal diameters varied from 0.1 km to 2 km. Lavas are mainly blocky andesites but some dacites and basalts were found. Lengths of flows range from 1.0 to 21.5 km with heights of 0.5 to 300 m and aspect rations of 21.4 to 350. Three types of volcanic structures are found in the area: scoria cones, lavas cones and thick flows lacking a cone. Pyroclastic deposits are basically Strombolian although some deposits were produced by more violent activity and lava cones seem to have formed by activity transitional to Hawaiian-type vulcanism. Therre is a dominant E-W trend shown mainly by the orientation of cone clusters. The Chichinautzin volcanic centers are compared to the monogenetic volcanoes of the Toluca and Paricutin areas which are similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号