首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary From the early discovery in 1948 of X-rays from the Solar corona, X-ray spectroscopy has proven to be an invaluable tool in studying hot astrophysical and laboratory plasmas. Because the emission line spectra and continua from optically thin plasmas are fairly well known, high-resolution X-ray spectroscopy has its most obvious application in the measurement of optically thin sources such as the coronae of stars. In particular X-ray observations with theEINSTEIN observatory have demonstrated that soft X-ray emitting coronae are a common feature among stars on the cool side of the Hertzsprung-Russell diagram, with the probable exception of single very cool giant and supergiant stars and A-type dwarfs. Observations with the spectrometers aboardEINSTEIN andEXOSAT have shown that data of even modest spectral resolution (/ = 10–100) permit the identification of coronal material at different temperatures whose existence may relate to a range of possible magnetic loop structures in the hot outer atmospheres of these stars. The higher spectral resolution of the next generation of spectrometers aboard NASA'sAXAF and ESA'sXMM will allow to fully resolve the coronal temperature structure and to enable velocity diagnostics and the determination of coronal densities, from which the loop geometry (i.e. surface filling factors and loop lengths) can be derived. In this paper various diagnostic techniques are reviewed and the spectral results fromEINSTEIN andEXOSAT are discussed. A number of spectral simulations forAXAF andXMM, especially high-resolution iron K-shell, L-shell, and2s-2p spectra in the wavelength regions around 1.9 Å, 10 Å, and 100 Å, respectively, are shown to demonstrate the capabilities for temperature, density, and velocity diagnostics. Finally, iron K-shell spectra are simulated for various types of detectors such as microcalorimeter, Nb-junction, and CCD.  相似文献   

2.
The kHz quasi‐periodic oscillations (QPOs) have been detected by the RXTE satellite in about thirty neutron stars (NSs) in low mass X‐ray binaries (LMXBs), which are usually interpreted to be related to the Keplerian motions in the orbit close to NS surface where the accreted matter is sucked onto the star. Based on the MHD Alfvén wave oscillation model and the relativistic precession model for the neutron star (NS) kHz QPOs, estimations of mass M and radius R of some NSs are given, which can give clues to evaluate the models. Furthermore, comparisons with theoretical MR relations by stellar equations of state (EOSs) are presented (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We search for stellar and substellar companions of young nearby stars to investigate stellar multiplicity and formation of stellar and substellar companions. We detect common proper‐motion companions of stars via multi‐epoch imaging. Their companionship is finally confirmed with photometry and spectroscopy. Here we report the discovery of a new co‐moving (13 σ) stellar companion ∼17.8 arcsec (350AU in projected separation) north of the nearby star HD141272 (21 pc).With EMMI/NTT optical spectroscopy we determined the spectral type of the companion to be M3±0.5V. The derived spectral type as well as the near infrared photometry of the companion are both fully consistent with a M dwarf located at the distance of HD141272 (21 pc). Furthermore the photometry data rules out the pre‐main sequence status, since the system is consistent with the ZAMS of the Pleiades. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The paper describes the JHK colours of late-type stars which were investigated as part of a survey of South Galactic Cap (b < -30°) IRAS sources selected on the basis of their 12/25µm flux ratios as high mass-loss candidates. Near-infrared two-colour diagrams provide an effective technique for distinguishing between various groups of late-type stars. Such diagrams are also useful in indicating which stars are likely to be peculiar and worthy of more detailed study. The late-type stars isolated by this survey comprise: 61 Mira variables (3 of which are carbon stars with very thick shells), 3 young stellar objects, 4 interacting binaries, 2 semi-regular carbon variables and 154 oxygen-rich giants.  相似文献   

5.
6.
A total of 28 young nearby stars (ages ≤60 Myr) have been observed in the Ks‐band with the adaptive optics imager Naos‐Conica of the Very Large Telescope at the Paranal Observatory in Chile. Among the targets are ten visual binaries and one triple system at distances between 10 and 130 pc, all previously known. During a first observing epoch a total of 20 faint stellar or sub‐stellar companion‐candidates were detected around seven of the targets. These fields, as well as most of the stellar binaries, were re‐observed with the same instrument during a second epoch, about one year later. We present the astrometric observations of all binaries. Their analysis revealed that all stellar binaries are co‐moving. In two cases (HD 119022 AB and FG Aqr B/C) indications for significant orbital motions were found. However, all sub‐stellar companion candidates turned out to be non‐moving background objects except PZ Tel which is part of this project but whose results were published elsewhere. Detection limits were determined for all targets, and limiting masses were derived adopting three different age values; they turn out to be less than 10 Jupiter masses in most cases, well below the brown dwarf mass range. The fraction of stellar multiplicity and of the sub‐stellar companion occurrence in the star forming regions in Chamaeleon are compared to the statistics of our search, and possible reasons for the observed differences are discussed. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
A new sample of possibly massive early-type emission-line stars (METELS) based on the previous lists of peculiar Be stars is presented. It consists of 36 objects divided amongst supergiants, possible binaries, and candidates to the list. The central stars are probably more massive than 10M . Two new relations allowing idientification of possible binaries among the objects are proposed.  相似文献   

8.
The investigation of the angular momentum vs mass relation for binary stars is completed with a study of the 847 systems contained in theFourth Catalog of Orbits of Visual Binary Stars. Because bothJ andM of a visual binary depend steeply on the distance to the system (5th and 3rd powers, respectively), and many of the distances are not well known, the study makes use of an auxiliary parameterR which is independent of distance and proportional toJM –5/3.R appears to be uncorrelated withM for the 789 systems for which both can be determined. The non-correlation implies thatJ M 5/3, expected from Kepler's third law, provides a better fit to the visual binaries than doesJ M 2, predicted by some more complex considerations.The distribution functionf(q=M 2/M1) of mass ratios for the visual binaries results as a byproduct of the investigation. It peaks extremely sharply towardq=1.0 (much more so than for spectroscopic binaries). Because most visual binaries are wide enough to consist of stars that condensed independently (and so that can be thought of as chosen at random from an initial mass function), one expects the realf(q) to rise toward low ratios. Observational selection against the discovery and study of systems with large magnitude differences between the components must be very large indeed to account for the discrepancy between expectation and observation. The alternative is a mechanism for formation of wide binaries that favours equal components. The distribution of mass ratios for eclipsing binaries is given in an appendix. It peaks strongly atq=0.6–0.75 and largely reflects processes of angular momentum, mass, and energy exchange between the stars in contact systems.  相似文献   

9.
The helium and nitrogen enrichment of the atmospheres of early B-type stars during the main sequence (MS) evolutionary phase is re-analysed. It is confirmed that the effect depends on both the aget and the stellar massM. For example, the helium abundanceHe/H increases by 0.04 (60–70% of initial value) for stars withM=8–13M and by 0.025 (about 30%) for stars withM=6M . The nitrogen abundance rises by three times forM=14M and by, two times forM=10M . According to the latest theoretical computations, the observed appearance of CNO-cycled material in surface layers of the stars can be a result of the rotationally induced mixing, in particular, of the turbulent diffusion. Carbon is in deficiency in B stars, but unexpectedly does not show any correlation with the stellar age. However it is shown that the total C+N abundance derived for early B stars conflicts with the theory.Basing on modern data the helium enrichment is first examined in O-type MS stars, as well as in components of binaries. As compared with early B stars, the He abundance for more massive O stars and for components of binaries show a different relation with the relative aget/t MS . Namely during short time betweent/t MS 0.5 and 0.7 a sharp jump is observed up toHe/H=0.2 and more. In particular, such a jump is typical for fast rotating O stars (v sini200 km s–1),. Therefore the effect of mixing depends on massM, relative aget/t MS , rotational velocityv and duplicity.The mass problem (the discrepancy betweenM ev andM sp ) is also analysed, because some authors consider it as a possible evidence of early mixing, too. It is shown that the accurate data for components of binaries lead to the conclusion that the discrepancy is less than 30%. Such a difference can be removed at the expense of theM ev lowering, if the displacement of evolutionary tracks, owing to the rotationally induced mixing is taken into consideration.  相似文献   

10.
Stellar masses and ages are not directly observable parameters, and the methods used to determine them are based on the calibrating relations. In particular, the mass–luminosity relation, based on the masses of less than 200 well-studied binaries, is virtually the only way to estimate the mass of single stars. Thus, the development of methods for estimating stellar masses with accuracy comparable to direct methods is a problem of vital importance.
Here, we describe a method for estimating stellar masses and ages, which is based on the geometric similarity of evolutionary tracks for the stars at the same evolutionary stage in the Hertzsprung–Russell (HR) diagram. To examine the proposed approach, it has been applied to various test data sets. Application of the method, using synthetic stellar spectra Basel Stellar Library (of theoretical spectra; BaSeL), demonstrates that it allows determination of masses and ages of stars with a predictable distribution of uncertainties.
This statistical approach allows us to demonstrate the viability of the method using it on the set of double-lined eclipsing binaries with intermediate-mass and low-mass components which allows us to compare calculated characteristics with observational ones. As a result, the uncertainties of the stellar masses estimated with the proposed method are comparable with the accuracy of ones obtained from direct observations. This allows us to recommend the method for mass estimates of masses of single stars by the localization in the HR diagram.
As for the ages, the estimates for intermediate-mass stars are more reliable, while those obtained for low-mass stars are very uncertain, due both to slower movement of these stars in the HR diagram with age at stages close to the main sequence and to certain disagreements between theoretical models for this mass range.  相似文献   

11.
We re‐discuss the evolutionary state of upper main sequence magnetic stars using a sample of Ap and Bp stars with accurate Hipparcos parallaxes and definitely determined longitudinal magnetic fields. We confirm our previous results obtained from the study of Ap and Bp stars with accurate measurements of the mean magnetic field modulus and mean quadratic magnetic fields that magnetic stars of mass M < 3 M are concentrated towards the centre of the main‐sequence band. In contrast, stars with masses M > 3 M seem to be concentrated closer to the ZAMS. The study of a few known members of nearby open clusters with accurate Hipparcos parallaxes confirms these conclusions. Stronger magnetic fields tend to be found in hotter, younger and more massive stars, as well as in stars with shorter rotation periods. The longest rotation periods are found only in stars which spent already more than 40% of their main sequence life, in the mass domain between 1.8 and 3 M and with log g values ranging from 3.80 to 4.13. No evidence is found for any loss of angular momentum during the main‐sequence life. The magnetic flux remains constant over the stellar life time on the main sequence. An excess of stars with large obliquities β is detected in both higher and lower mass stars. It is quite possible that the angle β becomes close to 0. in slower rotating stars of mass M > 3 M too, analog to the behaviour of angles β in slowly rotating stars of M < 3 M. The obliquity angle distribution as inferred from the distribution of r ‐values appears random at the time magnetic stars become observable on the H‐R diagram. After quite a short time spent on the main sequence, the obliquity angle β tends to reach values close to either 90. or 0. for M < 3 M. The evolution of the obliquity angle β seems to be somewhat different for low and high mass stars. While we find a strong hint for an increase of β with the elapsed time on the main sequence for stars with M > 3 M, no similar trend is found for stars with M < 3 M. However, the predominance of high values of β at advanced ages in these stars is notable. As the physics governing the processes taking place in magnetised atmospheres remains poorly understood, magnetic field properties have to be considered in the framework of dynamo or fossil field theories. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The study of young stellar populations has revealed that most stars are in binary or higher order multiple systems. In this study, the influence on the stellar initial mass function (IMF) of large quantities of unresolved multiple massive stars is investigated by taking into account the stellar evolution and photometrically determined system masses. The models, where initial masses are derived from the luminosity and colour of unresolved multiple systems, show that even under extreme circumstances (100 per cent binaries or higher order multiples), the difference between the power-law index of the mass function (MF) of all stars and the observed MF is small (≲0.1). Thus, if the observed IMF has the Salpeter index  α= 2.35  , then the true stellar IMF has an index not flatter than  α= 2.25  . Additionally, unresolved multiple systems may hide between 15 and 60 per cent of the underlying true mass of a star cluster. While already a known result, it is important to point out that the presence of a large number of unresolved binaries amongst pre-main-sequence stars induces a significant spread in the measured ages of these stars even if there is none. Also, lower mass stars in a single-age binary-rich cluster appear older than the massive stars by about 0.6 Myr.  相似文献   

13.
The stars in the Main Sequence are seen as a hierarchy of objects with different massesM and effective dynamical radiiR eff=R/ given by the stellar radii and the coefficients for the inner structure of the stars.As seen in a previous work (Paper I), during the lifetime in the Main SequenceR eff(t) remains a near invariant when compared to the variation in the time ofR(t) and (t).With such an effectiveR eff one obtains the amounts of actionA c(M), the effective densities eff(M)=(M)3(M), the densities of action and of energy (or mean presures in the stellar interior)a c(M),e c(M), and the potential energiesE p(M).The amounts of action areA cM k withk1.87 for the M stars,k5/3 for the KGF stars, andk1.83 for the A and earlier stars, representing very simples conditions for the other dynamical parameters. For instancek5/3 means a near invariant effective density eff for the KGF stars, while for such stars the mean densities and coefficients present the strongest variations with masses (M)M –1.81, (M)M0.6.The cases for the M stars (e c(M)M –1) and for the A and earlier stars (betweena c(M)=constant and eff(M)M –1) and also discussed. These conditions for the earlier stars also represent reasonable mean values for the whole stellar hierarchy in the range of masses 0.2M M25M .With all this, one can build dynamical HR diagrams withA c(M), Ep(M), eff M p , etc., whose characteristics are analogous to these in the photometrical HR diagram. A comparison is made betweenA c(M) from the models here and the HR diagram with the best known stars of luminosity classes IV, V, and white dwarfs.The comparison of the potential energiesE p(M)M –p according to the stellar models used here and the observed frequency function (MM –q (number of stars in a given interval of masses) from different authors suggests the possibility that the productE p(M)(M) is a constant, but this must be confirmed with further studies of the function (M) and its fine structure.There are analogies between the formulation used here for the stellar hierarchy and other physical processes, for instance, in modified forms of the Kolmogorov law of turbulence and in the formulation used for the hierarchy of molecular clouds in gravitational equilibrium. Besides, the function of actionA c(M) for the stars has analogous properties to the relations of angular momenta and massesJ(M) for different types of objects. The cosmological implications of all this are discussed.  相似文献   

14.
The Hipparcos data are an important source for constraining the statistical distribution functions for the binaries in the general field. The present study uses the resolved binaries (separation 0.1‐10 arcsec, magnitude‐differences below 4 mag) to check directly the frequency of main‐sequence binaries with (linear) separations 30‐500 a.u. and mass‐ratios 0.6‐1.0. Complete Hipparcos samples have limiting apparent magnitudes brighter than mag 8, and contain therefore rather few stars. By modelling the completeness using the Tycho observations (complete to mag 10), we may increase substantially the number of useable Hipparcos stars while keeping a tolerable level of systematic uncertainty. The results, for stellar masses not much above solar, show binary frequencies typically a factor two above those usually assumed. Also, although the mass‐ratio distribution function generally decreases towards larger q, there is a definite narrow peak at q = 1. In order to use the Hipparcos data to full advantage, a more indirect approach is necessary. By modelling both the local Galaxy and the Hipparcos observations, one may put constraints also on the number of closer binaries which show up in the Hipparcos Catalog as non‐linear proper motions.  相似文献   

15.
In this paper, we improve the previous work on the MHD Alfvén wave oscillation model for the neutron star (NS) kHz quasi‐periodic oscillations (QPOs), and compare the model with the updated twin kHz QPO data. For the 17 NS X‐ray sources with the simultaneously detected twin kHz QPO frequencies, the stellar mass M and radius R constraints are given by means of the derived parameter A in the model, which is associated with the averaged mass density of the star as 〈ρ 〉 = 3M /(4πR3) ≃ 2.4 × 1014 (A /0.7)2 g/cm3, and we also compare the MR constraints with the stellar equations of state. Moreover, we also discuss the theoretical maximum kHz QPO frequency and maximum twin peak separation, and some expectations on SAX J1808.4–3658 are mentioned, such as its highest kHz QPO frequency ∼ 870 Hz, which is about 1.4–1.5 times less than those of the other known kHz QPO sources. The estimated magnetic fields for both Z sources (about Eddington accretion rate ) and Atoll sources (∼ 1% ) are approximately ∼109 G and ∼108 G, respectively. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We present a new catalogue of variable stars compiled from the data taken for the University of New South Wales Extrasolar Planet Search. From 2004 October to 2007 May, 25 target fields were each observed for one to four months, resulting in ∼87 000 high-precision light curves with 1600–4400 data points. We have extracted a total of 850 variable light curves, 659 of which do not have a counterpart in the General Catalogue of Variable Stars, the New Suspected Variables catalogue or the All Sky Automated Survey southern variable star catalogue. The catalogue is detailed here, and includes 142 Algol-type eclipsing binaries, 23 β Lyrae-type eclipsing binaries, 218 contact eclipsing binaries, 53 RR Lyrae stars, 26 Cepheid stars, 13 rotationally variable active stars, 153 uncategorized pulsating stars with periods <10 d, including δ Scuti stars, and 222 long period variables with variability on time-scales of >10 d. As a general application of variable stars discovered by extrasolar planet transit search projects, we discuss several astrophysical problems which could benefit from carefully selected samples of bright variables. These include (i) the quest for contact binaries with the smallest mass ratio, which could be used to test theories of binary mergers; (ii) detached eclipsing binaries with pre-main-sequence components, which are important test objects for calibrating stellar evolutionary models and (iii) RR Lyrae-type pulsating stars exhibiting the Blazhko effect, which is one of the last great mysteries of pulsating star research.  相似文献   

17.
We have carried out a search for co‐moving stellar and substellar companions around 18 exoplanet host stars with the infrared camera MAGIC at the 2.2 m Calar Alto telescope, by comparing our images with images from the all sky surveys 2MASS, POSS I and II. Four stars of the sample namely HD80606, 55 Cnc, HD46375 and BD–10°3166, are listed as binaries in the Washington Visual Double Star Catalogue (WDS). The binary nature of HD80606, 55 Cnc, and HD46375 is confirmed with both astrometry as well as photometry, thereby the proper motion of the companion of HD46375 was determined here for the first time.We derived the companion masses as well as the longterm stability regions for additional companions in these three binary systems. We can rule out further stellar companions around all stars in the sample with projected separations between 270AU and 2500AU, being sensitive to substellar companions with masses down to ∼60 MJup (S /N = 3). Furthermore we present evidence that the two components of the WDS binary BD–10°3166 are unrelated stars, i.e this system is a visual pair. The spectrophotometric distance of the primary (a K0 dwarf) is ∼67 pc, whereas the presumable secondary BD–10°3166B (a M4 to M5 dwarf) is located at a distance of 13 pc in the foreground. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We follow the interaction of massive stars with their circumstellar gas over their entire life-times by combining hydrodynamic stellar evolution calculations for 35 and 60M stars and one- and two-dimensional gas dynamical calculations for the circumstellar medium.  相似文献   

19.
Summary In the solar neighborhood, approximately half of all intermediate mass main sequence stars with initially between 1 and about 5 Mbecome carbon stars with luminosities near 104 L for typically less than 106 years. These high luminosity carbon stars lose mass at rates nearly always in excess of 10–7 M yr–1 and sometimes in excess of 10–5 M yr–1. Locally, close to half of the mass returned into the interstellar medium by intermediate mass stars before they become white dwarfs is during the carbon star phase. A much greater fraction of lower metallicity stars become carbon-rich before they evolve into planetary nebulae than do higher metallicity stars; therefore, carbon stars are much more importan t in the outer than in the inner Galaxy.  相似文献   

20.
A survey for emission line stars was carried out in 1980 with the Schmidt telescope of Konkoly Observatory in the region of IC 1396 (Kun, 1986a, hereafter referred to as Paper I). This work was aimed at a preliminary mapping of the probable medium mass members of the association Cepheus OB 2. The stars of the region have been followed since then with the same telescope in order to obtain a more complete view on the stellar content of this giant star-forming region. The common variability of the H emission strength makes the sense of repeating such surveys. The new survey resulted in the discovery of 65 further emission stars. Equatorial coordinates and finding charts are given for them.PhotographicBVRI photometry was carried out for all known emission stars of the field. The colourmagnitude and two-colour diagrams derived from theB, V, R, andI magnitudes show that these stars are probably F-G-type (1.5M <M<3M ), partly pre-Main-Sequence members of Cep OB 2, whereas a few of them may be distant red giants.The youngest objects of the region can be found among the IRAS point sources. Their properties are discussed on the basis of IRAS data alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号